SUBFACTORS FROM BRAIDED C* TENSOR CATEGORIES

JULTANA ERLIJMAN AND HANS WENZL

ABSTRACT. We extend subfactor constructions originally defined for unitary braid rep-
resentations to the setting of braided C* tensor categories. The categorical approach is
then used to compute the principal graph of these subfactors. We also determine the dual
principal graph for several important cases. Here invertibility of the so-called S-matrix of
a subcategory and certain related group actions play an important role.

It was noted by Vaughan Jones that his examples of subfactors gave rise to unitary braid
representations. By this we mean representations of the infinite braid group B, defined
by infinitely many generators oy,09, ... which satisfy the familiar braid relations. Sub-
sequently, unitary braid representations were used by A. Ocneanu and by H. Wenzl to
construct new examples of subfactors; here the subfactor is given by the subgroup B2 o
generated by o09,03,.... This construction was denoted as the one-sided subfactor con-
struction by J. Erlijman, as opposed to her multi-sided subfactors. Here, for a given integer
s > 1, the s-sided subfactor is obtained as a suitable inductive limit of the embeddings of
the quotients of B} = B,, x --- x B, (s times) into B,,; with respect to n. She also computed
the indices of these subfactors and their first relative commutants.

The main motivation for this paper was to calculate the higher relative commutants
of Erlijman’s subfactors. To do this it is convenient to generalize the above mentioned
constructions to the setting of a braided C* tensor category C with only finitely many
simple objects up to isomorphism. By definition of such a category, we obtain a unitary
representation of B, in End(X®") for any object X in C. The constructions in our paper
in the category setting follow closely the above-mentioned braid constructions, and reduce
to them in case that End(X®") is generated by the quotients of B,, for all n € N. However,
the categorical setting makes it easier to calculate the higher relative commutants, and also
contains new nontrivial examples.

The main results of our paper are as follows. We show that the first principal graph
is given by the fusion graph of (C')*, where C' is a subcategory of C depending on the
tensor powers of X in which the trivial object appears. The fusion graph describes the
decomposition of the tensor product of s simple objects of C’ into irreducibles ones; see
Theorem 4.6 for details. The situation is more complicated for the dual (or second) principal
graph. If a certain matrix depending on the braiding structure, called the S-matrix for the
category C', is invertible, the dual principal graph coincides with the principal graph.
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We do not have a general complete result in the case of a noninvertible S-matrix. It is
known that in this case there is a canonical subcategory 7 of C’ which is equivalent to the
representation category of a finite group G. If GG is abelian, we obtain an action of G on the
set of irreducible objects of C, which is given by a labeling set A. The dual principal graph
can now be fairly precisely characterized in terms of the orbits of the action of a group G
on A%, see Theorem 5.9 for details and, for an example, Proposition 6.1.

The basic idea of our paper is that we explicitly construct a number of A — B bimodules,
with {4, B} C {N, M} and with N’ C M being our s-sided inclusion. We show that these
examples of bimodules are closed under induction and restriction. One deduces from this
that the induction-restriction graph for these bimodules must coincide with the principal
or dual principal graph under some mild additional assumptions.

Our findings are related to a number of results by different authors. If s = 2, our
subfactors correspond to the subfactors obtained from the asymptotic inclusion of certain
one-sided subfactors. In this case, the orbifold phenomenon for the dual principal graph
has first been observed by Ocneanu for the example of the Jones subfactors. Further results
have been obtained in [EK2] and [Iz]. In particular, some of our proofs have been inspired
by these results. We were also informed by M. Asaeda that, after having heard a talk on
this paper, she has obtained an analogue of the s-sided construction under more general
conditions.

More or less the same combinatorics as in our paper also appears in the work [X] of
Feng Xu on subfactors of type I1I; factors related to disconnected intervals. In spite of the
similarity of principal graphs and indices, his construction of these subfactors is completely
different from ours and relies on Wassermann’s loop group construction, which has not
appeared yet for all Lie types.

Here is a more detailed description of the contents of this paper. In the first chapter
we review some basic results on bimodules in the type II; setting. The second chapter
contains definitions concerning braided C* tensor categories. In the third chapter we present
the generalization of previous subfactor constructions to the setting of braided C* tensor
categories, as well as additional technical results. This is used in the following section to
construct certain bimodules and compute the principal graph of these subfactors. In the
last section we prove the already mentioned results about the dual principal graph. We
then discuss examples of our construction including the case of the Jones subfactors.

1. BIMODULES

1.1. Definitions.
Definition 1.1. Let A and B be a type 11; factors, and let H be a Hilbert space.

(i) H is a left A module if there exists an action of A on H determined by a normal
unital morphism A : A — B(H), where B(H) is the von Neumann algebra of all
bounded linear operators on H.

(ii) A right B-module H is a left B°?P—module (here, B°PP denotes the opposite algebra
of B).



(iii) H is an A-B bimodule if it is a left A-module, a right B-module, and if the left
and right actions intertwine. That is, if A : A — B(H) is the left action, and if
p: B°PP — B(H) is the right action, then we must have that A(a)p(b) = p(b)\(a)
foralla € A,b € B.

(iv) If H and K are A B bimodules, we define the space of intertwiners, denoted by
Homy 5(H, K), to be the set of linear bounded operators 7' : H — K such that
they intertwine the actions, that is, such that TAy(a) = Ak (a)T for all a € A, and
Tpu(b) = pk (b)T for all b € B.

(v) Two A B bimodules H and K are equivalent or isomorphic if there exists a unitary
operator in Hom 4 g(H, K).

Definition 1.2. Let H be an A B bimodule with left action A, and right action p. The
inclusion generated by H is the inclusion of factors given by

AA) C p(B)".
The dual inclusion generated by H is the inclusion of factors given by
p(B) C AMA)".

Remark 1.3. Similarly, if we have an inclusion of type II;-factors N' C M, we can make
L?(M,tr) intoan M — M, M — N, N — M or N' — N-bimodule via usual left and right
multiplication. If N C M is a reducible inclusion, i.e. the relative commutant A" N M is
larger than C1, then we obtain further examples by reducing by projections in the relative
commutant. E.g. if p € N N M, we obtain the N' — M bimodule L?(pM, tr).

If ¢; : M — M are endomorphisms for i = 1,2, we can also define an M — M-bimodule
structure on L?(M,tr) by perturbing the right and left actions by these endomorphisms,
i.e. by defining the action by my.£.my = ¢1(m1)EP(msa).

All the examples of bimodules encountered in this paper are of one of these types or
tensor products of them.

Definition 1.4. Let A; and B; be type II; factors for i = 1,2. Let H; be A; B; bimodules
with left actions A\; and right actions p;, respectively, for i = 1,2. H; and Hy are (left)-
weakly isomorphic or (left)-weakly equivalent if the inclusions generated by H; and by Ho
are conjugate, i.e. there exists an isomorphism U : p;(By)" — p2(B2)’ such that ¥(A\(A)) =

Ao(A).

Remark 1.5. 1. In the following we will often suppress the notations A and p for left and
right actions if it is clear from the context which algebra acts from which side. We shall
also be mostly concerned with (left)-weakly equivalence, so we will usually only refer to it
as weak equivalence.

2. With the notations of the last definition, let Hy, Hy be two equivalent A-B bimodules.
Then it is easy to check that they are also (left)-weakly equivalent. Indeed, let ® : Hy — Hoy
be the unitary intertwining the left and right actions. Then the intertwining property
implies that ® 1X; (A2)® = X\o(A;) and @ 1 py(Bo)® = p;(By). But then it also follows that



& 1py(By)'® = pi(By)', which gives the desired isomorphism between the two inclusions
given by H; and Hj.

3. The well-known fact that ® 'py(By)® = pi(By) if and only if &1 py(Bs)'® = pi(By)
will be repeatedly used in this paper.

Let H; be A-B; bimodules with left actions A; and right actions p;, respectively, for
1 = 1,2. Assume that dimyHy < dimyH; < oo, where dim 4H is the Murray-von Neumann
dimension of the A-module H.

Lemma 1.6. H is weakly isomorphic to Hs if and only if there exists a projection p € By
such that Hyp and Hy are isomorphic as A By bimodules; here Hip = {p1(p)(z) : = € Hy},
and the By right module structure on Hip is the one induced from pBip by the spatial
1somorphism between Hip and Hs.

Proof. First we shall show the necessity. Since H; is weakly isomorphic to Ho, there exists
an isomorphism

U p1(Br) = p2(By)

such that U(A{(A)) = Ay(A). In particular, [p;(B1)" : A (A)] = [p2(B2)" : Xa(A)]. As
dimy H = [M : N]dimpy H for any inclusions of IIj-factors N C M and any finite-
dimensional M module H, we have

L dlm_AH2 . dimpz(Bz)/HQ

1> a:=— = — .
B dim 4 H, dlmpl(Bl)’Hl

Choose a projection p € By with tr(p) = «, so that dim4(H;p) = dimy Hy. Then the iso-
morphism between pp;1(B1)'p = p1(B1)" and po(Bsy)' is spatial, i.e. it is given by conjugation
by a unitary intertwiner ® : Hyp — Ho. In particular, we obtain ®pp;(B1)p® ! = pa(Bs);
this isomorphism between pp;(B1)p and py(By) makes Hip into a By right module. By
construction, ® defines an isomorphism between the A — By modules Hip and Hs.

Now, we shall show the sufficiency. Suppose that Hy and Hip are isomorphic as A
By bimodules, where p is a projection in B;. Observe that the bimodule isomorphism
® : Hip — H, induces a spatial isomorphism between pp;(B1)p and py(Bs), as described
in the last paragraph. This, in turn, induces an isomorphism between their commutants
pp1(B1)'p = p1(By) and po(Bs)'. As @ interwines the A-actions on Hyp and Hs, this
isomorphism maps pp;1(A)p to pa(A). &

Remark 1.7. There exists an analogous statement of the last lemma for A; B bimodules H;
with left actions A; and right actions p;, respectively, for ¢ = 1,2, and with essentially the
same proof. We leave the details to the reader.

1.2. Tensor products. Tensor products of bimodules have been defined by Connes and
Sauvageot. A good review with results for our paper can be found in [Bs].

Proposition 1.8. Let H; be A — B; bimodules for i = 1,2, and let D,E be two type 1
factors. Then



(a) If Hy and Hy satisfy the same conditions needed for Lemma 1.6, and if they are
left-weakly equivalent, then Ky := L ® Hy is weakly equivalent to Ky := L ® Hy for
any D-A bimodule L.

(b) If Hy and Hy satisfy the same conditions needed for Lemma 1.6, and if they are
right-weakly equivalent, then Ky := H; @ W is weakly equivalent to Ko := Ho @ W
for any B & bimodule W

Proof. (a) By Lemma 1.6, since H is weakly equivalent to Hy (and satisfies the conditions
needed), there must exist a projection p € By such that Hip and Xy are isomorphic as
A — By bimodules. This isomorphism extends in an obvious way to a spatial isomorphism
between L ® Hyp = (L ® Hy)(1 ® p) and L ® Hy. Hence the claim follows from Lemma 1.6.
The proof of item (b) follows like the one for item (a), using Remark 1.7. {

1.3. Higher relative commutants. Let N' C M be type II; factors with normalized
trace tr. There exists a canonical extension M; D M, called Jones’ basic construction for
N C M, which is the von Neumann algebra generated by M acting via left multiplication on
L?(M,tr) and by the orthogonal projection ey onto the subspace L*(N,tr) C L?(M,tr).
It is well-known that the Jones index [M : N] is finite if and only if M; is again a type
IT; factor; it is given by [M : N] = 1/tr(ex), with tr denoting the unique normalized
trace on Mj. We can apply the basic construction again for M C M; to obtain an
extension Mo D M;j. Iterating this construction, we obtain a sequence of II; factors
N Cc My € My C ... We obtain important invariants of the original inclusion N' C M
via the so-called higher relative commutants N/ N M and M’ N Mj. These are finite
dimensional C*-algebras. If there exists a uniform bound for the dimensions of the centers
of the relative commutants, the subfactor N' C M is called a finite depth subfactor. In
this case, the inclusion diagram for N/ N Mo, C N’ N Moy does not depend on k for k
sufficiently large; the corresponding graph is called the principal graph of N C M. Similarly,
one defines the dual principal graph from the inclusion of M’ N Mg, C M' N Moy, for k
sufficiently large. These graphs are important invariants for the inclusion N C M.

We have the following important results, which are presented in great detail and with
precise references to original sources in [Bs]:

Proposition 1.9. Let N C M be a finite depth subfactor with finite index. Then

(a) The inclusions N C Mogy1, N C Mok, M C Moy, M C Moy are given by the
bimodule M®¥ = M @y M @y ... @y M (k times), viewed, respectively, as an
NN, N M, M N and M M bimodule.

(b) The embedding of N' N My C N' N My coincides with the embedding of the
algebras Endyn (M®F) C Endy - ar(M®F) for k even. If k is odd, the embed-
ding of N' N My, C N' 0N My coincides with the embedding of Endy n (M®F) C
Endy_n(MEFD) | given by 2 € Endy_ny(M®F) = 1y @ .

(¢) Analogous statements hold for the embedding of M'NMj C M'NMy.1; we only need
to replace Homy _zr by Homy_aq in all the statements in (b), with X € {M,N}.



Proof. Statement (a) is shown e.g. in [Bs|, Proposition 3.2. Statement (b) can be found
in [Bs], Corollary 4.2 and Corollary 4.4 (with tensoring from the right instead of tensoring
from the left, as we have chosen here). Statement (c) follows from (b) and (a). {

Let N, M, B be type 11 factors with N C M a subfactor of finite index. Let {H)}, and
{K,}, be a collection of mutually nonisomorphic irreducible N' B and M B bimodules,
respectively. Observe that M ®y Hy is an M B bimodule for any N' B bimodule H,.
Similarly, we can view any M B bimodule K, as an N’ B bimodule by restricting the left
action to A/. We say that the system of bimodules ({H)}, { K, },) is closed under induction
and restriction if

- for each N-B bimodule H) the M-B bimodule M ® H) is isomorphic to a direct
sum of irreducible M—B bimodules each of which is isomorphic to an element in
{Ku}o,

- for each M-B bimodule K, the N-B bimodule obtained from K, by restricting the
left action to N is isomorphic to a direct sum of irreducible N—B bimodules each of
which is isomorphic to an element in {H)y},.

The induction-restriction graph for our system of bimodules is the bipartite graph whose
(say) odd vertices are labeled by the elements in { H}, and whose even vertices are labeled
by the elements in {K,},. A vertex labeled by H) is connected with a vertex labeled by
K, by L¥ edges, where L¥ is the multiplicity of Hy in K,, viewed as an N'-B bimodule.
By Frobenius reciprocity (see e.g. [Bs], Theorem 1.18), this number coincides with the
multiplicity of K, in M ®x H,y.

Proposition 1.10. Let ({H)}x,{K,}v) be a system of N B- resp M B-bimodules which
15 closed under induction and restriction.

(a) If {Hx}x contains a bimodule Hy which is weakly isomorphic to the trivial N'-N -
bimodule N, then the principal graph for N C M is given by the connected compo-
nent of the induction- restriction graph for ({Hx}x, {Ky}y) which contains Hy.

(b) If {K,}, contains a bimodule Ky which is weakly isomorphic to the trivial M M-
bimodule M, then the dual principal graph for N C M is given by the connected
component of the induction- restriction graph for ({H)}x,{K,},) which contains
K.

Proof. Part (a) follows from Proposition 1.8 and Proposition 1.9,(b). Similarly, part (b)
follows from Proposition 1.8 and Proposition 1.9,(c). ¢

Remark 1.11. In the setting of the last proposition, (a), there may be more than one
bimodule H) which is weakly isomorphic to the trivial N=A-bimodule N'. The resulting
graph will be independent of the choice of Hy.

Let H be an A B bimodule. We define ind(H) to be equal to the index [p(B)" : A\(A)] =
[A(A)" : p(B)]. In the following lemma, (Hy)) and (K,), are bimodules as in the last
proposition, where we now assume for simplicity that they only denote the bimodules which
label the vertices of a given principal graph. Moreover, we also assume the subfactor to be
of finite depth, i.e., both sets only contain finitely many bimodules.



Lemma 1.12. With notations as above, we have:
(a) 5, ind(K,) = 53, ind(Hy).
(b) Assume that the A B-bimodule H decomposes as H = @ m;H;, with H; irreducible
A B-bimodules, and let | = dim(Endaz(H)) = Y;m?. Then we have ind(H;) >
ind(H)/l, with equality only if dim4(H;) = m; dim4(H)/I.
Proof. It is well-known that the inclusion of higher relative commutants M’ N M, C
N'' N M, defines periodic commuting squares which generate in the limit a subfactor of
index [M : N]. Hence we can use the results of [W1], Theorem 1.5,(iii). It follows that
the index is equal to the quotient of the [>-norms of the weight vectors of M’ N M, and
NN M, for k sufficiently large. Let py and p, be minimal idempotents in M' N M}, and
NN Mj, respectively. Then we have ind(p, My) = tr(p,)?[M : N¥ and ind(py M) =
tr(px)?[M : NJkF1. Solving for tr(py)? and tr(p,)?, we obtain

>, ind(p, M) /M : NTF
Yoaind(paMy)/IM : N

The claimed formula follows from this in the case that our system of bimodules labels the
vertices of the principal graph. One obtains the claim for the dual principal graph by the
same proof applied to the inclusion M C M;.

Part (b) is proved using Lagrange multipliers as follows: Let x; = dim4(H;) and let
d = dimy H. Then the minimum of the function f(z1, ... ) = Y. z? subject to the
condition Y m;x; = d is obtained for 2z; = Am,;, and we deduce from the constraint that
d= %mef =1)\/2. Hence x; = m;d/l and

M :N] =

. d?
> (dimyg H;)* = = Zm? = d*/l. (%)
2 2

Now observe that if p; is the projection onto the submodule H; C H, we have tr(p;) =
dimy (H;)/ dim4(H) and ind(H;) = tr(p;)%ind(H) (again see [W1], Theorem 1.5,(iii)). The

claim follows from this after multiplying (*) by ind(H)/d>.

2. CATEGORIES

In this section we deal with categories which can be considered as generalizations of the
representation categories of finite groups. This allows us to deal simultaneously with cat-
egories of bimodules of von Neumann factors, fusion categories (which can be constructed
using quantum groups or loop groups) and categories obtained from unitary braid repre-
sentations. For more details, we refer to [ML], [Fr] for general categorical notions, and to
[Ks], [T] for tensor categories; our treatment of traces also uses results from [LR].

2.1. General definitions. We recall some basic definitions and set up notations.

In the following, C will always denote a strict monoidal complex tensor category with
unit 1. This means that C is a category with a functor ® : C x C — C called the tensor
product which satisfies certain associativity conditions such as the Pentagon Axziom. There



are similar axioms involving the morphisms [y : 1 ® X — X and rxy : X ® 1 — X called
the left and right unit constraints. Moreover, C being a complex category just means that
the homomorphisms Hom(X,Y') form a complex vector space for any objects X and Y in
C.

The complex tensor category C is called a * tensor category if there exists a contragredient
complex conjugate functor *x : C — C which is compatible with ®. This means in detail
that:

- if f € Hom(X,Y), then f* € Hom(Y, X),

- (af)* =af* for all @ € C and f € Hom(X,Y),
(fg)*=g*f* for f € Hom(X,Y) and g € Hom(U, X),
(f®g)"=f*®g* for f € Hom(X,Y) and g € Hom(U, V),
- 1% = 1x for the identity morphism 1y for any object X in C.

2.2. Duality and Frobenius reciprocity. An object X in a strict monoidal category C is
called left rigid if there exists an object X € C and a pair of morphismsiy : 1 = X ® X and
dx : X®X — 1 such that the maps (1x ®dy)(ix®1x): X — X and (dxy®1y)(lx Qiy) :
X — X are 1y and 1g. An object X is called right rigid if we can find an object X’ and
morphisms i’y : 1 — X' ® X and dy : X ® X’ — 1 satisfying analogous identities. It is easy
to check that in a * category any left rigid object is also right rigid, with X’ = X, iy = d¥
and d'y = i%. Hence we will in the following only talk about rigid objects. A category C is
called rigid if every object of C is rigid.

With this notion of duality, we also have the usual Frobenius reciprocity isomorphism
between Hom(V,W ® X) and Hom(V ® X, W) for any objects V,W in C. One checks
easily that these isomorphisms are given by the maps ¢ — (lyy ®dx) o (e ® 1x) and b —
(b®1ly)o (ly ®ix) for a € Hom(V,W ® X) and b € Hom(V ® Y, W). In particular, one
obtains as a special case that dimHom(1,X ® X) = dimEnd(X) = 1 if X is a simple
object. Hence the morphisms ix and dx are unique up to scalar multiples for X simple.
We shall say that the rigidity morphisms ix and dx are normalized if i%ix = dxd’ *.

2.3. Dimension, trace and conditional expectation. In the following we always as-
sume the rigidity morphisms i x and dx to be normalized for any object X. If X is simple,
this can always be assumed after some rescaling in view of the discussion in the last section.
For normalized rigidity morphisms, we can now define the dimension of a simple object X
to be equal to the scalar

Of course, we would like the dimension to be additive with respect to a decomposition
X = @W,;, with the W; being simple objects. To do so, we define morphisms ¢; : W; — X
such that ¢;¢; = d;;1w, and ), ¢;¢; = 1x, and we define

(2.1) ix =Y (¢ ® di)iw,, dxey =Y dw, (¢ @ ¢7),

where the ¢; are the analogous morphisms for the decomposition of the dual X = > @;W;.
Then it is easy to check that these morphisms satisfy the rigidity axiom, and they are



normalized if the ¢; are so. Moreover, one also checks that these morphisms yield the
desired additivity property of the dimension function.

Additionally, the dimension function should be multiplicative with respect to the tensor
product. If X ® Y is a tensor product of simple objects X and Y, we obtain normalized
rigidity morphisms

ixey = (Ix @iy ®1g)ix, dxgy =dy(ly @dx ® 1x).
It can be shown that these rigidity morphisms define the same dimension as the one we
obtain from the decomposition X @ Y = @;W;, with W; simple and with rigidity morphisms

as defined in the last paragraph. It will be convenient to represent the rigidity morphisms
ix and dy, by the following pictures:

1

FiGure 2.1. Rigidity morphisms

In a * tensor category we define the categorical trace of an endomorphism f € End(X)
by
(2.2) Trx(f) =ik o(f®1g)oix € End(1).
If Z = &m,;X;, where X, is a simple object, and m; is the multiplicity of X; in Z, we can
write an element f € End(Z) in the form f = @& f;, where f; € End(m;X;) can be viewed as

an m; X m; matrix. Defining rigidity morphisms iz, dz with respect to this decomposition,
and using Equation 2.1, one checks easily that

Try(f) = dim(X;))Tr(f2),

where T'r(f;) is the usual trace of a matrix. This shows that we obtain a well-defined
trace for End(Z) for any object Z, and that Trz(fg) = Trz(gf) for any f,g € End(Z).
Moreover, using this formula, one shows as well that we can define the trace also by

Trx (f) =iy o(1gx®f)oig € End(1).
This shows that x-categories satisfy the axioms of a spherical category (see [BWs]).

The normalized trace trx on End(X) is defined by trx(f) = Trx(f)/(dim X). In the
following we will often just write Tr, tr for the trace or normalized trace when it is clear for
which object it is defined.

Conditional expectations can also be very naturally defined using our categorical defini-
tions. Let X be an object. Let A =End(X) = A® 1y C B =End(X ® V). We define the
map €4 from B onto A by

1

eab) = m(lX ®iy)(b®1y)(lx ®iv);



in the tangle picture, €4(b) is obtained from b by closing up the tangle with color V' and
renormalizing by 1/dim V.

Ex(b) = diml(V]

F1GURE 2.2. Conditional expectation

It is known and easy to check that this definition of conditional expectation coincides
with the usual definition of conditional expectation in operator algebras (see e.g. [OW],
Proposition 1.4). Actually, one can show more: Let X7, X9, X3 be objects in our * tensor
categoy C. Define the algebras A = End(X3), B = End(X; ® X3), C = End(X, ® X3) and
D = End(X; ® Xy ® X3). We can consider all these algebras as subalgebras of D, e.g. by
identifying A with 1x, ® End(X3) ® 1x,.

Proposition 2.1. The algebras A, B, C, D form a commuting square, i.e. we have egec =
EA = ECER.

2.4. Braided tensor categories. A strict monoidal category C is called braided if there
exists a natural isomorphism cxy : X ® Y — Y ® X called the braiding such that:
cxyez = (ly ®ex,z)(exy ®@ 17)
and
cxev,z = (ex,z @ 1y)(1x Qey,z).

Naturality means that for any morphisms f : X — X' and g:Y — Y’

(g X f) oCX)y = Cx/ )y’ O (f (] g)

Finally, we also require that ¢; x = 1x = cx 1 under the isomorphisms 1@ X = X = X ®11.

2.5. C* tensor categories. We call a complex * tensor category a C* tensor category if
g p g g

(a) for any objects X,Y in C the space Hom(X,Y') is a Hilbert space with inner product
(a,b) = Tr(b*a) for a,b € Hom(X,Y),

(b) for any object X,Y in C the algebra End(Y) is a C*-algebra acting on the Hilbert
space Hom(X,Y).

Observe that these definitions imply that the dimensions of all objects are positive. A
braided C* tensor category is a C* tensor category with a braiding for which all its braiding
morphisms are unitary operators. For examples of C*-tensor categories, see Section 6.1.
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3. THE MULTISIDED CONSTRUCTION

3.1. Categorical setting. We shall use the following conventions: Let C be a finite braided
C* tensor category, where finite means that we only have finitely many equivalence classes
of simple objects in C. Let {X,,A € A} be a set of representative nonequivalent simple
objects, indexed by some labeling set A. We define dy to be the dimension of X,. We shall
also assume that the category C is generated by an object X, i.e. that any simple object
appears in some tensor power of X. We define k = k(X) = ged{n,1 C X®"}. Let C' be
the subcategory of C generated by the simple objects in X®™* m € N. We define algebras
A, = End(X®") = End¢(X®"). By definition of A,, the simple components of A, are
labeled by the equivalence classes of simple objects which appear in the n-th tensor power of
X, i.e. by a certain subset A, of A. We define the embeddings ¢, : ¢ € A, = a®1, € Apqr,
where we will often omit the subscript r. It follows from the definitions that the vertices
of the inclusion diagram for + : A, — A,;1 are labeled by the elements of A, and A,
respectively; the vertex labeled by A € A, is connected with the one labeled by u by Lﬁ
edges, where LY is the multiplicity of the object X, in X\ ® X. We have the following
commuting diagram of embeddings

1lm®A, C Auim
(3.1) 1®¢ l l L
1m ® An+1 C An+m+1
We have the following simple
Lemma 3.1. Let C be a finite C*-tensor category, not necessarily braided. Then we have
(a) A, = Apyk for n sufficiently large; in particular N' := A, for n sufficiently large
labels the simple objects of C'.
(b) The weight vector for the trace on the algebra Ay is U, = (dy/(dim X)™)xen,, -

(¢) The inductive limit of (1, ® A C Aptm) defines an inclusion B C A of hyperfinite
IIy factors with index (dim X)?™,

(d) Xaea, d3 = %ZAeA d3 for n sufficiently large.

Proof. If the trivial object 1 appears in the r-th tensor power of X and X, C X®", then
we have
X Z2X,®1CX),®X% cXxontr

Hence A, C A,y for all n € N. As A is finite, these inclusions become equalities for
n sufficiently large. Applying this to any r such that 1 C X®", we can similarly prove
Ay, = Ay for k the ged of all such r and n sufficiently large. This shows (a).

Statement (b) follows from the fact that the value of the normalized trace of a projection
py corresponding to a simple object X, C X®" is given by tr(py) = dy/(dim X)".

For statement (c) observe that Diagram 3.1 defines a commuting square by Proposition
2.1. Moreover, the sequence of algebras as in the statement has a k-periodic inclusion
pattern: by part (a), we have the same labeling sets for the algebras in Diagram 3.1 if
we substitute n by n 4+ k everywhere, for n sufficiently large. Moreover, also the inclusion
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pattern remains the same by the discussion before Diagram 3.1. It follows from [W1],
Theorem 1.5,(iii), that the index [A : B] is given by the ratio ||7,||?/||T.11]/?, for n large
enough. As this holds for any sufficiently large n, we have

k N 5
e 1y ITagill® 15
A g = T sl 5
i—1 (| Uil | Up 4k

The claim now follows from the fact that o, = (dim X)*#,,, by (a) and (b). Finally observe
that (dim X)?||%,11[* = ||#,]/* implies Y ycp, (dy)? = Zuel\n+1(d#)2 for all n sufficiently
large. As A, N A,,, = () whenever |n — m| < k, we obtain Statement (d). {

3.2. Multisided Construction. The subfactors constructed in the last section will some-
times be denoted as one-sided subfactors. We will now generalize the construction in [E1] to
the setting of braided C*-tensor categories, which we call multisided subfactors in analogy
to the notation in [E1]. We will fix a positive integer s. For the s-sided construction, we will
have to define an embedding of algebras A% C A, such that we will obtain a subfactor if
we consider the inductive limit over n.

We shall need special braids v, € B,, which can be defined inductively by v; = 1,
and by Figure 3.3. Alternatively, the braid -, can be described as follows: arrange the

s(n+1)

TYn41 =

n+1ln+1 n4+1
Ficure 3.3. Inductive property of intertwining braids.

points labeled by the numbers 1 up to ns in a rectangular pattern with height n and width
s. Now we can numerate the points either by first going down the columns, or by first
going to the right in each row. This defines a permutation 7 mapping the i-th point in
the column-first count to the i-th point in the row-first count. The braid ~,, is now defined
by this permutation where the i-th lower point is connected with the 7 (i)-th upper point
and where we assume all crossings to be positive (i.e., the strand going from southwest to
northeast crosses over the one going from southeast to northwest). A picture for this braid
can be found in [E2], page 83.

Let ¢ = cx x be the braiding morphism for X. By definition, we obtain a unitary
representation p of the braid group B,, into A,, by mapping the generator o; to¢; = 1;,_1®c®

1,1 4. We define the unitary u, = ugf) = p(vn), with ~, defined as in Figure 3.3. Finally,

12



the embedding from A% into A, is given by first identifying A®® with End(X®")®% C
End(X®") = A,,, and by then conjugating this with u,, i.e. by

(a1 - ® ag) "2 up(ar ® -+ ® ay)ul;

throughout this paper, 4 will denote the inner automorphism given by conjugation via the
unitary u unless stated otherwise. We now obtain the following diagram of maps, where
the vertical arrows are labeled by /%% = Li@s and 1 = 15 respectively:

Up,
ABs Ans
(3.2) J i
A% — A
Un+1

Then we have the following lemma which has essentially already been proved in [E1], Section
3.2; the case proved there would correspond to the special case in which A,, is generated by
the image of B,,.

Lemma 3.2. The diagram 3.2 above commutes and also forms a commuting square. More-
over, the inclusion pattern is k-periodic.

Proof. We check first that Diagram 3.2 is a commuting diagram: This is most easily
seen by the following pictures (these proofs by pictures contain all the necessary details
and translate faithfully to the algebraic proofs by simply re-writing the definitions already
included in this article). We take s = 3 for simplicity. For b € A%, we have

lon | [62 | [5s ] = (1o an)(b).

FIGURE 3.4. Diagram 3.2 is a commuting diagram.

Now we check that Diagram 3.2 is a commuting square, i.e., that (Fa,, o G,41)(b) =
(it © E 4o ) (b) for b € AY%,. We use the categorical definition for a conditional expectation

as described in Subsection 2.3, Figure 2.2. For b=b; ® --- ® by € AY?,, we have

13



(Fa,, © tni1)(b) =

3

e 3] I ——
T
—— IR DR
. 1
@mxye |0 ‘ ‘ b ‘ ‘bg ‘ = @mxys | & B‘ b2 D‘ be B
! I
‘ \ ; ‘ ‘ ‘
| ) R a——

n

FIGURE 3.5. Diagram 3.2 is a commuting square.

= (in o E ys:)(b). To show that the inclusion diagrams are k-periodic for large n, observe
that Lemma 3.1(a) implies that we have a 1-1 correspondence between the labeling sets of
simple components of AY* and A%jk as well as between the components of A5 and A, 1),-
This identification of edges is compatible with the number of edges between them, which
again is just given by tensor product multiplicites. <

Theorem 3.3. Fiz s € N, s > 1. Then there exists a subfactor N C M with the embedding
N — M given by 0 := li_r}nﬂn : li_r}nA%S — li-r>nAns. Its index is equal to (3 \en d3)*™ ",
where A’ is an indexing set for the simple objects of the subcategory C' as defined at the
beginning of this subsection and dy = dim(X)).

Proof. This was done in [E1] in the case that the A,,’s are generated by only braid elements.
By Lemma 3.2, Diagram 3.2 is a periodic commuting square for large n. Thus, by [W1],
Theorem 1.5,(iii), 4 : N' < M is an inclusion of hyperfinite IT; factors with index given by
£ |12/ |7, ||? for n sufficiently large, where #,, and #, are the trace vectors for the trace in M
restricted to the finite dimensional approximants A% and A,,;, respectively. For this observe
that if k|n the dimension vectors for A®* and A,,, are given given by #,,, = (dy/(dim X))
and @,y = (d,/(dim X)"),, with X € (A')* and v € A'; here dy = I[j_1 dx,. Hence we
obtain

P12 Yseians d
H || o AE(A)s 7X _ (Z di)sfl o.

H/I_)'TZHQ - ZI/EA’ d% AEA!

M:N] =

3.3. More embeddings. We shall need a variation of the embeddings in the last section
for the construction of certain bimodules.

Lemma 3.4. Let m = (my,--- ,mg), where m; € Z>o, and my > my > --- > my. Then
there exist unitaries g, = Um 5 (s) € Alji|+sn such that we obtain k periodic commuting
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squares
ﬁﬁl’n
An+m1 K ® 147z—|—mS — A\ﬁz\—l—ns

(3.3) y v
ni4my @ @ Anpigm, — A\ﬁzH(nJrl)s
ﬂr’ﬁ,nJrl
which produce an inclusion of hyperfinite LI} factors which is isomorphic to the one in
Theorem 3.3. It will also be denoted by N' C M.
Proof. The unitaries um , = tgn(s) € Ajj|4sn are defined from the unitaries from before,
un(l), (I = 1,---,s). We shall give diagramatic representations of these unitaries. Let
t7 = tm(s) be the unitary in A, given by the picture in Figure 3.6, where the unitary m(as)
is given by Figure 3.3 for s > 1, and it is equal to id, for s = 1, and any positive integer r.

_ (1) (2) (3) (s)
i = Ymy —mo Yy —mg ||%mz—ma Y Umg

FI1GURE 3.6

Then, the unitary w,; , will be defined from ¢,; and ugf) in Figure 3.7.

u) = ‘ to ‘ ul) ‘
m,n

mi| mo ms‘ .

i
n n n
\
mi1+n ma+n ms +n
FiGuRE 3.7

We proceed as in Lemma 3.2 to show that Diagram 3.3 is a commuting square. First we
check that our diagram is a commuting diagram; we shall denote the vertical arrows by (®*
and ¢ respectively. Assume s = 3 again for simplicity.
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For b € Apim, @ -+ ® Ayim,, we have (U 541 01%%)(b) =

o [

my 1 m may m% n| n| n 3
[
| |
Lo ] L N N T
| |
]

] Lo ][

FiGURE 3.8. Diagram 3.3 is a commuting diagram.

= (10 dypp)(b). The commuting square property as well as k periodicity is shown in the
same way as in Lemma 3.2.

It remains to show that the subfactor constructed in this lemma is conjugate to the one in
Theorem 3.3. We define an automorphism ® of the factor M = llg Agpyim| = linAs(anl)

that will carry the subfactor 4(N) = liLnunAgsu: to the subfactor defined here, i, (N) =
liLnuﬁl’n(Aner1 ® - ® Apym,)u), - Define @, at the finite dimensional level by

*
a € Agnppm| & Untm Ont (U 05 )byt o € Agngm,)s

where ¢ @ Ay, = Ag(ngm,) 18 the usual inclusion, and where b, € A, 14,,) is a unitary
described by the picture below. Observe that b,i(Aptm, ® -+ ® Apim, ® Ly, )by, equals
the image of the natural inclusion map Apim, ® -+ ® Apim, — A;‘?jml (recall my > my;).

n+ mi n+ms mip — ms n+mz mi—m3z n+ma--- M —Ms_1 N+ ms M — Mg
b, = \\\
n -+ mi n + mo n + ms n+ma - n+ms mi —ms mp —msz-- Ms—1 M1 — Mg

FIGURE 3.9. Pictorial description of by, € Ay ymy)-

It is easy to check that the maps ®,, are compatible with the inclusions for n to n + 1,
and so we can define ® = liind)n. We observe that u; (a1 ® --- ® ag)u, gun+ml(a1 ®

@ ag)Us ,,, for a; € Ay, so that ® carries 4(N) to 5 (N). It is easy and also left to
the reader to check that ® is an automorphism. <
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3.4. Endomorphisms. We now want to construct bimodules with respect to the just con-
structed factors A/ and M in the proof of the last theorem. This will be done according
to the recipe described in Remark 1.3. To do so, we need to define the endomorphisms
mentioned in the braid setting before, in the categorical setting.

Lemma 3.5. Fiz m; € Z>o, i = 1,2,...,s, with my > my > -+ > m.

(a) Forn € N, the maps

A%@s — Am1+n®“‘®Ams+n
R - ®as — (I, ®a)® - (1, Vas)

extend to an endomorphism Shifty : N — N, where i := (my, ..., my).

(b) Let 4 denote the embedding of N — M. The endomorphism Shifti\ﬁf extends to
an endomorphism of M, denoted by Shifti\ﬁ", that is, the following is a commuting

diagram:
1
N < M
Shifty | l Shift}¥!
N < M
()

(c) (ShiftM o @) only depends on the norm || of m, and it is of the form
A%s — A\ﬁ'lH—sn

(a1 ® - ®as) = 1z Quu(ar ®- - ® as)u,,.

n

Proof. (a) Let vg, € Ajyts, be the unitary image under p of the braid described by
Figure 3.10. Then it is easy to see pictorially that for any element a; ® -+ ® a; € AD®, the
maps defined in the statement of (a) are given by

(1@ Qan) = Vpp(01® - @ an Qidz )05, € Angmi © -+ ® Anim,.

mj

Um,n = /

FIGURE 3.10
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The fact that these maps extend to the von Neumann algebra inductive limit N' = ligaA%s

follows from the fact that the following are commuting diagrams with respect to the canon-
ical inclusions:

Um,n
AP = AP Am — Aprm © 0 ® Any,
(3.4) i o ! i
Ayl o AL QAR — Antiim, @ @ Anyiym,
Uriy 41

and from the fact that the maps are norm and trace preserving. We denote the resulting
endomorphism by Shift’y.

(b) We shall extend the map Shifti\ﬁf to M after embedding N in M via 4 (given by the
inductive limit of conjugation of unitaries u, or w; , as in Figures 3.7 and 3.3). At the
finite dimensional level we define Shift% M= liLnAm — M= @A\ﬁ\+sn as follows:

(35) (:J;LZ Asn — A\ﬁLHsn — A\r’ﬁH»sna

where the first arrow stands for the standard inclusion a € Ag, = a ® 1 € A/ 44, and

where the second arrow stands for conjugation by the unitary w, = w,(s,m) € A\mH-sn
defined by

(36) Wp = ur_ﬁ,nvﬁi,n(u; ® 1d\fﬂ\)7

here uy , and vy, are given by Figures 3.6, 3.7, and 3.10. We give a diagramatic repre-
sentation for s = 3 in Figure 3.11, with b € Agy,:

| i N

mi ma

n

Shift (b) = | u* bt | [ iam | = | wl by
|
N ]

| th |

ma mao ms3 n n
u

*
n

FIGURE 3.11. Pictorial representation of Shift’!(b) € Ap|4sn, for b € Agn (s=3).



We want to show that these maps extend to a well-defined map Shift%" on the inductive
limit li‘r>nAsn, i.e., we have to show that @,41(¢(b)) = t(@n(b)), where we use the notation

v for the standard inclusions of Ag, — Agpiq) as well as for A0, = Apmjgsmer). To

show this, we need the inductive property of the unitaries qu) mentioned already at the

braid level, seen in Figure 3.3, to write uz ,41 in terms of uz , and of id;. We then have
for b € A, that @,+1(¢(b)) =

tﬁL ‘ ‘ Un ‘ ‘ idg tm ‘ ‘ Un idg
mn| ma mo ms3 n n|in 3
|
* .
‘ - ‘ n bun ‘ ‘ ids ‘
|
* *
‘ ‘ ‘ b ‘ ‘ “n ‘ ‘ ‘s ‘

FIGURE 3.12. Shift}! is well-defined.

= 1(@y,(b)). Hence Shifty! = lim &y, is well defined.

We still need to show that Shift’¥! ‘extends’ Shift’¥, i.e., that (Shift’¥! o 4) = (a0 Shift’y).
From definition, for a = a; ® --- @ a5 € AYS,

(Shiftx! o lima,)(a) = (@nooin)(a)
= (i © Oyn) (@ ® id)z))
= (lim iz, o Shifty ) (a).

—

Because of this, we shall after this lemma drop the superscripts and write Shift,; for either
Shift¥! or Shifty.
(¢) This follows from the definition. Take (a; ® - -+ ® a) € A%,
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Using Figure 3.11, we obtain that Shift’! (u, (a1 ® as ® az)u) =

K
3
3
S
S
\i

FIGURE 3.13

= 1‘,%‘ ® Un((l,l Ras Q a;;)uZ. &
Proposition 3.6. Let Shift; be as in Lemma 3.5.
(a) Shift,; (M) C M is an inclusion of I, factors with index (dim(X))2™ where || =
> m; and Shift; (M) N M has a subalgebra isomorphic to Ay, ® -+ ® A, -
(b) Shift;(N) € M is an inclusion of IT, factors with indez [M : N|(dim(X))?™ and
with relative commutant Shift; (N) MM = A
(¢) Shift;(N) C N is an inclusion of II, factors with index (dim(X))2™ and with
relative commutant Shift; (M) N M= Ay, @ - @ Ay, .
Proof. For (a), we first show that the maps w,, in 3.5 define periodic commuting squares
for Shift; (M) C M. For this, one simply uses the fact that these maps are compositions
involving the maps 0y ,, Uy, and 4, (see 3.6). They appear in the periodic commuting
squares in Diagram 3.4, Diagram 3.2 and Diagram 3.3, see Lemma 3.2 and Lemma 3.4.
Hence the desired diagram can be built from the just mentioned commuting squares. Peri-
odicity is shown as in Lemma 3.2, and we can use the formula for the index, as done there.
It follows from Lemma 3.1,(b) and (d), that the ratio of the square lengths of the weight
vectors for Ay, and Ay, 15 is equal to (dim X)2/!,

The statement about the relative commutant follows from the definition of Shifty!. Let us
represent Shift’¥!(b), for b € A, (s = 3 to make things simpler) as it appears in Figure 3.11.
Then for a € (tz ® 1) (Amy @+ @ Ap, ® 1gn) (1, ® 1sn) € Ajp|sn We have aShift’¥! (b) =
Shift}! (b)a, which follows from Fig. 3.14. Hence (5 ®1s,)(Am, @ - ® Ay, @1, ) (£ ®15,) =
Ap, ®- - ® Ay, commutes with Shift’!(b) for b € Ay, for every n, so that Shift (M) N M
has a subalgebra isomorphic to A,,, ® --- ® A,,,. This proves the last statement of (a).

For (b), one shows as before that the generating diagram for Shift,; (N) C M is obtained
by composing Diagram 3.4 and the square obtained from Diagram 3.6, which are both
commuting. So Diagram 3.6 is a composition of those diagrams, and therefore is a periodic
commuting square as well. The indices for parts (b) and (c¢) can now be computed as before,
using Lemma 3.1. It only remains to show the statement about the relative commutant.
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aShiftM (b) = ‘ u” bun ‘ - ‘ u’ bun ‘ —Shift,z (h)a

FIGURE 3.14

Lemma 3.5,(c), implies that Shift)y' (u, AY%u}) = 1,7 ® u, AG*u}, for every n. So Az ®
1y, commutes with Shift’y!(u, A®u%) for every n and Shift}!(N)' 1 M has a subalgebra
isomorphic to Az . Conversely, for the other inclusion, we apply a dimension upper bound

result for relative commutants of inclusions generated by periodic commuting squares (see
[W1], Theorem 1.6):

IN

dim (Shift¥' (M) N M) dim (1) ® un A7up)}, N (A 45n) )

IN

dim (Ajz|1-5n)p;

*

for any projection p € 15 ® u, Ay us,
large, then X®" contains a subobject isomorphic to 1; let p; € A, be the projection onto
it. If p=13 ® un (py*)ul, € A/ ns» then we have pA g 4,0 = Aj . This shows (b).

For (c), it is even easier than in (a) to show that the generating Diagram 3.4 for
Shift,; (A) C N is a periodic commuting square; one can see that pictorially, as it was
done in Lemmas 3.2 and Lemma 3.4, which is left to the reader. The statement about
the relative commutant in (¢) is proved in the same manner as in (b): By definition,
Shift¥ (2, @ -+ @ ag) = (I, ® a1) @ - ® (L, ® ag). Thus, (A, ©1,) Q-+ @ (Am, @ 1,,)
commutes with Shift?¥ (A%%) for every n, and so Shift’¥ (M) N A has a subalgebra isomor-
phic to A, ®---® Ay, For the other inclusion we apply again the upper bound result for
the dimension of the relative commutant:

and n large. If n is divisible by £ and sufficiently

dim (Shifti\‘ﬁ[(N)/ N N) < dim ((lnn ® An) Q- ® (lms ® An));; N (An+m1 Q- ® An+ms)P
< dim(Appm, @ ® An+ms)pa
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for any projection p € (1,,, ® 4,) ® --- ® (1,,, ® A,). One shows as in (b) that for
p= 1 @p1)®---® (1, ®p1) we have (Apym, @ @ Apjm,)p = Ay @ --® Ay, from
which one deduces (¢). ¢

4. BIMODULES AND THE PRINCIPAL GRAPH

4.1. Examples of bimodules. We are going to construct systems of bimodules in order
to calculate the principal and the dual principal graph, as described in Proposition 1.10.
This will be done using the endomorphisms Shift defined in the last section.

The N-N-bimodules: Let \; € A and let A, ), be the simple component of A,,,
corresponding to the simple object X, C X®™ with m; being large multiples of & for
i=1,2,...,s. We first fix minimal projections py, € Ay, ;. Define p; =py, ® --- @ py,,

where X = (A,--+,As). The underlying Hilbert space will be given by
LQ(NatT)pX = {ij\'a (€ LQ(Natr)}'
The N N bimodule structure is defined by
z.&y = x€Shift; (y), for z,y € N, & € L* (N, tr)ps,

where we use the usual right and left multiplication in A" on the right hand side. It follows
from Proposition 3.6 that this indeed defines an A' N bimodules structure on L*(N, tr)ps.

Definition 4.1. The N N bimodules defined above will be denoted by N .
The M-N-bimodules: Let again 7 := (my,...,mg) € N°, with m :=my + - +m,. We
fix a minimal projection p, € Shiftz;(N)' N M = A,, (see Proposition 3.6), where pu € A.
The underlying Hilbert space for all these bimodules will be given by
LQ(M,tr)pM ={lpu/CE€ LQ(M,tr)}.

The M-N bimodule structure is defined by

x.&.y = x€Shift;(y), forx € M, y € N, € € LA (M, tr)p,.
Definition 4.2. The M N-bimodules defined above will be denoted by H), .

The N—M-bimodules: With notations as in the last definition, we define similarly N
M-bimodules based on Hilbert spaces p,L*(M,tr) := {p,( / ¢ € L*(M,tr)}, and with the
N M bimodule structure defined by

z.£.y = Shift;(z)éy, forz e N, ye M, £ € puL2(M,tr).

Definition 4.3. The N' M-bimodules defined above will be denoted by K, .

The M-M-bimodules: Similarly as for the A/ A-bimodules, we fix minimal projections
Py, € A, a» with A; € A, but now only requiring that ) m; being divisible by k. The
underlying Hilbert space for all these bimodules will be given by

pXLQ(M,tr) = {ps¢/ C € LA (M, tr)}.
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The M-M bimodule structure is defined by
x.£.y = Shifty (z)€y, forz,y e M, € prQ(M,tr),
Definition 4.4. The M-M-bimodules defined above will be denoted by Mi,m'
Lemma 4.5. With the notation introduced above:
(a) If we view both Ny 5 and Hy 5 as left N -modules, then dimys N5 s = dx/(dimX)‘m‘
and dimy H, 7 = d,[M : N]/(dim X)™|.  Moreover, we have ind(N5 ») = d;,
where dy = [[dy,, and ind(H, ) = dZ[M : N].
(b) If m| = |kl, then Hym = H ¢ as M N-bimodules, and K,z = K

bimodules.
(c¢) If |m| = |k|, we have

HomM*M(Mx,ﬁz’Mﬁ,E) - HomN*M(M/_\.,fﬂ’M[j,E) = HOch(X-' Xﬁ),

as N M-

where X5 = ®;_1 Xy, and Xz = Q1 X,,.

Proof. We have the well-known facts that dimy L2(N,tr)p = tr(p) for any projection
p € N, and dimy L?(M,tr)q = tr(q)[M : N] for any projection ¢ € M see e.g. [Jo]
from which the dimension statements in (a) follow. For the index statements in (a), let £
and r denote left and right multiplication by A" on L?(N,#r) or suitable sub-modules of it.
Observe that Z(/\/')TLQ(NytT)p is equal to r(pNp) for any p € Shift;(N) N N. Recall that
Shift,; (A) € N has index (dim X)?". Moreover, tr(ps) = dx/(dimX)‘m‘ for a minimal
idempotent py € Shifty; (N) NN, see Proposition 3.6. Using the formula for local indices,
see [W1], Theorem 1.5,(iii), and the index formula in Proposition 3.6,(c), we obtain

ind(Ny ) = [psNps : pgShiftys (N)] = tr(pg)® (dim X)* = (dg)*.

The index for H, 5 is computed similarly. By Lemma 3.5, (c), we have Shift'%[ = Shift%v,
from which (b) follows.

Let ;3 L?(M,tr) be the Hilbert space L?(M,tr) with M M bimodule structure z.£.y =
ShiftM (z)éy for z,y € M and ¢ € L?*(M, tr). Define zL?(M, tr) similarly. These bimod-
ules are isomorphic as N—M bimodules, again by Lemma 3.5, (c), which combined with
Lemma 3.5,(b), result in

Homp—m (mL2(M, tT), ELQ (Ma t?")) C Homp— m (ﬁlL2(M7 t?"), ELQ(Ma tT)) =

=~ Endy (L (M, 1)) = Az = Bnde(X O™, (+)
where the second isomorphism follows from Corollary 3.6,(b), and (b). By construction,
we have My . = p5(L* (M, tr)) and M= (papL? (M, tr)), where p; = py, @ -+ @ py,
and p; = py, ® --- @ p,,. Hence we can interpret an element f € HomM,M(MX,Mﬁ) as
an element in HomN,M(mL2(M,tr),ELQ(M,tr)) which satisfies p;fp; = f. Using this
together with (%) proves claim (c). {
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4.2. Principal graph. Let X = (A1, ,Ag) € (A)%, and let L§ be the multiplicity of the
object X, in ® X,,. Observe that L§ is also equal to the rank of the projection @ p,, in
the simple component of A\X\ labeled by v.

In the following we will fix a vector m = (m;) where all its coordinates are divisible by k,
and with m; large enough that all simple objects of C’ will appear in X®™i fori =1,--- ,s.
We shall hence omit /7 in the indices of the bimodules and will just write N; and K, for
NX,m and K, 5, respectively.

Theorem 4.6. With the notation as above:

(a) The bimodules Ny and H, defined above are irreducible.

(b) The principal graph for N C M is the connected component of the fusion graph from
(C")* to C" which contains the trivial object of C. Recall that the even vertices of the
fusion graph are labeled by s-tuples of elements of A, the odd vertices are labeled by
the elements of A', and the vertex labeled by X = (A1, -+, Ag) is connected with the
vertex labeled by v by L; edges.

(c) The subfactor N C M has finite depth.

Proof. Statement (a) follows from Proposition 3.6. It follows from the definitions that
L*(M,tr) @y Ny = L*(M, tr)p; = ®L5H,; the decomposition of L?(M, tr)ps into irre-
ducible M N bimodules follows from Proposition 3.6,(b) and the remarks at the beginning
of this subsection. Hence our system of bimodules (NX)XG(A')S and (H,),ear is closed under
induction. To prove closedness under restriction, observe that the multiplicity of the N' N
bimodule Ny in the M N-bimodule H,, viewed as an N' N-bimodule, is equal to LY, by
Frobenius reciprocity. To show that H, = Py L;NX as an N N-bimodule, it suffices to

prove that both sides have the same dimension, i.e., by Lemma 4.5,(a), that

(4.1) [M:Nd, = Lids.
X

For this observe that the dimension vectors for A®* and A,s, with n a multiple of k, are
given by t,, = (ds/(dim X)"*)s and 5 = (d,/(dim X)"*),, with X e (A) and v e A
Observe that the subfactor N/ C M is generated by the periodic sequence (A%* C Ays),
with the inclusion matrix for A% C A, given by G = (L;) with X and v as above, provided
k|n. Hence it follows from [W1], Theorem 1.5,(ii), that G#,5 = [M : Nt,,;. This implies
Equation 4.1. Statement (c) is a consequence of (b).

Remark 4.7. There are cases where the fusion graph from (C')* to C’ is not connected. An
easy example is obtained for C being the representation category of a finite abelian group
G, where it decomposes into |G| connected components.

5. DUAL PRINCIPAL GRAPH

5.1. Ring lemma. The precise structure of Shift,; (M)" N M is still open after Proposition
3.6. To say more about this, we need the following lemma. Similar techniques have appeared
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before in topological quantum field theory, and within subfactors in work of Ocneanu and
others, see e.g. [EK2], [M2].

Lemma 5.1. If a € Shift; (M) N M, take a := t},aty with ty; € Ay as in Figure 3.6.
Then, the following relations hold for r =2,...,s:

mi my ms

FIGURE 5.15. /s (@ ® 14p)ty™ = v xr(a @ 1gpn) 0"

where the morphisms z, and iy will be defined below.

Proof. By Proposition 3.6, (b), we know that Shift; (M) N M C Ay . Take t5 € Ay as
in Figure 3.6. If a € Shiftz; (M)" N M then set

a® lsn = (ty @ up)a(ty @ un) = thaty; @ Lsn € Al @ Lsn,

and note that a® 14, € ((¢5 @u,)Shift,; (M) (L ®uy,)) NM. In particular, take the element
xy := (£ ® uyy)Shift,; (upTruy) (t7 ® uy), for r =2,...,s, where T, € A, is obtained from
the braiding morphisms and can be represented by the picture:

n nnn nn
RN

L
(r—=1)n (s—r+1)n

FIGURE 5.16

We use Figure 3.11 in the proof of Lemma 3.5 to see that z, is given by Figure 5.17.

mi my ms (r y (s—r)n n
/
—
,‘//
Tp= | .. \\
\\
\\
\
|11 sn

FIGURE 5.17. z, := (£, ® uy)Shift,; (u,Truy) (ts @ uy,)
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Also note that z, is a unitary, so that (a ® 1g,)x, = z,(a ® 1g,) implies (ya ® 1g,) =
zp(a ® gy )zy. This is pictorially represented in Figure 5.18:

mq my ms (r—2)n n n

FIGURE 5.18. (a® 1) = z,(a ® 1)}

In order to obtain the relations in our statement in Figure 5.15, we proceed by “closing”
strands in Figure 5.18 with “cups” and “ caps” to form the loops (where the caps and
cups correspond to dual morphisms as described in the subsection 2.2). This is done as
follows: Let rh and lh be the left and right hand sides of Figure 5.18. Then we also obtain
rh ® Lixyon = =lhQ® L xysn. We now multiply both sides with 1 gm| ® i xesn from the right
(below) and by its conjugate from the left (above). The morphisms ixgs» and its conjugate
correspond to the pictures in Figure 5.19, which are obtained from the properties of the
duality morphisms, see Section 2.2. It is easy to check that we obtain (s — 2)n unlinked

1 ~®sn

X®Sn 7®sn

1

FIGURE 5.19. 1 (. and tyen

circles on the right hand side, which correspond to the scalar (dim X)(~2". Canceling this
with the same number of circles on the left hand side, we obtain the picture as claimed in
the statement.

Corollary 5.2. The equality in Lemma 5.1 still holds if the rings on both sides are labeled
by an irreducible object in C'.

Proof. Assume that k|n. Then the proof of Lemma 5.1 works as well if we multiply 7,
by 1 1y, ® p1 ® 15 ry1)n ® pp where p1 and p,, are projections onto irreducible objects
appearing in X®" isomorphic to 1 and to X, respectively. Going through the proof of
Lemma 5.1, we obtain the statement of the corollary at the end. {
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5.2. Notations and preliminaries. For any braided semisimple tensor category C we can
define a scalar sy, = Tr(c, 1), Where ¢y, is the braiding morphism for X\ ® X,. The
S-matrix is then given by (s),), where the rows and columns are labeled by the simple
objects of C.

Let now D be a full subcategory of C. We define Tp to be the set of simple objects X in
D for which sy, = dim(X))dim(X,,) for all simple objects X, in C'. We will primarily be
interested only in the cases D = C and D = C’. We usually assume D to be fixed, in which
case we may just write 7 for Tp.

Let X = @&ym)X), Y = ®&n, X, be objects in C, and let f : X — Y be a morphism.
Then f can be written as f = @& f), where fy : m X\ — n)X,. For given f : X = Y,
we define the morphism fr : X7 — Y7, where fr = ®x,c7f), and X7, Y7 are defined
accordingly. Also, we define p(X) € End(X) to be the projection from X onto X7.

For a fixed object Z in C and a morphism f : X — Y we define the morphism Py (f) :
X — Y by the following picture:

Pz (f) = Z

X

FIGURE 5.20

Of course this picture corresponds to an algebraic expression involving rigidity and braid-
ing morphisms. One can also easily check that for Z = Z; ® Z,, the operation Py is also
given by a picture involving two parallel rings labeled by Z; and Z,. Observe that if X, X,
are simple objects in C, it follows from the definitions that Px, (1x,) = (sxu/dx)1x,. For a
formal linear combination =}, w, X, with X, simple objects in C, the morphism Po(f)
can also be expressed as the sum wuPx, (f). The following lemma is well-known and
follows from the definitions:

Lemma 5.3. With notations above, we have Px,(f) = >y ?—;‘f}\ and Po(f) =35, wu?—;‘f)\.
The following proposition is a straightforward generalization of the results in [Br|, Lemma
1.3; its proof uses the same arguments as the ones used in the proofs of [Br|, Lemma 1.2
and 1.3.
Proposition 5.4. Fiz the category D and let T = Tp. There exists a linear combination
Q=23 en wuXy such that Pq(f) = fr for any morphism f in D. Moreover, > wudy =1
Proof. By Lemma 5.3, we have to find scalars w,, p € A" such that 2opeN wu?—f is equal
to 1 or 0 depending on whether X, € T or not. Observe that the second statement will
also follow from this as sy, = dxd, for X, € T.
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To do so, pick an object X = @AGA(D) myX in D with my # 0 for all A\ € A(D). Let z)
denote the corresponding minimal idempotent in the center of End(X). Then Py, (2\) =
‘%”z)\. It also follows immediately by drawing pictures that Pz gz, (f) = Pz, (Pz,(f)) for
any f € End(X) (see also the proof of [Br|, Lemma 1.2). Hence we obtain a representation
of the fusion algebra of C' on V', the C-span of the idempotents zy, A € A(D), with each
Py, acting via a diagonal matrix with respect to the basis of z)’s. It follows from Lemma
5.3 that Py, acts via the same scalar on the central idempotent zy as on 2, for all simple
objects X, in C’, if and only if A € 7. Hence the projection onto span{zy, X) € T} is in
the image of the fusion algebra, which is spanned by the Py, ’s. So we can find scalars wy,
such that this projection is written as 3°,c o w, Py, The claim follows from this. ¢

5.3. Let f:®_,X), - ®;_,X,, beamorphism. Then we define, for any r =1, ..., s the
morphism fr PR X ® Yﬂi - Q1 X), ® X, using rigidity and braiding morphisms
for suitable objects as indicated in Fig. 5.21; if » = s, the source of fs is defined to be 1.
E.g. we have fi = ao(ly, ® f®1z, ® ... ®1g,) o, for suitable morphisms a and 3. We
denote f: fs.

—

A7“+1 A‘s—lAs

FIGURE 5.21. f,: @, 1 Xy, ® X, = ®I_ X», ® Xy,

Corollary 5.5. Let f € Hompag (M, Mj), viewed as an element in Home (X5, Xjz) (see

Lemma 4.5,(c)), and let Po be as in Proposition 5.4. Then fr = Po(f,) = (f,)7.

Proof. Fix r, and put a ring around f as it was done for a in Lemma 5.1. By Corollary
5.2 the equality there also holds if we label the ring by 2 = 3 w,X,, with the w, as in
Proposition 5.4. Observe that the ring on the left hand side becomes the scalar -, w,d;, = 1,
by Proposition 5.4. Now multiply both sides with suitable morphisms which change f to
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fr, such that all strands ending up go under the ring, and all strands ending at the bottom
go above the ring. Then the right hand side is equal to PQ(fT-) which is equalt to the left
hand side f,. But by Proposition 5.4 PQ(fr) = (fr)

Lemma 5.6. If f € Hom(My, M) then f = (®5_,p7(Xx, ® X))/

Proof. We will prove by induction on r that f, = RI_1p7 (X ® Xﬂi))f,n. For r = 1, we
have

fi=Pa(fi) = (f1)7

by Corollary 5.5. This proves the claim for r = 1, as the target of the morphism fl is
X\, ® X;,. For the induction step we use the inductive formula for f, i, as given in Figure
5.22.

Aop1 A2 Hr—1 A fhr
_|—
fr+1 = ‘ fv‘ ‘
Arg1 ur+\1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,, 7/

Arg2 As—1 Ms A

FIGURE 5.22

We obtain from this and the induction assumption that

fr+1 = [(®f:1p’r(y>\i ® Xuz)) ® 1?/\ ®Xﬂr+1]fr+1.

r+1

Proceeding as in the case = 1, we also obtain

fr+1 = PQ(frJrl) pT(®T+1X)\ ®Xuz)PQ(fr+1)

If X is an object in 7, then so is X (see remarks in the next subsection). It follows that
the tensor product of simple objects X, ® X, is in 7 for X € T only if also X, is in 7.
One deduces from this that

[(®g:1p7—(y)\i ® Xuz)) ® 1 Xy g1 ®Xn, +1]pT(®T+1X)\ ® Xliz) = ®T+11pT(X)\i ® Xﬂi)'

This proves the claim. <
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5.4. It can be shown under fairly weak conditions that the category 7 is equivalent to the
representation category of a finite group G, see the papers [Br] and [M1]. In the following,
we shall require in addition that 7 is equivalent to the representation category of a finite
abelian group G, for any choice of D. In this case, every simple object in the subcategory
T is invertible. Moreover, we can and will label the simple objects of 7 by the elements of
G in such a way that X, ® X;, = X, for any g, h € G. Then we get a G-action on the index
set A defined by X, = X, ® X. We shall also need the subgroup G7 of G* consisting of
all s-tuples (g1, 92, ...,9s) which satisfy g1g2---gs = 1. The just defined G-action extends
to an action of G} on A® in the obvious way.

Proposition 5.7. Under the above assumptions we have

(a) Hom(My, M) # 0 only if there exists a g € G such that ji =
(b) dimEnd(M;) < |Stabgs X|.

N T

Proof. We use notations as in Lemma 5.6. By our assumptions, we have p(X j, ®X,)=0
unless we can find an element g; € G such that X,, C X, ® X,,. This implies g;.\; = p;,
and hence i = g.X for some g € G°. Moreover, we have a nonzero morphism from 1 to
®X,,; if and only if [] g; = 1. This shows that g € G}, by Lemma 5.6.

By the discussion in the previous paragraph, the dimension of Hom(1, Zpg(X,\ ® X)\ )
is equal to the cardinality of all s-tuples g = (g;) of elements of G for which g X =X and
whose product []g; is equal to 1. These are exactly the elements of Stabgi)\. The claim
now follows from the fact that the map f — f is injective; indeed, it is easy to construct a
left-inverse by multiplying f by a suitable combination of N’s and U’s to get back f.

Theorem 5.8. If the S-matriz for the category C' is invertible, the dual principal graph
for the inclusion N C M coincides with its principal graph. In particular, each M M
bimodule My, with X\ = (X\;) such that each \; labels a simple object in C' is irreducible.

Proof. We will use the results of Lemma 5.6 and of Proposition 5.7 for the category C'. If
the S-matrix is invertible, GG is the trivial group. Hence there are no nonzero morphisms
between My and M for X # i, and each M M-bimodule Mj is irreducible by Proposition
5.7. Tt follows from the definitions (see before Theorem 4.6) that the multiplicity of a simple
N-M bimodule M, in the simple M-M bimodule M is equal to L%

Observe that ind(K,) = d;[M : N and ind(M;) = HZ d3.. Tt follows that

S AMNI =D d2)= > J[4.-

veN veN XG(A/)S 1
Hence ), cp ind(K,) = ZXG(A')S ind(My). As any simple N' M-bimodule in a higher
relative commutant is weakly isomorphic to an element in (K,),ca, by Theorem 4.6, it

follows from Lemma 1.12,(a), that there can not be any additional M—M-bimodules in the
higher relative commutants. <
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5.5. Non-invertible S-matrix. We shall make the following assumptions: We assume
that the category 7 for our chosen category D = C is equivalent to the representation
category of a finite abelian group G, and, moreover, that |G| = k, with k as defined in
Section 3.1. This also implies that |G§| = k1.

Theorem 5.9. We assume the conditions stated at the beginning of this subsection. Then
we have:

(a) dimEndy_a(My) = |Stabgs X| for any X € A= {X € A*, k|3 |\]}.
(b) The even wrtzces’ of the dual principal graph of the inclusion N C M are labeled by
the equivalence classes of irreducible components of the bimodules My, with X € Aj.
Proof. Let M; = €, QX,z’ be the decomposition of the M M bimodule My into irreducible
M-M-bimodules. Then it follows from Lemma 1.12,(b), and Proposition 5.7 that
Zlnd QM - ind(Mj) > ind(Mxl -
im(End(M5)) ~ |Stabgs Al

Let now (Q;); = UX(QXz')i be the collection of mutually nonisomorphic representatives of
irreducible M-M submodules of any module M5 with Xe A§. Then we have

ind(M5
Sind@Q) > O
J G35 —orbitsc A ‘StabG§A|
1 . 2 2
LY wdny = S By (8 By

XeAg vt AEA!

where we use Lemma 3.1,(d), for the last equality. But the sum (3¢ d3)* is equal to
> uen ind(Ky), as was already shown in the proof of Theorem 5.8. Hence the inequalities
above must be equalities, and our set of bimodules (Q);); must already exhaust all possible
M-M-bimodules in the higher relative commutant, by Lemma 1.12.

Remark 5.10. If the stabilizer Stabgs X is trivial, which usually is the case for most labels, the
bimodule My is irreducible, and its decomposition into N M-bimodules is again determined
by the fusion coefficients L%. Unfortunately, our theorem does not say anything about what

End(Mj5) looks like if [Stabgs X| > 4. BE.g., if the stabilizer has four elements, End(My) could

be isomorphic to C* or to the 2 x 2 matrices. Neither does it say how the submodules of
M, decompose into irreducible N — M modules in these cases.

6. EXAMPLES

6.1. Examples of C*-tensor categories. 1. The easiest example for our set-up is the
representation category Rep(G) of finite dimensional unitary representations of a finite
group. Here the braiding structure is just given by the permutation of tensor factors,
which commutes with the group action. This makes the S-matrix a rank 1 matrix, i.e.
noninvertible unless G is trivial. However, at least in principal, the dual principal graph can
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be computed from a general result about fixed point algebras of a group K and its subgroup
H. In our setting, K = G°* and H = G, which is embedded by g € G — (9,9, - ,9) (s
times). See [KMY] for details.

In the special case when the subgroup K is normal, we obtain principal and dual principal
graphs of the factor group H/K. This is the case in our setting if G is abelian.

2. Let p be a II; factor representation of the infinite braid group By such that the
Jones index for the inclusion of factors p(Ba2,)” C p(Bx)” is finite. Let us define A4, =
p(Bpii1,00) N p(Boo)”. We moreover assume that there exists, for some k € N, a projection
p € Ay such that pp(Bs)”p = pp(Bji+1,00)". It is possible to define from this a C*-tensor
category, with the objects being the projections in A,,. Most of this has already been done in
[W2], Section 2, without mentioning categories. We shall not do this here. We just remark
that the constructions of this paper will work in this setting without explicitly exhibiting
the category; this has already been done in [E1]. In particular, this can be applied to the
Jones subfactors as well as to the Hecke algebra and BCD type subfactors.

3. Let U,g be the Drinfeld-Jimbo deformation of the universal enveloping algebra Ug
of a semisimple Lie algebra g. It is well-known that the category of its finite dimensional
representations has a braiding structure. It can not be unitarized except for ¢ = 1. If
q is a root of unity # 1, one can define a special class of representations called tilting
modules which again forms a braided tensor category. It can be shown that the category
of tilting modules has a semisimple quotient with only finitely many simple modules up
to equivalence; this is often referred to as a fusion category (see [A],[AP]). Moreover, for
¢ being certain roots of unity (usually of the form ¢ = e*2™/! for suitable integers [ (see
[W3] for precise values), this quotient can be unitarized. This yields a large and important
class of C* tensor categories. Using the one-sided subfactor construction, one obtains the
Jones subfactors for X being the Ugsls-analog of the 2-dimensional representation of sl5.
Similarly, Hecke algebra subfactors and BCD type subfactors can be obtained from fusion
categories of quantum groups of classical Lie types.

These C*-fusion categories can also be obtained by a completely different construction
using the category of positive energy representation of a loop group. The difficulty in
this construction comes from the fact that one can not use the usual tensor product for
representations; instead one has to define a new, so-called fusion tensor product (see [Wal).

4. Let N C M be an inclusion of II; factors with finite index and finite depth. Then
the category of N N bimodules obtained as direct sums of summands of the bimodules
M®" = M@y M ®y - @y M (n times), n € N defines a C*-tensor category which may
or may not be braided. One can similarly also define the C*-tensor category of M-M
bimodules generated by M®".

If these categories are not braided, one can apply a general construction, called the
categorical quantum double construction to construct from our category of bimodules a
larger braided C* tensor category. It was shown that this category is equivalent to the
category of M M-bimodules for the asymptotic inclusion N' C M derived from N C M,
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see [M2]. If the original category already was braided, the asymptotic inclusion coincides
with the 2-sided inclusion constructed in this paper.

5. Our constructions of bimodules in this paper are based on certain endomorphisms
of II; factors. The approach to categories via endomorphisms has been used for a long
time for type III factors in the framework of algebraic quantum field theory (see e.g. [LR],
[FRS], [X]). Here subtleties involving coupling constants do not matter, and objects are
given directly by morphisms.

6.2. Examples for our construction. 1. Let us first list examples of C'*-tensor categories
with invertible S-matrix.

(a) The S-matrix for the full fusion tensor categories as constructed in [A],[AP] is in-
vertible under the conditions for unitarizability, as stated in [W3]. Hence if we can find
an object X such that all irreducible representation of the fusion category appear in some
tensor power of X, we have C' = C and the dual principal graph is equal to the principal
graph. Such representations can be found in all cases, but usually can not be chosen to be
irreducible. E.g., for Lie type A (the case of Jones subfactors and Hecke algebra subfactors),
one can choose X = 1 &V, where V is the analog of the vector representation.

(b) Similarly, the S-matrix for the quantum double of a C* tensor category is always
invertible (see e.g. [M2]). Hence, as soon as we have found an object X for which all
irreducible representations of the double category appear in some tensor power of X, the
dual principal graph of our s-sided inclusion with respect to X is equal to the principal
graph.

2. It turns out that our construction does not only depend on the category C. but also
on the choice of the object X. Even though in the case of the fusion tensor categories the
S-matrix for C is invertible, the S matrix for the category C’ may not be invertible. E.g.,
for type A if one takes X = V, the S-matrix for C' is invertible only if the degree of the
root of unity is coprime to k. If this is not the case, however, our results for noninvertible
S-matrices apply. This will be shown in more detail in the following subsection at an
example.

6.3. Subfactors related to Jones subfactors. We illustrate our examples in some detail
for the fusion category C of Ugysly, with ¢ = ¢2™/! There also exist other, more elementary
methods to construct these categories using the Temperley-Lieb algebras, see e.g. the book
[T]. As mentioned before, this is also one of the cases where the subfactor constructions
can be done on the level of braid representations, as it was carried out in the original paper
[E1].

We give a brief description of this category. Up to isomorphism, we have exactly [ — 1
simple objects in C, which are denoted by [i], 1 <1 <[ — 1. The decomposition of tensor
products is given by

(6.1) el =li-j-1eli-j+1e--om],

where m is the minimum of i +j — 1 and 2/ — 1 —4 — j. One sees easily that [1] corresponds
to the trivial object. It follows from the tensor product rules by induction on n that all
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simple objects in [2]%" are labeled by even numbers if n is odd, and by odd numbers if n is
even. Hence k = 2 and the simple objects of C’ are labeled by odd numbers. This explicitly
describes the principal graph for N' C M, constructed with X = [2], by Theorem 4.6.

Observe that [i] ® [ — 1] = [l — 4] for all 1 < ¢ < [. Hence the objects [1] and [l — 1]
together with the operation ® form a group G which is isomorphic to Z/2Z. Moreover, the
S matrix is well-known to be of the form S = (sin(ijn/l)), up to a scalar.

It is very easy to check that if [ is even and j is odd, then sin(i(l — 1)n/l)) = sin((i7 /1))
for any 4 = 1,2,...,1 — 1. Hence the category T contains at least the objects [1] and [l — 1].
It contains no more simple objects as obviously sin(im/l) = sin(ijn/l) for 1 < j <[ only if
j = 1—1. So the conditions at the beginning of Subsection 5.2 are satisfied with |G| =2 = k.
We have shown most of the following

Proposition 6.1. Let N' C M be the subfactor constructed from the s-sided inclusion from
the Jones subfactor at an I-th root of unity, with | even. Then we have

(a) The even wvertices of the principal graph are labeled by all s-tuples of odd positive
numbers less than | and the odd vertices are labeled by all odd positive numbers less
than [. The number of edges between two vertices can be computed from the tensor
product rule stated in 6.1.

(b) Each s-tuple of positive integers less than | whose sum is even and which contains
the number 1/2 at most once labels an even vertex of the dual principal graph; the
number of edges emanating from such a vertex can be computed as in (a). The M
M bimodules My labeled by an s-tuple X containing the number /2 exactly r > 1
times satisfies dim(End(My)) = 2r—1,

Proof. Part (a) follows from Theorem 4.6 and our explicit description of the simple objects
of C'. For part (b), we have already checked the conditions stated at the beginning of
Subsection 5.2. It remains to calculate StabG§X for any X € A%. Recall that the action
of the nontrivial element of G on our labeling set is given by ¢ — [ — ¢. Obviously, the
only fixed point is [/2 for [ odd. It is now not hard to show that X € A® has a nontrivial
stabilizer in G if and only if r > 2 of its components are equal to [/2, and that in this case
the stabilizer has exactly 2" ! elements. Statement (b) now follows from Theorem 5.9. <

Remark 6.2. If s = 3, part (b) of the last proposition completely determines the number
of edges in the dual principal graph except for the decomposition of the bimodule Mj

with X = (1/2,1/2,1/2), which could decompose into the direct sum of four nonisomorphic
irreducible M—M bimodules or into the direct sum of two isomorphic irreducible M-M
bimodules.
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