On the Winner Problem

November 21, 2022

Let X_{1}, X_{2}, \ldots be non-negative and independent r.v., $F_{i}(x)=P\left(X_{i} \leq x\right)$, and

$$
\mathrm{v}_{i}(x)=-\ln F_{i}(x)
$$

If $F_{i}(x)=0$, we set $v(0)=\infty$.
Clearly, for all i,

$$
\begin{equation*}
F_{i}(x)=\exp \left\{-v_{i}(x)\right\}, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
v_{i}(x) \text { is non-increasing, } v_{i}(0)=\infty, v_{i}(\infty)=0 \tag{2}
\end{equation*}
$$

and the asymptotic behavior of $\mathrm{v}_{i}(x)$ as $x \rightarrow \infty$ is equivalent to that of $1-F_{i}(x)$.

EXAMPLE

$$
F_{i}(x)=\exp \left\{-\frac{c_{i}}{x^{\alpha}}\right\}
$$

Let

$$
p_{i n}=P\left(X_{i}=\max \left\{X_{1}, \ldots, X_{n}\right\}\right)
$$

Assuming $v_{i}(x)$ to be smooth, we have

$$
\begin{aligned}
p_{\text {in }} & =\int_{0}^{\infty} \prod_{j=1, j \neq i}^{n} F_{j}(x) d F_{i}(x)=-\int_{0}^{\infty} \exp \left\{-\sum_{j=1, j \neq=i}^{n} v_{j}(x)\right\} \exp \left\{-v_{i}(x)\right\} d v_{i}(x) \\
& =-\int_{0}^{\infty} \exp \left\{-\sum_{j=1}^{n} v_{j}(x)\right\} d v_{i}(x) .
\end{aligned}
$$

Integrating by parts and taking into account (1)-(2), we have

$$
\begin{equation*}
p_{\text {in }}=-\int_{0}^{\infty} \mathrm{v}_{i}(x) \exp \left\{-\sum_{j=1}^{n} \mathrm{v}_{j}(x)\right\} d \sum_{j=1}^{n} \mathrm{v}_{j}(x) \tag{3}
\end{equation*}
$$

For any non-increasing function $r(x)$, we define its inverse as

$$
r^{-1}(y)=\sup \{x: r(x) \geq y\} .
$$

Let $x_{n}(y)$ be the inverse of the function $\sum_{i=1}^{n} v_{i}(x)$; in other words, a solution (in the above sense) to the equation

$$
\sum_{i=1}^{n} v_{i}(x)=y
$$

Then, from (3) it follows that

$$
\begin{equation*}
p_{\text {in }}=\int_{0}^{\infty} v_{i}\left(x_{n}(y)\right) e^{-y} d y . \tag{4}
\end{equation*}
$$

Let, for example,

$$
\begin{equation*}
v_{i}(x)=c_{i} r(x) \tag{5}
\end{equation*}
$$

Then

$$
\begin{equation*}
x_{n}(y)=r^{-1}\left(\frac{y}{\sum_{i=1}^{n} c_{i}}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{v}_{i}\left(x_{n}(y)\right)=c_{i} r\left(r^{-1}\left(\frac{y}{\sum_{i=1}^{n} c_{i}}\right)\right)=\frac{c_{i}}{\sum_{i=1}^{n} c_{i}} y . \tag{7}
\end{equation*}
$$

Thus, in this case,

$$
p_{i n}=\frac{c_{i}}{\sum_{i=1}^{n} c_{i}} \int_{0}^{\infty} y e^{-y} d y=\frac{c_{i}}{\sum_{i=1}^{n} c_{i}} .
$$

For a general scheme, we can assume, for example, the following.

1. Uniformly in i,

$$
\begin{equation*}
\frac{v_{i}(x)}{c_{i} r(x)} \rightarrow 1 \text { as } x \rightarrow \infty . \tag{8}
\end{equation*}
$$

2.

$$
\begin{equation*}
\sum_{i=1}^{n} c_{i} \rightarrow \infty \text { as } n \rightarrow \infty . \tag{9}
\end{equation*}
$$

3. There exists a non-negative function $c(x)$ on $[0,1]$ such that $\int_{0}^{1} c(x) d x=1$ and if

$$
\frac{k_{n}}{n} \rightarrow z \in[0,1]
$$

then

$$
\begin{equation*}
\frac{\sum_{i=1}^{k_{n}} c_{i}}{\sum_{i=1}^{n} c_{i}} \rightarrow \int_{0}^{z} c(x) d x \tag{10}
\end{equation*}
$$

For example, this is true if we consider a triangular array scheme ($c_{i}=c_{i n}$) and there exists a function $g(x)$ on $[0,1]$ such that $c_{\text {in }}=g(i / n)$. Then

$$
c(x)=\frac{g(x)}{\int_{0}^{1} g(x) d x} .
$$

CONJECTURE 1

Under conditions (8)-(9), relation (6) may be replaced by

$$
\begin{equation*}
x_{n}(y) \sim r^{-1}\left(\frac{y}{\sum_{i=1}^{n} c_{i}}\right) \text { as } n \rightarrow \infty \tag{11}
\end{equation*}
$$

CONJECTURE 2

Consider probability measures μ_{n} on $[0,1]$, that assigns to points $i / n . i=1, \ldots, n$ the probabilities $p_{i n}, i=1, \ldots, n$, respectively.

Then μ_{n} weakly converge to an absolutely continuous measure μ on $[0,1]$ whose density equals $c(x)$.

CONJECTURE 3
In the case where there may be several "winners", we should pick one at random.

EXAMPLE regarding Conjecture 3

Let all $X_{i}=0$ or 1 with equal probabilities, i.e., $1 / 2$.
Then

$$
p_{\text {in }}=\frac{1}{2} \times 1+\frac{1}{2} \times \frac{1}{2^{n-1}}=\frac{1}{2}+\frac{1}{2^{n}} .
$$

However, in the case of selecting a winner at random (throwing lots), just by symmetry, for all i

$$
p_{i n}=\frac{1}{n} .
$$

I would like to thank professor Vadim Ponomarenko (SDSU) a bygone conversation (about an application problem) with whom helped me to come to the statement of this problem.

