
SUBFACTORS FROM BRAIDED C* TENSOR CATEGORIESJULIANA ERLIJMAN AND HANS WENZLAbstra
t. We extend subfa
tor 
onstru
tions originally de�ned for unitary braid rep-resentations to the setting of braided C* tensor 
ategories. The 
ategori
al approa
h isthen used to 
ompute the prin
ipal graph of these subfa
tors. We also determine the dualprin
ipal graph for several important 
ases. Here invertibility of the so-
alled S-matrix ofa sub
ategory and 
ertain related group a
tions play an important role.It was noted by Vaughan Jones that his examples of subfa
tors gave rise to unitary braidrepresentations. By this we mean representations of the in�nite braid group B1 de�nedby in�nitely many generators �1; �2; ::: whi
h satisfy the familiar braid relations. Sub-sequently, unitary braid representations were used by A. O
neanu and by H. Wenzl to
onstru
t new examples of subfa
tors; here the subfa
tor is given by the subgroup B2;1generated by �2; �3; : : : . This 
onstru
tion was denoted as the one-sided subfa
tor 
on-stru
tion by J. Erlijman, as opposed to her multi-sided subfa
tors. Here, for a given integers > 1, the s-sided subfa
tor is obtained as a suitable indu
tive limit of the embeddings ofthe quotients of Bsn = Bn�� � ��Bn (s times) into Bns with respe
t to n. She also 
omputedthe indi
es of these subfa
tors and their �rst relative 
ommutants.The main motivation for this paper was to 
al
ulate the higher relative 
ommutantsof Erlijman's subfa
tors. To do this it is 
onvenient to generalize the above mentioned
onstru
tions to the setting of a braided C* tensor 
ategory C with only �nitely manysimple obje
ts up to isomorphism. By de�nition of su
h a 
ategory, we obtain a unitaryrepresentation of Bn in End(X
n) for any obje
t X in C. The 
onstru
tions in our paperin the 
ategory setting follow 
losely the above-mentioned braid 
onstru
tions, and redu
eto them in 
ase that End(X
n) is generated by the quotients of Bn for all n 2 N. However,the 
ategori
al setting makes it easier to 
al
ulate the higher relative 
ommutants, and also
ontains new nontrivial examples.The main results of our paper are as follows. We show that the �rst prin
ipal graphis given by the fusion graph of (C0)s, where C0 is a sub
ategory of C depending on thetensor powers of X in whi
h the trivial obje
t appears. The fusion graph des
ribes thede
omposition of the tensor produ
t of s simple obje
ts of C0 into irredu
ibles ones; seeTheorem 4.6 for details. The situation is more 
ompli
ated for the dual (or se
ond) prin
ipalgraph. If a 
ertain matrix depending on the braiding stru
ture, 
alled the S-matrix for the
ategory C0, is invertible, the dual prin
ipal graph 
oin
ides with the prin
ipal graph.�Supported in part by grants of the NSERC (J.E.) and of the NSF (H.W.).1



We do not have a general 
omplete result in the 
ase of a noninvertible S-matrix. It isknown that in this 
ase there is a 
anoni
al sub
ategory T of C0 whi
h is equivalent to therepresentation 
ategory of a �nite group G. If G is abelian, we obtain an a
tion of G on theset of irredu
ible obje
ts of C, whi
h is given by a labeling set �. The dual prin
ipal graph
an now be fairly pre
isely 
hara
terized in terms of the orbits of the a
tion of a group Gs1on �s, see Theorem 5.9 for details and, for an example, Proposition 6.1.The basi
 idea of our paper is that we expli
itly 
onstru
t a number of A�B bimodules,with fA;Bg � fN ;Mg and with N �M being our s-sided in
lusion. We show that theseexamples of bimodules are 
losed under indu
tion and restri
tion. One dedu
es from thisthat the indu
tion-restri
tion graph for these bimodules must 
oin
ide with the prin
ipalor dual prin
ipal graph under some mild additional assumptions.Our �ndings are related to a number of results by di�erent authors. If s = 2, oursubfa
tors 
orrespond to the subfa
tors obtained from the asymptoti
 in
lusion of 
ertainone-sided subfa
tors. In this 
ase, the orbifold phenomenon for the dual prin
ipal graphhas �rst been observed by O
neanu for the example of the Jones subfa
tors. Further resultshave been obtained in [EK2℄ and [Iz℄. In parti
ular, some of our proofs have been inspiredby these results. We were also informed by M. Asaeda that, after having heard a talk onthis paper, she has obtained an analogue of the s-sided 
onstru
tion under more general
onditions.More or less the same 
ombinatori
s as in our paper also appears in the work [X℄ ofFeng Xu on subfa
tors of type III1 fa
tors related to dis
onne
ted intervals. In spite of thesimilarity of prin
ipal graphs and indi
es, his 
onstru
tion of these subfa
tors is 
ompletelydi�erent from ours and relies on Wassermann's loop group 
onstru
tion, whi
h has notappeared yet for all Lie types.Here is a more detailed des
ription of the 
ontents of this paper. In the �rst 
hapterwe review some basi
 results on bimodules in the type II1 setting. The se
ond 
hapter
ontains de�nitions 
on
erning braided C� tensor 
ategories. In the third 
hapter we presentthe generalization of previous subfa
tor 
onstru
tions to the setting of braided C� tensor
ategories, as well as additional te
hni
al results. This is used in the following se
tion to
onstru
t 
ertain bimodules and 
ompute the prin
ipal graph of these subfa
tors. In thelast se
tion we prove the already mentioned results about the dual prin
ipal graph. Wethen dis
uss examples of our 
onstru
tion in
luding the 
ase of the Jones subfa
tors.1. Bimodules1.1. De�nitions.De�nition 1.1. Let A and B be a type II1 fa
tors, and let H be a Hilbert spa
e.(i) H is a left A{module if there exists an a
tion of A on H determined by a normalunital morphism � : A ! B(H), where B(H) is the von Neumann algebra of allbounded linear operators on H.(ii) A right B{module H is a left Bopp{module (here, Bopp denotes the opposite algebraof B). 2



(iii) H is an A{B bimodule if it is a left A{module, a right B{module, and if the leftand right a
tions intertwine. That is, if � : A ! B(H) is the left a
tion, and if� : Bopp ! B(H) is the right a
tion, then we must have that �(a)�(b) = �(b)�(a)for all a 2 A; b 2 B.(iv) If H and K are A{B bimodules, we de�ne the spa
e of intertwiners, denoted byHomA;B(H;K), to be the set of linear bounded operators T : H ! K su
h thatthey intertwine the a
tions, that is, su
h that T�H(a) = �K(a)T for all a 2 A, andT�H(b) = �K(b)T for all b 2 B.(v) Two A{B bimodules H and K are equivalent or isomorphi
 if there exists a unitaryoperator in HomA;B(H;K).De�nition 1.2. Let H be an A{B bimodule with left a
tion �, and right a
tion �. Thein
lusion generated by H is the in
lusion of fa
tors given by�(A) � �(B)0:The dual in
lusion generated by H is the in
lusion of fa
tors given by�(B) � �(A)0:Remark 1.3. Similarly, if we have an in
lusion of type II1-fa
tors N � M, we 
an makeL2(M; tr) into an M�M, M�N , N �M or N �N -bimodule via usual left and rightmultipli
ation. If N � M is a redu
ible in
lusion, i.e. the relative 
ommutant N 0 \M islarger than C 1, then we obtain further examples by redu
ing by proje
tions in the relative
ommutant. E.g. if p 2 N 0 \M, we obtain the N �M bimodule L2(pM; tr).If �i :M!M are endomorphisms for i = 1; 2, we 
an also de�ne an M�M-bimodulestru
ture on L2(M; tr) by perturbing the right and left a
tions by these endomorphisms,i.e. by de�ning the a
tion by m1:�:m2 = �1(m1)��(m2).All the examples of bimodules en
ountered in this paper are of one of these types ortensor produ
ts of them.De�nition 1.4. Let Ai and Bi be type II1 fa
tors for i = 1; 2. Let Hi be Ai{Bi bimoduleswith left a
tions �i and right a
tions �i, respe
tively, for i = 1; 2. H1 and H2 are (left)-weakly isomorphi
 or (left)-weakly equivalent if the in
lusions generated by H1 and by H2are 
onjugate, i.e. there exists an isomorphism 	 : �1(B1)0 ! �2(B2)0 su
h that 	(�1(A)) =�2(A):Remark 1.5. 1. In the following we will often suppress the notations � and � for left andright a
tions if it is 
lear from the 
ontext whi
h algebra a
ts from whi
h side. We shallalso be mostly 
on
erned with (left)-weakly equivalen
e, so we will usually only refer to itas weak equivalen
e.2. With the notations of the last de�nition, let H1, H2 be two equivalent A{B bimodules.Then it is easy to 
he
k that they are also (left)-weakly equivalent. Indeed, let � : H1 ! H2be the unitary intertwining the left and right a
tions. Then the intertwining propertyimplies that ��1�1(A2)� = �2(A1) and ��1�2(B2)� = �1(B1). But then it also follows that3



��1�2(B2)0� = �1(B1)0, whi
h gives the desired isomorphism between the two in
lusionsgiven by H1 and H2.3. The well-known fa
t that ��1�2(B2)� = �1(B1) if and only if ��1�2(B2)0� = �1(B1)0will be repeatedly used in this paper.Let Hi be A{Bi bimodules with left a
tions �i and right a
tions �i, respe
tively, fori = 1; 2. Assume that dimAH2 � dimAH1 <1, where dimAH is the Murray-von Neumanndimension of the A-module H.Lemma 1.6. H1 is weakly isomorphi
 to H2 if and only if there exists a proje
tion p 2 B1su
h that H1p and H2 are isomorphi
 as A{B2 bimodules; here H1p = f�1(p)(x) : x 2 H1g,and the B2 right module stru
ture on H1p is the one indu
ed from pB1p by the spatialisomorphism between H1p and H2.Proof. First we shall show the ne
essity. Sin
e H1 is weakly isomorphi
 to H2, there existsan isomorphism 	 : �1(B1)0 ! �2(B2)0su
h that 	(�1(A)) = �2(A): In parti
ular, [�1(B1)0 : �1(A)℄ = [�2(B2)0 : �2(A)℄. AsdimN H = [M : N ℄ dimMH for any in
lusions of II1-fa
tors N � M and any �nite-dimensionalM module H, we have1 � � := dimAH2dimAH1 = dim�2(B2)0H2dim�1(B1)0H1 :Choose a proje
tion p 2 B1 with tr(p) = �, so that dimA(H1p) = dimAH2. Then the iso-morphism between p�1(B1)0p �= �1(B1)0 and �2(B2)0 is spatial, i.e. it is given by 
onjugationby a unitary intertwiner � : H1p ! H2. In parti
ular, we obtain �p�1(B1)p��1 = �2(B2);this isomorphism between p�1(B1)p and �2(B2) makes H1p into a B2 right module. By
onstru
tion, � de�nes an isomorphism between the A� B2 modules H1p and H2.Now, we shall show the suÆ
ien
y. Suppose that H2 and H1p are isomorphi
 as A{B2 bimodules, where p is a proje
tion in B1. Observe that the bimodule isomorphism� : H1p ! H2 indu
es a spatial isomorphism between p�1(B1)p and �2(B2), as des
ribedin the last paragraph. This, in turn, indu
es an isomorphism between their 
ommutantsp�1(B1)0p �= �1(B1)0 and �2(B2)0. As � interwines the A-a
tions on H1p and H2, thisisomorphism maps p�1(A)p to �2(A). }Remark 1.7. There exists an analogous statement of the last lemma for Ai{B bimodules Hiwith left a
tions �i and right a
tions �i, respe
tively, for i = 1; 2, and with essentially thesame proof. We leave the details to the reader.1.2. Tensor produ
ts. Tensor produ
ts of bimodules have been de�ned by Connes andSauvageot. A good review with results for our paper 
an be found in [Bs℄.Proposition 1.8. Let Hi be A � Bi bimodules for i = 1; 2, and let D; E be two type II1fa
tors. Then 4



(a) If H1 and H2 satisfy the same 
onditions needed for Lemma 1.6, and if they areleft-weakly equivalent, then K1 := L
H1 is weakly equivalent to K2 := L
H2 forany D{A bimodule L.(b) If H1 and H2 satisfy the same 
onditions needed for Lemma 1.6, and if they areright-weakly equivalent, then K1 := H1 
W is weakly equivalent to K2 := H2 
Wfor any B{E bimodule W .Proof. (a) By Lemma 1.6, sin
e H1 is weakly equivalent to H2 (and satis�es the 
onditionsneeded), there must exist a proje
tion p 2 B1 su
h that H1p and X2 are isomorphi
 asA� B2 bimodules. This isomorphism extends in an obvious way to a spatial isomorphismbetween L
H1p = (L
H1)(1
 p) and L
H2. Hen
e the 
laim follows from Lemma 1.6.The proof of item (b) follows like the one for item (a), using Remark 1.7. }1.3. Higher relative 
ommutants. Let N � M be type II1 fa
tors with normalizedtra
e tr. There exists a 
anoni
al extension M1 �M, 
alled Jones' basi
 
onstru
tion forN �M, whi
h is the von Neumann algebra generated byM a
ting via left multipli
ation onL2(M; tr) and by the orthogonal proje
tion eN onto the subspa
e L2(N ; tr) � L2(M; tr).It is well-known that the Jones index [M : N ℄ is �nite if and only if M1 is again a typeII1 fa
tor; it is given by [M : N ℄ = 1=tr(eN ), with tr denoting the unique normalizedtra
e on M1. We 
an apply the basi
 
onstru
tion again for M � M1 to obtain anextension M2 � M1. Iterating this 
onstru
tion, we obtain a sequen
e of II1 fa
torsN � M1 � M2 � ::: . We obtain important invariants of the original in
lusion N � Mvia the so-
alled higher relative 
ommutants N 0 \ Mk and M0 \ Mk. These are �nitedimensional C�-algebras. If there exists a uniform bound for the dimensions of the 
entersof the relative 
ommutants, the subfa
tor N � M is 
alled a �nite depth subfa
tor. Inthis 
ase, the in
lusion diagram for N 0 \M2k � N 0 \M2k+1 does not depend on k for ksuÆ
iently large; the 
orresponding graph is 
alled the prin
ipal graph ofN �M. Similarly,one de�nes the dual prin
ipal graph from the in
lusion of M0 \M2k �M0 \M2k+1 for ksuÆ
iently large. These graphs are important invariants for the in
lusion N �M.We have the following important results, whi
h are presented in great detail and withpre
ise referen
es to original sour
es in [Bs℄:Proposition 1.9. Let N �M be a �nite depth subfa
tor with �nite index. Then(a) The in
lusions N � M2k+1, N � M2k, M �M2k+1, M �M2k are given by thebimodule M
k = M
N M
N ::: 
N M (k times), viewed, respe
tively, as anN{N , N{M, M{N and M{M bimodule.(b) The embedding of N 0 \ Mk � N 0 \ Mk+1 
oin
ides with the embedding of thealgebras EndM�N (M
k) � EndN�N (M
k) for k even. If k is odd, the embed-ding of N 0 \Mk � N 0 \Mk+1 
oin
ides with the embedding of EndN�N (M
k) �EndM�N (M
k+1), given by x 2 EndN�N (M
k)! 1M 
 x.(
) Analogous statements hold for the embedding ofM0\Mk �M0\Mk+1; we only needto repla
e HomX�N by HomX�M in all the statements in (b), with X 2 fM;Ng.5



Proof. Statement (a) is shown e.g. in [Bs℄, Proposition 3.2. Statement (b) 
an be foundin [Bs℄, Corollary 4.2 and Corollary 4.4 (with tensoring from the right instead of tensoringfrom the left, as we have 
hosen here). Statement (
) follows from (b) and (a). }Let N ;M;B be type II1 fa
tors with N �M a subfa
tor of �nite index. Let fH�g� andfK�g� be a 
olle
tion of mutually nonisomorphi
 irredu
ible N{B and M{B bimodules,respe
tively. Observe that M
N H� is an M{B bimodule for any N{B bimodule H�.Similarly, we 
an view any M{B bimodule K� as an N{B bimodule by restri
ting the lefta
tion to N . We say that the system of bimodules (fH�g�; fK�g�) is 
losed under indu
tionand restri
tion if- for ea
h N{B bimodule H� the M{B bimoduleM
N H� is isomorphi
 to a dire
tsum of irredu
ible M{B bimodules ea
h of whi
h is isomorphi
 to an element infK�g� ,- for ea
h M{B bimodule K� the N{B bimodule obtained from K� by restri
ting theleft a
tion to N is isomorphi
 to a dire
t sum of irredu
ible N{B bimodules ea
h ofwhi
h is isomorphi
 to an element in fH�g�.The indu
tion-restri
tion graph for our system of bimodules is the bipartite graph whose(say) odd verti
es are labeled by the elements in fH�g� and whose even verti
es are labeledby the elements in fK�g� . A vertex labeled by H� is 
onne
ted with a vertex labeled byK� by L�� edges, where L�� is the multipli
ity of H� in K� , viewed as an N{B bimodule.By Frobenius re
ipro
ity (see e.g. [Bs℄, Theorem 1.18), this number 
oin
ides with themultipli
ity of K� in M
N H�.Proposition 1.10. Let (fH�g�; fK�g�) be a system of N{B- resp M{B-bimodules whi
his 
losed under indu
tion and restri
tion.(a) If fH�g� 
ontains a bimodule H0 whi
h is weakly isomorphi
 to the trivial N{N -bimodule N , then the prin
ipal graph for N �M is given by the 
onne
ted 
ompo-nent of the indu
tion- restri
tion graph for (fH�g�; fK�g�) whi
h 
ontains H0.(b) If fK�g� 
ontains a bimodule K0 whi
h is weakly isomorphi
 to the trivial M{M-bimodule M, then the dual prin
ipal graph for N � M is given by the 
onne
ted
omponent of the indu
tion- restri
tion graph for (fH�g�; fK�g�) whi
h 
ontainsK0.Proof. Part (a) follows from Proposition 1.8 and Proposition 1.9,(b). Similarly, part (b)follows from Proposition 1.8 and Proposition 1.9,(
). }Remark 1.11. In the setting of the last proposition, (a), there may be more than onebimodule H� whi
h is weakly isomorphi
 to the trivial N{N -bimodule N . The resultinggraph will be independent of the 
hoi
e of H0.Let H be an A{B bimodule. We de�ne ind(H) to be equal to the index [�(B)0 : �(A)℄ =[�(A)0 : �(B)℄. In the following lemma, (H�)� and (K�)� are bimodules as in the lastproposition, where we now assume for simpli
ity that they only denote the bimodules whi
hlabel the verti
es of a given prin
ipal graph. Moreover, we also assume the subfa
tor to beof �nite depth, i.e., both sets only 
ontain �nitely many bimodules.6



Lemma 1.12. With notations as above, we have:(a) P� ind(K�) =P� ind(H�):(b) Assume that the A{B-bimodule H de
omposes as H =LmiHi, with Hi irredu
ibleA{B-bimodules, and let l = dim(EndA;B(H)) = Pim2i . Then we have ind(Hi) �ind(H)=l, with equality only if dimA(Hi) =mi dimA(H)=l.Proof. It is well-known that the in
lusion of higher relative 
ommutants M0 \ Mk �N 0 \ Mk de�nes periodi
 
ommuting squares whi
h generate in the limit a subfa
tor ofindex [M : N ℄. Hen
e we 
an use the results of [W1℄, Theorem 1.5,(iii). It follows thatthe index is equal to the quotient of the l2-norms of the weight ve
tors of M0 \Mk andN 0 \Mk for k suÆ
iently large. Let p� and p� be minimal idempotents in M0 \Mk andN 0 \ Mk respe
tively. Then we have ind(p�Mk) = tr(p�)2[M : N ℄k and ind(p�Mk) =tr(p�)2[M : N ℄k+1. Solving for tr(p�)2 and tr(p�)2, we obtain[M : N ℄ = P� ind(p�Mk)=[M : N ℄kP� ind(p�Mk)=[M : N ℄k+1 :The 
laimed formula follows from this in the 
ase that our system of bimodules labels theverti
es of the prin
ipal graph. One obtains the 
laim for the dual prin
ipal graph by thesame proof applied to the in
lusionM�M1.Part (b) is proved using Lagrange multipliers as follows: Let xi = dimA(Hi) and letd = dimAH. Then the minimum of the fun
tion f(x1; ::: xr) = Px2i subje
t to the
ondition Pmixi = d is obtained for 2xi = �mi, and we dedu
e from the 
onstraint thatd = �2 Pm2i = l�=2. Hen
e xi = mid=l andXi (dimAHi)2 = d2l2 Xi m2i = d2=l: (�)Now observe that if pi is the proje
tion onto the submodule Hi � H, we have tr(pi) =dimA(Hi)=dimA(H) and ind(Hi) = tr(pi)2ind(H) (again see [W1℄, Theorem 1.5,(iii)). The
laim follows from this after multiplying (�) by ind(H)=d2.2. CategoriesIn this se
tion we deal with 
ategories whi
h 
an be 
onsidered as generalizations of therepresentation 
ategories of �nite groups. This allows us to deal simultaneously with 
at-egories of bimodules of von Neumann fa
tors, fusion 
ategories (whi
h 
an be 
onstru
tedusing quantum groups or loop groups) and 
ategories obtained from unitary braid repre-sentations. For more details, we refer to [ML℄, [Fr℄ for general 
ategori
al notions, and to[Ks℄, [T℄ for tensor 
ategories; our treatment of tra
es also uses results from [LR℄.2.1. General de�nitions. We re
all some basi
 de�nitions and set up notations.In the following, C will always denote a stri
t monoidal 
omplex tensor 
ategory withunit 11. This means that C is a 
ategory with a fun
tor 
 : C � C ! C 
alled the tensorprodu
t whi
h satis�es 
ertain asso
iativity 
onditions su
h as the Pentagon Axiom. There7



are similar axioms involving the morphisms lX : 11 
X ! X and rX : X 
 11 ! X 
alledthe left and right unit 
onstraints. Moreover, C being a 
omplex 
ategory just means thatthe homomorphisms Hom(X;Y ) form a 
omplex ve
tor spa
e for any obje
ts X and Y inC. The 
omplex tensor 
ategory C is 
alled a � tensor 
ategory if there exists a 
ontragredient
omplex 
onjugate fun
tor � : C ! C whi
h is 
ompatible with 
. This means in detailthat: - if f 2 Hom(X;Y ), then f� 2 Hom(Y;X),- (�f)� = ��f� for all � 2 C and f 2 Hom(X;Y ),- (fg)� = g�f� for f 2 Hom(X;Y ) and g 2 Hom(U;X),- (f 
 g)� = f� 
 g� for f 2 Hom(X;Y ) and g 2 Hom(U; V ),- 1�X = 1X for the identity morphism 1X for any obje
t X in C.2.2. Duality and Frobenius re
ipro
ity. An obje
t X in a stri
t monoidal 
ategory C is
alled left rigid if there exists an obje
t �X 2 C and a pair of morphisms iX : 11! X
 �X anddX : �X
X ! 11 su
h that the maps (1X 
dX)(iX
1X) : X ! X and (dX
1 �X)(1X 
i �X) :�X ! �X are 1X and 1 �X . An obje
t X is 
alled right rigid if we 
an �nd an obje
t �X 0 andmorphisms i0X : 11! �X 0
X and d0X : X
 �X 0 ! 11 satisfying analogous identities. It is easyto 
he
k that in a � 
ategory any left rigid obje
t is also right rigid, with �X 0 = �X, i0X = d�Xand d0X = i�X . Hen
e we will in the following only talk about rigid obje
ts. A 
ategory C is
alled rigid if every obje
t of C is rigid.With this notion of duality, we also have the usual Frobenius re
ipro
ity isomorphismbetween Hom(V;W 
 �X) and Hom(V 
 X;W ) for any obje
ts V;W in C. One 
he
kseasily that these isomorphisms are given by the maps a ! (1W 
dX) Æ (a 
 1X) and b !(b 
 1Y ) Æ (1V 
iX) for a 2 Hom(V;W 
X) and b 2 Hom(V 
 Y;W ). In parti
ular, oneobtains as a spe
ial 
ase that dimHom(11;X 
 �X) = dimEnd(X) = 1 if X is a simpleobje
t. Hen
e the morphisms iX and dX are unique up to s
alar multiples for X simple.We shall say that the rigidity morphisms iX and dX are normalized if i�X iX = dXd�X�.2.3. Dimension, tra
e and 
onditional expe
tation. In the following we always as-sume the rigidity morphisms iX and dX to be normalized for any obje
t X. If X is simple,this 
an always be assumed after some res
aling in view of the dis
ussion in the last se
tion.For normalized rigidity morphisms, we 
an now de�ne the dimension of a simple obje
t Xto be equal to the s
alar dim(X) = i�X iX = dXd�X :Of 
ourse, we would like the dimension to be additive with respe
t to a de
ompositionX = �Wi, with the Wi being simple obje
ts. To do so, we de�ne morphisms �i : Wi ! Xsu
h that ��i�j = Æij1Wi and Pi �i��i = 1X , and we de�ne(2.1) iX =X(�i 
 ��i)iWi ; dX
Y =X dWi( ���i 
 ��i );where the ��i are the analogous morphisms for the de
omposition of the dual �X =P�i �Wi.Then it is easy to 
he
k that these morphisms satisfy the rigidity axiom, and they are8



normalized if the �i are so. Moreover, one also 
he
ks that these morphisms yield thedesired additivity property of the dimension fun
tion.Additionally, the dimension fun
tion should be multipli
ative with respe
t to the tensorprodu
t. If X 
 Y is a tensor produ
t of simple obje
ts X and Y , we obtain normalizedrigidity morphismsiX
Y = (1X 
 iY 
 1 �X)iX ; dX
Y = dY (1 �X 
 dX 
 1X):It 
an be shown that these rigidity morphisms de�ne the same dimension as the one weobtain from the de
omposition X
Y �= �iWi, withWi simple and with rigidity morphismsas de�ned in the last paragraph. It will be 
onvenient to represent the rigidity morphismsiX and dX , by the following pi
tures:11dX X�X 11X �XiXFigure 2.1. Rigidity morphismsIn a � tensor 
ategory we de�ne the 
ategori
al tra
e of an endomorphism f 2 End(X)by(2.2) TrX(f) = i�X Æ (f 
 1 �X) Æ iX 2 End(11):If Z = �miXi, where Xi is a simple obje
t, and mi is the multipli
ity of Xi in Z, we 
anwrite an element f 2 End(Z) in the form f = �fi, where fi 2 End(miXi) 
an be viewed asan mi�mi matrix. De�ning rigidity morphisms iZ ; dZ with respe
t to this de
omposition,and using Equation 2.1, one 
he
ks easily thatTrZ(f) =X dim(Xi)Tr(fi);where Tr(fi) is the usual tra
e of a matrix. This shows that we obtain a well-de�nedtra
e for End(Z) for any obje
t Z, and that TrZ(fg) = TrZ(gf) for any f; g 2 End(Z).Moreover, using this formula, one shows as well that we 
an de�ne the tra
e also byTrX(f) = i��X Æ (1 �X 
f) Æ i �X 2 End(11):This shows that �-
ategories satisfy the axioms of a spheri
al 
ategory (see [BWs℄).The normalized tra
e trX on End(X) is de�ned by trX(f) = TrX(f)=(dimX). In thefollowing we will often just write Tr, tr for the tra
e or normalized tra
e when it is 
lear forwhi
h obje
t it is de�ned.Conditional expe
tations 
an also be very naturally de�ned using our 
ategori
al de�ni-tions. Let X be an obje
t. Let A = End(X) �= A
 1V � B = End(X 
 V ). We de�ne themap "A from B onto A by"A(b) = 1dimV (1X 
 i�V )(b
 1 �V )(1X 
 iV );9



in the tangle pi
ture, "A(b) is obtained from b by 
losing up the tangle with 
olor V andrenormalizing by 1=dimV . bX VEX(b) = 1dim(V )Figure 2.2. Conditional expe
tationIt is known and easy to 
he
k that this de�nition of 
onditional expe
tation 
oin
ideswith the usual de�nition of 
onditional expe
tation in operator algebras (see e.g. [OW℄,Proposition 1.4). A
tually, one 
an show more: Let X1;X2;X3 be obje
ts in our � tensor
ategoy C. De�ne the algebras A = End(X2), B = End(X1 
X2), C = End(X2 
X3) andD = End(X1 
X2 
X3). We 
an 
onsider all these algebras as subalgebras of D, e.g. byidentifying A with 1X1 
 End(X2)
 1X3 .Proposition 2.1. The algebras A, B, C, D form a 
ommuting square, i.e. we have "B"C ="A = "C"B.2.4. Braided tensor 
ategories. A stri
t monoidal 
ategory C is 
alled braided if thereexists a natural isomorphism 
X;Y : X 
 Y ! Y 
X 
alled the braiding su
h that:
X;Y
Z = (1Y 
 
X;Z)(
X;Y 
 1Z)and 
X
Y;Z = (
X;Z 
 1Y )(1X 
 
Y;Z):Naturality means that for any morphisms f : X ! X 0 and g : Y ! Y 0(g 
 f) Æ 
X;Y = 
X0;Y 0 Æ (f 
 g):Finally, we also require that 
11;X = 1X = 
X;11 under the isomorphisms 11
X �= X �= X
11.2.5. C� tensor 
ategories. We 
all a 
omplex � tensor 
ategory a C� tensor 
ategory if(a) for any obje
ts X;Y in C the spa
e Hom(X;Y ) is a Hilbert spa
e with inner produ
t(a; b) = Tr(b�a) for a; b 2 Hom(X;Y ),(b) for any obje
t X;Y in C the algebra End(Y ) is a C�-algebra a
ting on the Hilbertspa
e Hom(X;Y ).Observe that these de�nitions imply that the dimensions of all obje
ts are positive. Abraided C� tensor 
ategory is a C� tensor 
ategory with a braiding for whi
h all its braidingmorphisms are unitary operators. For examples of C�-tensor 
ategories, see Se
tion 6.1.10



3. The multisided 
onstru
tion3.1. Categori
al setting. We shall use the following 
onventions: Let C be a �nite braidedC� tensor 
ategory, where �nite means that we only have �nitely many equivalen
e 
lassesof simple obje
ts in C. Let fX�; � 2 �g be a set of representative nonequivalent simpleobje
ts, indexed by some labeling set �. We de�ne d� to be the dimension of X�. We shallalso assume that the 
ategory C is generated by an obje
t X, i.e. that any simple obje
tappears in some tensor power of X. We de�ne k = k(X) = g
dfn; 11 � X
ng. Let C0 bethe sub
ategory of C generated by the simple obje
ts in X
mk, m 2 N. We de�ne algebrasAn = End(X
n) = EndC(X
n). By de�nition of An, the simple 
omponents of An arelabeled by the equivalen
e 
lasses of simple obje
ts whi
h appear in the n-th tensor power ofX, i.e. by a 
ertain subset �n of �. We de�ne the embeddings �r : a 2 An ! a
1r 2 An+r,where we will often omit the subs
ript r. It follows from the de�nitions that the verti
esof the in
lusion diagram for � : An ! An+1 are labeled by the elements of �n and �n+1respe
tively; the vertex labeled by � 2 �n is 
onne
ted with the one labeled by � by L��edges, where L�� is the multipli
ity of the obje
t X� in X� 
 X. We have the following
ommuting diagram of embeddings(3.1) 1m 
An � An+m1
 � # # �1m 
An+1 � An+m+1We have the following simpleLemma 3.1. Let C be a �nite C�-tensor 
ategory, not ne
essarily braided. Then we have(a) �n = �n+k for n suÆ
iently large; in parti
ular �0 := �nk for n suÆ
iently largelabels the simple obje
ts of C0.(b) The weight ve
tor for the tra
e on the algebra An is ~vn = (d�=(dimX)n)�2�n .(
) The indu
tive limit of (1m 
An � An+m) de�nes an in
lusion B � A of hyper�niteII1 fa
tors with index (dimX)2m.(d) P�2�n d2� = 1k P�2� d2� for n suÆ
iently large.Proof. If the trivial obje
t 11 appears in the r-th tensor power of X and X� � X
n, thenwe have X� �= X� 
 11 � X� 
X
r � X
n+r:Hen
e �n � �n+r for all n 2 N. As � is �nite, these in
lusions be
ome equalities forn suÆ
iently large. Applying this to any r su
h that 11 � X
r, we 
an similarly prove�n = �n+k for k the g
d of all su
h r and n suÆ
iently large. This shows (a).Statement (b) follows from the fa
t that the value of the normalized tra
e of a proje
tionp� 
orresponding to a simple obje
t X� � X
n is given by tr(p�) = d�=(dimX)n.For statement (
) observe that Diagram 3.1 de�nes a 
ommuting square by Proposition2.1. Moreover, the sequen
e of algebras as in the statement has a k-periodi
 in
lusionpattern: by part (a), we have the same labeling sets for the algebras in Diagram 3.1 ifwe substitute n by n+ k everywhere, for n suÆ
iently large. Moreover, also the in
lusion11



pattern remains the same by the dis
ussion before Diagram 3.1. It follows from [W1℄,Theorem 1.5,(iii), that the index [A : B℄ is given by the ratio k~vnk2=k~vn+1k2, for n largeenough. As this holds for any suÆ
iently large n, we have[A : B℄k = kYi=1 k~vn�1+ik2k~vn+ik2 = k~vnk2k~vn+kk2 :The 
laim now follows from the fa
t that ~vn = (dimX)k~vn+k, by (a) and (b). Finally observethat (dimX)2k~vn+1k2 = k~vnk2 implies P�2�n(d�)2 = P�2�n+1(d�)2 for all n suÆ
ientlylarge. As �n \ �m = ; whenever jn�mj < k, we obtain Statement (d). }3.2. Multisided Constru
tion. The subfa
tors 
onstru
ted in the last se
tion will some-times be denoted as one-sided subfa
tors. We will now generalize the 
onstru
tion in [E1℄ tothe setting of braided C�-tensor 
ategories, whi
h we 
all multisided subfa
tors in analogyto the notation in [E1℄. We will �x a positive integer s. For the s-sided 
onstru
tion, we willhave to de�ne an embedding of algebras A
sn � Ans su
h that we will obtain a subfa
tor ifwe 
onsider the indu
tive limit over n.We shall need spe
ial braids 
n 2 Bsn, whi
h 
an be de�ned indu
tively by 
1 = 1sand by Figure 3.3. Alternatively, the braid 
n 
an be des
ribed as follows: arrange thes(n+ 1) sn s: : :
: : :: : : n+ 1 n n n=n + 1n + 1
n+1 
n

Figure 3.3. Indu
tive property of intertwining braids.points labeled by the numbers 1 up to ns in a re
tangular pattern with height n and widths. Now we 
an numerate the points either by �rst going down the 
olumns, or by �rstgoing to the right in ea
h row. This de�nes a permutation � mapping the i-th point inthe 
olumn-�rst 
ount to the i-th point in the row-�rst 
ount. The braid 
n is now de�nedby this permutation where the i-th lower point is 
onne
ted with the �(i)-th upper pointand where we assume all 
rossings to be positive (i.e., the strand going from southwest tonortheast 
rosses over the one going from southeast to northwest). A pi
ture for this braid
an be found in [E2℄, page 83.Let 
 = 
X;X be the braiding morphism for X. By de�nition, we obtain a unitaryrepresentation � of the braid group Bn into An by mapping the generator �i to 
i = 1i�1


1n�1�i. We de�ne the unitary un = u(s)n = �(
n), with 
n de�ned as in Figure 3.3. Finally,12



the embedding from A
sn into Ans is given by �rst identifying A
sn with End(X
n)
s �End(X
ns) = Ans and by then 
onjugating this with un, i.e. by(a1 
 � � � 
 as) ûn7�!un(a1 
 � � � 
 as)u�n;throughout this paper, û will denote the inner automorphism given by 
onjugation via theunitary u unless stated otherwise. We now obtain the following diagram of maps, wherethe verti
al arrows are labeled by �
s = �
s1 and � = �s respe
tively:(3.2) ûnA
sn �! Ans# #A
sn+1 �! A(n+1)sûn+1Then we have the following lemma whi
h has essentially already been proved in [E1℄, Se
tion3.2; the 
ase proved there would 
orrespond to the spe
ial 
ase in whi
h An is generated bythe image of Bn.Lemma 3.2. The diagram 3.2 above 
ommutes and also forms a 
ommuting square. More-over, the in
lusion pattern is k-periodi
.Proof. We 
he
k �rst that Diagram 3.2 is a 
ommuting diagram: This is most easilyseen by the following pi
tures (these proofs by pi
tures 
ontain all the ne
essary detailsand translate faithfully to the algebrai
 proofs by simply re-writing the de�nitions alreadyin
luded in this arti
le). We take s = 3 for simpli
ity. For b 2 A
sn , we have
u�n u�nid3 id3id3id3nnn 3(ûn+1 Æ �)(b) = b3b2b1 = (� Æ ûn)(b):unun b3b2b1=Figure 3.4. Diagram 3.2 is a 
ommuting diagram.Now we 
he
k that Diagram 3.2 is a 
ommuting square, i.e., that (EAsn Æ ûn+1)(b) =(ûn ÆEA
sn )(b) for b 2 A
sn+1. We use the 
ategori
al de�nition for a 
onditional expe
tationas des
ribed in Subse
tion 2.3, Figure 2.2. For b = b1 
 � � � 
 bs 2 A
sn+1; we have

13



(EAsn Æ ûn+1)(b) =
1(dimX)s=1(dimX)s 3id3id3un b3b2b1 u�n 1 1 1un b3b2b1 u�nFigure 3.5. Diagram 3.2 is a 
ommuting square.= (ûn ÆEA
sn )(b). To show that the in
lusion diagrams are k-periodi
 for large n, observethat Lemma 3.1(a) implies that we have a 1-1 
orresponden
e between the labeling sets ofsimple 
omponents of A
sn and A
sn+k as well as between the 
omponents of Ans and A(n+1)s.This identi�
ation of edges is 
ompatible with the number of edges between them, whi
hagain is just given by tensor produ
t multipli
ites. }Theorem 3.3. Fix s 2 N; s > 1. Then there exists a subfa
tor N �M with the embeddingN ,! M given by û := lim�! ûn : lim�! A
sn ! lim�! Ans. Its index is equal to (P�2�0 d2�)s�1,where �0 is an indexing set for the simple obje
ts of the sub
ategory C0 as de�ned at thebeginning of this subse
tion and d� = dim(X�).Proof. This was done in [E1℄ in the 
ase that the An's are generated by only braid elements.By Lemma 3.2, Diagram 3.2 is a periodi
 
ommuting square for large n. Thus, by [W1℄,Theorem 1.5,(iii), û : N ,!M is an in
lusion of hyper�nite II1 fa
tors with index given byk~tnk2=k~vnk2 for n suÆ
iently large, where ~tn and ~vn are the tra
e ve
tors for the tra
e inMrestri
ted to the �nite dimensional approximantsA
sn and Ans, respe
tively. For this observethat if kjn the dimension ve
tors for A
sn and Ans are given given by ~tns = (d~�=(dimX)ns)~�and ~vns = (d�=(dimX)ns)� , with ~� 2 (�0)s and � 2 �0; here d~� = Qsi=1 d�i . Hen
e weobtain [M : N ℄ = k~tnk2k~vnk2 = P~�2(�0)s d2~�P�2�0 d2� = (X�2�0 d2�)s�1 }:3.3. More embeddings. We shall need a variation of the embeddings in the last se
tionfor the 
onstru
tion of 
ertain bimodules.Lemma 3.4. Let ~m = (m1; � � � ;ms), where mi 2 Z�0, and m1 � m2 � � � � � ms. Thenthere exist unitaries u~m;n = u~m;n(s) 2 Aj~mj+sn su
h that we obtain k periodi
 
ommuting14



squares(3.3) û~m;nAn+m1 
 � � � 
An+ms �! Aj~mj+ns# #An+1+m1 
 � � � 
An+1+ms �! Aj~mj+(n+1)sû~m;n+1whi
h produ
e an in
lusion of hyper�nite II1 fa
tors whi
h is isomorphi
 to the one inTheorem 3.3. It will also be denoted by N �M.Proof. The unitaries u~m;n = u~m;n(s) 2 Aj~mj+sn are de�ned from the unitaries from before,un(l), (l = 1; � � � ; s). We shall give diagramati
 representations of these unitaries. Lett~m = t~m(s) be the unitary in A~m given by the pi
ture in Figure 3.6, where the unitary u(s)ris given by Figure 3.3 for s > 1, and it is equal to idr for s = 1, and any positive integer r.u(2)m2�m3u(1)m1�m2t~m = u(s)msu(3)m3�m4� � � � � �� � � � � �m1 m2 m3 ms� � �� � �Figure 3.6Then, the unitary u~m;n will be de�ned from t~m and u(s)n in Figure 3.7.u(s)nnn nm2 + nm1 + nm2m1 msu(s)~m;n = t~m � � �� � � � � �ms + nFigure 3.7We pro
eed as in Lemma 3.2 to show that Diagram 3.3 is a 
ommuting square. First we
he
k that our diagram is a 
ommuting diagram; we shall denote the verti
al arrows by �
sand � respe
tively. Assume s = 3 again for simpli
ity.
15



For b 2 An+m1 
 � � � 
An+ms , we have (û~m;n+1 Æ �
s)(b) = m3 n n nt~m un id3
t�~m u�n id3b1 b2 b3 b1 b2 b3 3m2=m1 m2 m3 n n n 1 1 1t~m un id3

t�~m u�n id3
m1

Figure 3.8. Diagram 3.3 is a 
ommuting diagram.= (� Æ û~m;n)(b). The 
ommuting square property as well as k periodi
ity is shown in thesame way as in Lemma 3.2.It remains to show that the subfa
tor 
onstru
ted in this lemma is 
onjugate to the one inTheorem 3.3. We de�ne an automorphism � of the fa
tor M = lim�! Asn+j~mj = lim�! As(n+m1)that will 
arry the subfa
tor û(N ) = lim�! unA
sn u�n to the subfa
tor de�ned here, û~m(N ) =lim�! u~m;n(An+m1 
 � � � 
An+ms)u�~m;n. De�ne �n at the �nite dimensional level bya 2 Asn+j~mj 7! un+m1bn�(u�~m;nau~m;n)b�nu�n+m1 2 As(n+m1);where � : Asn+j~mj ! As(n+m1) is the usual in
lusion, and where bn 2 As(n+m1) is a unitarydes
ribed by the pi
ture below. Observe that bn�(An+m1
� � �
An+ms
1sm1�j~mj)b�n equalsthe image of the natural in
lusion map An+m1 
 � � � 
An+ms ! A
sn+m1 (re
all m1 � mi).n+m1 n+m2 m1 �m2 n+m3 n +m4m1 �m3 n+ms� � � m1 �ms�1 m1 �ms
n+m1 n +m3 n +m4� � � m1 �m2 m1 �m3bn = n+ms m1 �ms�1� � �n+m2 m1 �msFigure 3.9. Pi
torial des
ription of bn 2 As(n+m1).It is easy to 
he
k that the maps �n are 
ompatible with the in
lusions for n to n+ 1,and so we 
an de�ne � = lim�! �n. We observe that u~m;n(a1 
 � � � 
 as)u�~m;n �7!un+m1(a1 
� � � 
 as)u�n+m1 for ai 2 An+mi , so that � 
arries û(N ) to û~m(N ). It is easy and also left tothe reader to 
he
k that � is an automorphism. }16



3.4. Endomorphisms. We now want to 
onstru
t bimodules with respe
t to the just 
on-stru
ted fa
tors N and M in the proof of the last theorem. This will be done a

ordingto the re
ipe des
ribed in Remark 1.3. To do so, we need to de�ne the endomorphismsmentioned in the braid setting before, in the 
ategori
al setting.Lemma 3.5. Fix mi 2 Z�0, i = 1; 2; : : : ; s, with m1 � m2 � � � � � ms.(a) For n 2 N, the maps A
sn �! Am1+n 
 � � � 
Ams+na1 
 � � � 
 as 7! (1m1 
 a1)
 � � � 
 (1ms 
 as)extend to an endomorphism ShiftN~m : N ! N , where ~m := (m1; : : : ;ms).(b) Let û denote the embedding of N ,! M. The endomorphism ShiftN~m extends toan endomorphism of M, denoted by ShiftM~m , that is, the following is a 
ommutingdiagram: ûN ,! MShiftN~m # # ShiftM~mN ,! Mû~m(
) (ShiftM~m Æ û) only depends on the norm j~mj of ~m, and it is of the formA
sn �! Aj~mj+sn(a1 
 � � � 
 as) 7! 1j~mj 
 un(a1 
 � � � 
 as)u�n:Proof. (a) Let v~m;n 2 Aj~mj+sn be the unitary image under � of the braid des
ribed byFigure 3.10. Then it is easy to see pi
torially that for any element a1 
 � � � 
 as 2 A
sn , themaps de�ned in the statement of (a) are given by(a1 
 � � � 
 an) 7! v~m;n(a1 
 � � � 
 an 
 idj~mj)v�~m;n 2 An+m1 
 � � � 
An+ms :v~m;n = : : : nnn msm2m1
Figure 3.1017



The fa
t that these maps extend to the von Neumann algebra indu
tive limit N = lim�! A
snfollows from the fa
t that the following are 
ommuting diagrams with respe
t to the 
anon-i
al in
lusions:(3.4) v̂~m;nA
sn ,! A
sn 
Aj~mj �! An+m1 
 � � � 
An+ms# # #A
sn+1 ,! A
sn+1 
Aj~mj �! An+1+m1 
 � � � 
An+1+msv̂~m;n+1and from the fa
t that the maps are norm and tra
e preserving. We denote the resultingendomorphism by ShiftN~m .(b) We shall extend the map ShiftN~m to M after embedding N inM via û (given by theindu
tive limit of 
onjugation of unitaries un or u~m;n as in Figures 3.7 and 3.3). At the�nite dimensional level we de�ne ShiftM~m :M = lim�! Asn �!M = lim�! Aj~mj+sn as follows:(3.5) 
!n : Asn ,! Aj~mj+sn �! Aj~mj+sn;where the �rst arrow stands for the standard in
lusion a 2 Asn 7! a 
 1 2 Aj~mj+sn, andwhere the se
ond arrow stands for 
onjugation by the unitary !n = !n(s; ~m) 2 Aj~mj+snde�ned by(3.6) !n := u~m;nv~m;n(u�n 
 idj~mj);here u~m;n and v~m;n are given by Figures 3.6, 3.7, and 3.10. We give a diagramati
 repre-sentation for s = 3 in Figure 3.11, with b 2 Asn:
m1n n nt~m t~m un

u�nt�~m
idj~mj

t�~m
ShiftM~m (b) =

un
u�nbun

u�n
�n= u�nbun

m2 m3m1 m2 m3 n n

Figure 3.11. Pi
torial representation of ShiftM~m (b) 2 Aj~mj+sn, for b 2 Asn (s=3).18



We want to show that these maps extend to a well-de�ned map ShiftM~m on the indu
tivelimit lim�! Asn, i.e., we have to show that b!n+1(�(b)) = ��b!n(b)�, where we use the notation� for the standard in
lusions of Asn ! As(n+1) as well as for Aj~mj+sn ! Aj~mj+s(n+1). Toshow this, we need the indu
tive property of the unitaries u(s)n mentioned already at thebraid level, seen in Figure 3.3, to write u~m;n+1 in terms of u~m;n and of ids. We then havefor b 2 Asn that b!n+1(�(b)) =
u�nbun nnnm3 unt~m
u�nbun nnnm3unt~m

u�nbun nnn unt~m t~mm3m2m1
id3

m2m1=id3
id3 3

id3
id3
id3

u�nt�~m u�nt�~m u�nt�~m
un

u�nbun nnn

Figure 3.12. ShiftM~m is well-de�ned.= ��b!n(b)). Hen
e ShiftM~m = lim�! b!n is well de�ned.We still need to show that ShiftM~m `extends' ShiftN~m , i.e., that (ShiftM~m Æ û) = (û ÆShiftN~m).From de�nition, for a = a1 
 � � � 
 as 2 A
sn ,(ShiftM~m Æ lim! ûn)(a) = (!̂n Æ � Æ ûn)(a)= (û~m;n Æ v̂~m;n)(a
 idj~mj)= (lim! û~m;n Æ ShiftN~m)(a):Be
ause of this, we shall after this lemma drop the supers
ripts and write Shift~m for eitherShiftM~m or ShiftN~m .(
) This follows from the de�nition. Take (a1 
 � � � 
 as) 2 A
sn .
19



Using Figure 3.11, we obtain that ShiftM~m (un(a1 
 a2 
 a3)u�n) =
t�~m u�na1 a2 a3t~m unm1 nn nm2 m3
Figure 3.13= 1j~mj 
 un(a1 
 a2 
 a3)u�n: }Proposition 3.6. Let Shift~m be as in Lemma 3.5.(a) Shift~m(M) �M is an in
lusion of II1 fa
tors with index (dim(X))2j~mj, where j~mj =Pmi and Shift~m(M)0 \M has a subalgebra isomorphi
 to Am1 
 � � � 
Ams .(b) Shift~m(N ) �M is an in
lusion of II1 fa
tors with index [M : N ℄(dim(X))2j~mj andwith relative 
ommutant Shift~m(N )0 \M �= Aj~mj.(
) Shift~m(N ) � N is an in
lusion of II1 fa
tors with index (dim(X))2j~mj and withrelative 
ommutant Shift~m(M)0 \M �= Am1 
 � � � 
Ams .Proof. For (a), we �rst show that the maps !̂n in 3.5 de�ne periodi
 
ommuting squaresfor Shift~m(M) � M. For this, one simply uses the fa
t that these maps are 
ompositionsinvolving the maps v̂~m;n, û~m;n and ûn (see 3.6). They appear in the periodi
 
ommutingsquares in Diagram 3.4, Diagram 3.2 and Diagram 3.3, see Lemma 3.2 and Lemma 3.4.Hen
e the desired diagram 
an be built from the just mentioned 
ommuting squares. Peri-odi
ity is shown as in Lemma 3.2, and we 
an use the formula for the index, as done there.It follows from Lemma 3.1,(b) and (d), that the ratio of the square lengths of the weightve
tors for Asn and Asn+j~mj is equal to (dimX)2j~mj.The statement about the relative 
ommutant follows from the de�nition of ShiftM~m . Let usrepresent ShiftM~m (b), for b 2 Asn (s = 3 to make things simpler) as it appears in Figure 3.11.Then for a 2 (t~m 
 1sn)(Am1 
 � � � 
Ams 
 1sn)(t�~m 
 1sn) 2 Aj~mj+sn we have aShiftM~m (b) =ShiftM~m (b)a, whi
h follows from Fig. 3.14. Hen
e (t~m
1sn)(Am1
� � �
Ams
1sn)(t�~m
1sn) �=Am1
� � �
Ams 
ommutes with ShiftM~m (b) for b 2 Asn, for every n, so that ShiftM~m (M)0\Mhas a subalgebra isomorphi
 to Am1 
 � � � 
Ams . This proves the last statement of (a).For (b), one shows as before that the generating diagram for Shift~m(N ) �M is obtainedby 
omposing Diagram 3.4 and the square obtained from Diagram 3.6, whi
h are both
ommuting. So Diagram 3.6 is a 
omposition of those diagrams, and therefore is a periodi

ommuting square as well. The indi
es for parts (b) and (
) 
an now be 
omputed as before,using Lemma 3.1. It only remains to show the statement about the relative 
ommutant.20



nm3 n nt~m un
aShiftM~m (b) = =u�nbun

t�~m u�n a1 a2 a3 =Shift~m(b)au�nbun
t�~m u�n

m2a1 a2 a3m1 m2 nm3 n nt~m un m1
Figure 3.14Lemma 3.5,(
), implies that ShiftM~m (unA
sn u�n) = 1j~mj 
 unA
sn u�n for every n. So Aj~mj 
1sn 
ommutes with ShiftM~m (unA
sn u�n) for every n and ShiftM~m (N )0 \M has a subalgebraisomorphi
 to Aj~mj. Conversely, for the other in
lusion, we apply a dimension upper boundresult for relative 
ommutants of in
lusions generated by periodi
 
ommuting squares (see[W1℄, Theorem 1.6):dim �ShiftM~m (N )0 \M� � dim �(1j~mj 
 unA
sn u�n)0p \ (Aj~mj+sn)p�� dim (Aj~mj+sn)p;for any proje
tion p 2 1j~mj 
 unA
sn u�n, and n large. If n is divisible by k and suÆ
ientlylarge, then X
n 
ontains a subobje
t isomorphi
 to 11; let p11 2 An be the proje
tion ontoit. If p = 1j~mj 
 un(p
s11 )u�n 2 Aj~mj+ns, then we have pAj~mj+nsp �= Aj~mj. This shows (b).For (
), it is even easier than in (a) to show that the generating Diagram 3.4 forShift~m(N ) � N is a periodi
 
ommuting square; one 
an see that pi
torially, as it wasdone in Lemmas 3.2 and Lemma 3.4, whi
h is left to the reader. The statement aboutthe relative 
ommutant in (
) is proved in the same manner as in (b): By de�nition,ShiftN~m(a1 
 � � � 
 as) = (1m1 
 a1)
 � � � 
 (1ms 
 as). Thus, (Am1 
 1n)
 � � � 
 (Ams 
 1n)
ommutes with ShiftN~m(A
sn ) for every n, and so ShiftN~m(N )0 \ N has a subalgebra isomor-phi
 to Am1 
� � � 
Ams . For the other in
lusion we apply again the upper bound result forthe dimension of the relative 
ommutant:dim �ShiftN~m(N )0 \N � � dim �(1m1 
An)
 � � � 
 (1ms 
An)�0p \ (An+m1 
 � � � 
An+ms)p� dim(An+m1 
 � � � 
An+ms)p;21



for any proje
tion p 2 (1m1 
 An) 
 � � � 
 (1ms 
 An). One shows as in (b) that forp = (1m1 
 p11)
 � � �
 (1ms 
 p11) we have (An+m1 
 � � �
An+ms)p �= Am1 
 � � �
Ams , fromwhi
h one dedu
es (
). }4. Bimodules and the prin
ipal graph4.1. Examples of bimodules. We are going to 
onstru
t systems of bimodules in orderto 
al
ulate the prin
ipal and the dual prin
ipal graph, as des
ribed in Proposition 1.10.This will be done using the endomorphisms Shift de�ned in the last se
tion.The N{N -bimodules: Let �i 2 � and let Ami;�i be the simple 
omponent of Ami
orresponding to the simple obje
t X�i � X
mi with mi being large multiples of k fori = 1; 2; : : : ; s. We �rst �x minimal proje
tions p�i 2 Ami;�i . De�ne p~� = p�1 
 � � � 
 p�s ,where ~� = (�1; � � � ; �s). The underlying Hilbert spa
e will be given byL2(N ; tr)p~� := f�p~�; � 2 L2(N ; tr)g:The N{N bimodule stru
ture is de�ned byx:�:y = x�Shift~m(y); for x; y 2 N ; � 2 L2(N ; tr)p~�;where we use the usual right and left multipli
ation in N on the right hand side. It followsfrom Proposition 3.6 that this indeed de�nes an N{N bimodules stru
ture on L2(N ; tr)p~�.De�nition 4.1. The N{N bimodules de�ned above will be denoted by N~�;~m.The M{N -bimodules: Let again ~m := (m1; : : : ;ms) 2 Ns , with m := m1+ � � �+ms. We�x a minimal proje
tion p� 2 Shift~m(N )0 \M �= Am (see Proposition 3.6), where � 2 �.The underlying Hilbert spa
e for all these bimodules will be given byL2(M; tr)p� := f�p� = � 2 L2(M; tr)g:The M{N bimodule stru
ture is de�ned byx:�:y = x�Shift~m(y); for x 2M; y 2 N ; � 2 L2(M; tr)p�:De�nition 4.2. The M{N -bimodules de�ned above will be denoted by H�;~m.The N{M-bimodules: With notations as in the last de�nition, we de�ne similarly N{M-bimodules based on Hilbert spa
es p�L2(M; tr) := fp�� = � 2 L2(M; tr)g, and with theN{M bimodule stru
ture de�ned byx:�:y = Shift~m(x)�y; for x 2 N ; y 2M; � 2 p�L2(M; tr):De�nition 4.3. The N{M-bimodules de�ned above will be denoted by K�;~m.The M{M-bimodules: Similarly as for the N{N -bimodules, we �x minimal proje
tionsp�i 2 Ami;�i , with �i 2 �, but now only requiring that Pmi being divisible by k. Theunderlying Hilbert spa
e for all these bimodules will be given byp~�L2(M; tr) := fp~��= � 2 L2(M; tr)g:22



The M{M bimodule stru
ture is de�ned byx:�:y = Shift~m(x)�y; for x; y 2M; � 2 p~�L2(M; tr);De�nition 4.4. The M{M-bimodules de�ned above will be denoted by M~�;~m.Lemma 4.5. With the notation introdu
ed above:(a) If we view both N~�;~m and H�;~m as left N -modules, then dimN N~�;~m = d~�=(dimX)j~mjand dimN H�;~m = d� [M : N ℄=(dimX)j~mj. Moreover, we have ind(N~�;~m) = d2~�,where d~� = Q d�i , and ind(H�;~m) = d2� [M : N ℄.(b) If j~mj = j~kj, then H�;~m �= H�;~k as M{N -bimodules, and K�;~m �= K�;~k as N{M-bimodules.(
) If j~mj = j~kj, we haveHomM�M(M~�;~m;M~�;~k) � HomN�M(M~�;~m;M~�;~k) �= HomC(X~�;X~�);where X~� = 
si=1X�i and X~� = 
si=1X�i .Proof. We have the well-known fa
ts that dimN L2(N ; tr)p = tr(p) for any proje
tionp 2 N , and dimN L2(M; tr)q = tr(q)[M : N ℄ for any proje
tion q 2 M { see e.g. [Jo℄ {from whi
h the dimension statements in (a) follow. For the index statements in (a), let `and r denote left and right multipli
ation by N on L2(N ; tr) or suitable sub-modules of it.Observe that `(N )0jL2(N ;tr)p is equal to r(pNp) for any p 2 Shift~m(N )0 \ N . Re
all thatShift~m(N ) � N has index (dimX)2j~mj. Moreover, tr(p~�) = d~�=(dimX)j~mj for a minimalidempotent p~� 2 Shift~m(N )0 \ N , see Proposition 3.6. Using the formula for lo
al indi
es,see [W1℄, Theorem 1.5,(iii), and the index formula in Proposition 3.6,(
), we obtainind(N~�;~m) = [p~�Np~� : p~�Shift~m(N )℄ = tr(p~�)2(dimX)2j~mj = (d~�)2:The index for H�;~m is 
omputed similarly. By Lemma 3.5, (
), we have ShiftN~m = ShiftN~k ,from whi
h (b) follows.Let ~mL2(M; tr) be the Hilbert spa
e L2(M; tr) with M{M bimodule stru
ture x:�:y =ShiftM~m (x)�y for x; y 2 M and � 2 L2(M; tr). De�ne ~kL2(M; tr) similarly. These bimod-ules are isomorphi
 as N{M bimodules, again by Lemma 3.5, (
), whi
h 
ombined withLemma 3.5,(b), result inHomM�M(~mL2(M; tr); ~kL2(M; tr)) � HomN�M(~mL2(M; tr); ~kL2(M; tr)) �=�= EndN�M(~mL2(M; tr)) �= Aj~mj = EndC(X
j~mj); (�)where the se
ond isomorphism follows from Corollary 3.6,(b), and (b). By 
onstru
tion,we have M~�;~m = p~�(~mL2(M; tr)) and M~�;~k = (p~�~kL2(M; tr)), where p~� = p�1 
 � � � 
 p�sand p~� = p�1 
 � � � 
 p�s . Hen
e we 
an interpret an element f 2 HomM�M(M~�;M~�) asan element in HomN�M(~mL2(M; tr); ~kL2(M; tr)) whi
h satis�es p~�fp~� = f . Using thistogether with (�) proves 
laim (
). } 23



4.2. Prin
ipal graph. Let ~� = (�1; � � � ; �s) 2 (�0)s, and let L�~� be the multipli
ity of theobje
t X� in 
X�i . Observe that L�~� is also equal to the rank of the proje
tion N p�i inthe simple 
omponent of Aj~�j labeled by �.In the following we will �x a ve
tor ~m = (mi) where all its 
oordinates are divisible by k,and with mi large enough that all simple obje
ts of C0 will appear in X
mi for i = 1; � � � ; s.We shall hen
e omit ~m in the indi
es of the bimodules and will just write N~� and K� forN~�;~m and K�;~m, respe
tively.Theorem 4.6. With the notation as above:(a) The bimodules N~� and H� de�ned above are irredu
ible.(b) The prin
ipal graph for N �M is the 
onne
ted 
omponent of the fusion graph from(C0)s to C0 whi
h 
ontains the trivial obje
t of C. Re
all that the even verti
es of thefusion graph are labeled by s-tuples of elements of �0, the odd verti
es are labeled bythe elements of �0, and the vertex labeled by ~� = (�1; � � � ; �s) is 
onne
ted with thevertex labeled by � by L�~� edges.(
) The subfa
tor N �M has �nite depth.Proof. Statement (a) follows from Proposition 3.6. It follows from the de�nitions thatL2(M; tr) 
N N~� �= L2(M; tr)p~� �= �L�~�H�; the de
omposition of L2(M; tr)p~� into irre-du
ibleM{N bimodules follows from Proposition 3.6,(b) and the remarks at the beginningof this subse
tion. Hen
e our system of bimodules (N~�)~�2(�0)s and (H�)�2�0 is 
losed underindu
tion. To prove 
losedness under restri
tion, observe that the multipli
ity of the N{Nbimodule N~� in the M{N -bimodule H� , viewed as an N{N -bimodule, is equal to L�~�, byFrobenius re
ipro
ity. To show that H� �= L~� L�~�N~� as an N{N -bimodule, it suÆ
es toprove that both sides have the same dimension, i.e., by Lemma 4.5,(a), that(4.1) [M : N ℄d� =X~� L�~�d~�:For this observe that the dimension ve
tors for A
sn and Ans, with n a multiple of k, aregiven by ~tns = (d~�=(dimX)ns)~� and ~vns = (d�=(dimX)ns)� , with ~� 2 (�0)s and � 2 �0.Observe that the subfa
tor N � M is generated by the periodi
 sequen
e (A
sn � Ans),with the in
lusion matrix for A
sn � Ans given by G = (L�~�) with ~� and � as above, providedkjn. Hen
e it follows from [W1℄, Theorem 1.5,(ii), that G~vns = [M : N ℄~tns. This impliesEquation 4.1. Statement (
) is a 
onsequen
e of (b). }Remark 4.7. There are 
ases where the fusion graph from (C0)s to C0 is not 
onne
ted. Aneasy example is obtained for C being the representation 
ategory of a �nite abelian groupG, where it de
omposes into jGj 
onne
ted 
omponents.5. Dual prin
ipal graph5.1. Ring lemma. The pre
ise stru
ture of Shift~m(M)0\M is still open after Proposition3.6. To say more about this, we need the following lemma. Similar te
hniques have appeared24



before in topologi
al quantum �eld theory, and within subfa
tors in work of O
neanu andothers, see e.g. [EK2℄, [M2℄.Lemma 5.1. If a 2 Shift~m(M)0 \M, take ~a := t�~mat~m with t~m 2 Aj~mj as in Figure 3.6.Then, the following relations hold for r = 2; : : : ; s:m12n = 2nmr+1msmrmr�1 � � �� � � ~a� � � ~a msmrm1 � � �
Figure 5.15. �rX(~a
 1sn)�rX� = �rXxr(~a
 1sn)x�r�rX�where the morphisms xr and �rX will be de�ned below.Proof. By Proposition 3.6, (b), we know that Shift~m(M)0 \M � Aj~mj. Take t~m 2 Aj~mj asin Figure 3.6. If a 2 Shift~m(M)0 \M then set~a
 1sn := (t�~m 
 u�n)a(t~m 
 un) = t�~mat~m 
 1sn 2 Aj~mj 
 1sn;and note that ~a
1sn 2 �(t�~m
u�n)Shift~m(M)(t~m
un)�0\M. In parti
ular, take the elementxr := (t�~m 
 u�n)Shift~m(unTru�n)(t~m 
 un), for r = 2; : : : ; s, where Tr 2 Asn is obtained fromthe braiding morphisms and 
an be represented by the pi
ture:: : :: : : nnnnn(r � 1)nn (s� r + 1)nTr =Figure 5.16We use Figure 3.11 in the proof of Lemma 3.5 to see that xr is given by Figure 5.17.(s � r)n nn(r � 2)n

snj~mj
mr: : : : : :xr = msm1

Figure 5.17. xr := (t�~m 
 u�n)Shift~m(unTru�n)(t~m 
 un)25



Also note that xr is a unitary, so that (~a 
 1sn)xr = xr(~a 
 1sn) implies (y~a 
 1sn) =xr(~a
 1sn)x�r . This is pi
torially represented in Figure 5.18:
(s� r)nn(r � 2)n

snj~mj
nms~a ~am1 mr: : :: : : snmsm1 = : : :

Figure 5.18. (~a
 1sn) = xr(~a
 1sn)x�r .In order to obtain the relations in our statement in Figure 5.15, we pro
eed by \
losing"strands in Figure 5.18 with \
ups" and \ 
aps" to form the loops (where the 
aps and
ups 
orrespond to dual morphisms as des
ribed in the subse
tion 2.2). This is done asfollows: Let rh and lh be the left and right hand sides of Figure 5.18. Then we also obtainrh
 1( �X)sn = lh
 1( �X)sn . We now multiply both sides with 1X
j~mj 
 iX
sn from the right(below) and by its 
onjugate from the left (above). The morphisms iX
sn and its 
onjugate
orrespond to the pi
tures in Figure 5.19, whi
h are obtained from the properties of theduality morphisms, see Se
tion 2.2. It is easy to 
he
k that we obtain (s � 2)n unlinked11 XX XX
sn: : : : : :X
snX X
snX
sn XXX : : :: : : 11X
Figure 5.19. ��X
(sn) and �X
(sn)
ir
les on the right hand side, whi
h 
orrespond to the s
alar (dimX)(s�2)n. Can
eling thiswith the same number of 
ir
les on the left hand side, we obtain the pi
ture as 
laimed inthe statement. }Corollary 5.2. The equality in Lemma 5.1 still holds if the rings on both sides are labeledby an irredu
ible obje
t in C0.Proof. Assume that kjn. Then the proof of Lemma 5.1 works as well if we multiply Trby 1(r�1)n 
 p11 
 1(s�r+1)n 
 p� where p11 and p� are proje
tions onto irredu
ible obje
tsappearing in X
n isomorphi
 to 11 and to X�, respe
tively. Going through the proof ofLemma 5.1, we obtain the statement of the 
orollary at the end. }26



5.2. Notations and preliminaries. For any braided semisimple tensor 
ategory C we 
ande�ne a s
alar s�� = Tr(
�;�
�;�), where 
�;� is the braiding morphism for X� 
X�. TheS-matrix is then given by (s��), where the rows and 
olumns are labeled by the simpleobje
ts of C.Let now D be a full sub
ategory of C. We de�ne TD to be the set of simple obje
ts X� inD for whi
h s�� = dim(X�) dim(X�) for all simple obje
ts X� in C0. We will primarily beinterested only in the 
ases D = C and D = C0. We usually assume D to be �xed, in whi
h
ase we may just write T for TD.Let X = ��m�X�, Y = �n�X� be obje
ts in C, and let f : X ! Y be a morphism.Then f 
an be written as f = �f�, where f� : m�X� ! n�X�. For given f : X ! Y ,we de�ne the morphism fT : XT ! YT , where fT = �X�2T f�, and XT , YT are de�neda

ordingly. Also, we de�ne pT (X) 2 End(X) to be the proje
tion from X onto XT .For a �xed obje
t Z in C and a morphism f : X ! Y we de�ne the morphism PZ(f) :X ! Y by the following pi
ture:
fX
Y ZPZ (f) =

Figure 5.20Of 
ourse this pi
ture 
orresponds to an algebrai
 expression involving rigidity and braid-ing morphisms. One 
an also easily 
he
k that for Z = Z1 
 Z2, the operation PZ is alsogiven by a pi
ture involving two parallel rings labeled by Z1 and Z2. Observe that if X�;X�are simple obje
ts in C, it follows from the de�nitions that PX�(1X�) = (s��=d�)1X� . For aformal linear 
ombination 
 =P� !�X�, with X� simple obje
ts in C, the morphism P
(f)
an also be expressed as the sum P� !�PX�(f). The following lemma is well-known andfollows from the de�nitions:Lemma 5.3. With notations above, we have PX�(f) =P� s��d� f� and P
(f) =P�;� !� s��d� f�.The following proposition is a straightforward generalization of the results in [Br℄, Lemma1.3; its proof uses the same arguments as the ones used in the proofs of [Br℄, Lemma 1.2and 1.3.Proposition 5.4. Fix the 
ategory D and let T = TD. There exists a linear 
ombination
 =P�2�0 !�X� su
h that P
(f) = fT for any morphism f in D. Moreover, P� !�d� = 1.Proof. By Lemma 5.3, we have to �nd s
alars !�; � 2 �0 su
h that P�2�0 !� s��d� is equalto 1 or 0 depending on whether X� 2 T or not. Observe that the se
ond statement willalso follow from this as s�� = d�d� for X� 2 T .27



To do so, pi
k an obje
t X =L�2�(D)m�X� in D with m� 6= 0 for all � 2 �(D). Let z�denote the 
orresponding minimal idempotent in the 
enter of End(X). Then PX�(z�) =s��d� z�. It also follows immediately by drawing pi
tures that PZ1
Z2(f) = PZ1(PZ2(f)) forany f 2 End(X) (see also the proof of [Br℄, Lemma 1.2). Hen
e we obtain a representationof the fusion algebra of C0 on V , the C -span of the idempotents z�; � 2 �(D), with ea
hPX� a
ting via a diagonal matrix with respe
t to the basis of z�'s. It follows from Lemma5.3 that PX� a
ts via the same s
alar on the 
entral idempotent z� as on z11, for all simpleobje
ts X� in C0, if and only if � 2 T . Hen
e the proje
tion onto spanfz�;X� 2 T g is inthe image of the fusion algebra, whi
h is spanned by the PX� 's. So we 
an �nd s
alars !�su
h that this proje
tion is written as P�2�0 !�PX� . The 
laim follows from this. }5.3. Let f : 
si=1X�i ! 
si=1X�i be a morphism. Then we de�ne, for any r = 1; :::; s themorphism f̂r : 
si=r+1X�i 
X�i ! 
ri=1X�i 
X�i using rigidity and braiding morphismsfor suitable obje
ts as indi
ated in Fig. 5.21; if r = s, the sour
e of f̂s is de�ned to be 11.E.g. we have f̂1 = � Æ (1��1 
 f 
 1��2 
 ::: 
 1��s) Æ �, for suitable morphisms � and �. Wedenote f̂ = f̂s.
: : : : : : : : :: : : f : : :

�r�2�1
�1 �2

: : :
�r�r+1 �s�s�1

�s�1�s�r+1
: : :

f̂r = : : :: : : : : :
Figure 5.21. f̂r : 
si=r+1X�i 
X�i ! 
ri=1X�i 
X�iCorollary 5.5. Let f 2 HomM�M(M~�;M~�), viewed as an element in HomC(X~�;X~�) (seeLemma 4.5,(
)), and let P
 be as in Proposition 5.4. Then f̂r = P
(f̂r) = (f̂r)T .Proof. Fix r, and put a ring around f as it was done for ~a in Lemma 5.1. By Corollary5.2 the equality there also holds if we label the ring by 
 = P!�X�, with the !� as inProposition 5.4. Observe that the ring on the left hand side be
omes the s
alarP� !�d� = 1,by Proposition 5.4. Now multiply both sides with suitable morphisms whi
h 
hange f to28



f̂r, su
h that all strands ending up go under the ring, and all strands ending at the bottomgo above the ring. Then the right hand side is equal to P
(f̂r), whi
h is equalt to the lefthand side f̂r. But by Proposition 5.4 P
(f̂r) = (f̂r)T .Lemma 5.6. If f 2 Hom(M~�;M~�) then f̂ = (
si=1pT (X�i 
X�i))f̂ .Proof. We will prove by indu
tion on r that f̂r = 
ri=1pT (X�i 
X�i))f̂r. For r = 1, wehave f̂1 = P
(f̂1) = (f̂1)T ;by Corollary 5.5. This proves the 
laim for r = 1, as the target of the morphism f̂1 is�X�1 
X�1 . For the indu
tion step we use the indu
tive formula for f̂r+1, as given in Figure5.22.
�r+1 f̂rf̂r+1 =

�r+2 �s�s�s�1
: : :: : :

�1 �1 �2 �r�1 �r�r
�r+1
Figure 5.22We obtain from this and the indu
tion assumption thatf̂r+1 = [(
ri=1pT (X�i 
X�i))
 1X�r+1
X�r+1 ℄f̂r+1:Pro
eeding as in the 
ase r = 1, we also obtainf̂r+1 = P
(f̂r+1) = pT (
r+1i=1X�i 
X�i)P
(f̂r+1):If X� is an obje
t in T , then so is �X� (see remarks in the next subse
tion). It follows thatthe tensor produ
t of simple obje
ts X� 
X� is in T for X� 2 T only if also X� is in T .One dedu
es from this that[(
ri=1pT (X�i 
X�i))
 1X�r+1
X�r+1 ℄pT (
r+1i=1X�i 
X�i) = 
r+1i=1pT (X�i 
X�i):This proves the 
laim. } 29



5.4. It 
an be shown under fairly weak 
onditions that the 
ategory T is equivalent to therepresentation 
ategory of a �nite group G, see the papers [Br℄ and [M1℄. In the following,we shall require in addition that T is equivalent to the representation 
ategory of a �niteabelian group G, for any 
hoi
e of D. In this 
ase, every simple obje
t in the sub
ategoryT is invertible. Moreover, we 
an and will label the simple obje
ts of T by the elements ofG in su
h a way that Xg
Xh �= Xgh for any g; h 2 G. Then we get a G-a
tion on the indexset � de�ned by Xg:� = Xg 
X�. We shall also need the subgroup Gs1 of Gs 
onsisting ofall s-tuples (g1; g2; : : : ; gs) whi
h satisfy g1g2 � � � gs = 1. The just de�ned G-a
tion extendsto an a
tion of Gs1 on �s in the obvious way.Proposition 5.7. Under the above assumptions we have(a) Hom(M~�;M~�) 6= 0 only if there exists a g 2 Gs1 su
h that ~� = g:~�.(b) dimEnd(M~�) � jStabGs1~�j.Proof. We use notations as in Lemma 5.6. By our assumptions, we have pT (X�i
X�i) = 0unless we 
an �nd an element gi 2 G su
h that Xgi � X�i 
X�i . This implies gi:�i = �i,and hen
e ~� = g:~� for some g 2 Gs. Moreover, we have a nonzero morphism from 11 to
Xgi if and only if Q gi = 1. This shows that g 2 Gs1, by Lemma 5.6.By the dis
ussion in the previous paragraph, the dimension of Hom(11;
ipG(X�i 
X�i))is equal to the 
ardinality of all s-tuples g = (gi) of elements of G for whi
h g:~� = ~� andwhose produ
t Q gi is equal to 1. These are exa
tly the elements of StabGs1~�. The 
laimnow follows from the fa
t that the map f 7! f̂ is inje
tive; indeed, it is easy to 
onstru
t aleft-inverse by multiplying f̂ by a suitable 
ombination of \'s and ['s to get ba
k f . }Theorem 5.8. If the S-matrix for the 
ategory C0 is invertible, the dual prin
ipal graphfor the in
lusion N � M 
oin
ides with its prin
ipal graph. In parti
ular, ea
h M{Mbimodule M~�, with ~� = (�i) su
h that ea
h �i labels a simple obje
t in C0 is irredu
ible.Proof. We will use the results of Lemma 5.6 and of Proposition 5.7 for the 
ategory C0. Ifthe S-matrix is invertible, G is the trivial group. Hen
e there are no nonzero morphismsbetween M~� and M~� for ~� 6= ~�, and ea
h M{M-bimoduleM~� is irredu
ible by Proposition5.7. It follows from the de�nitions (see before Theorem 4.6) that the multipli
ity of a simpleN{M bimodule ~M� in the simpleM{M bimodule M~� is equal to L�~�.Observe that ind(K�) = d2� [M : N ℄ and ind(M~�) = Qi d2�i . It follows thatX�2�0 d2� [M : N ℄ = (X�2�0 d2�)s = X~�2(�0)sYi d2�i :Hen
e P�2�0 ind(K�) = P~�2(�0)s ind(M~�). As any simple N{M-bimodule in a higherrelative 
ommutant is weakly isomorphi
 to an element in (K�)�2�0 , by Theorem 4.6, itfollows from Lemma 1.12,(a), that there 
an not be any additionalM{M-bimodules in thehigher relative 
ommutants. } 30



5.5. Non-invertible S-matrix. We shall make the following assumptions: We assumethat the 
ategory T for our 
hosen 
ategory D = C is equivalent to the representation
ategory of a �nite abelian group G, and, moreover, that jGj = k, with k as de�ned inSe
tion 3.1. This also implies that jGs1j = ks�1.Theorem 5.9. We assume the 
onditions stated at the beginning of this subse
tion. Thenwe have:(a) dimEndM�M(M~�) = jStabGs1~�j for any ~� 2 �s0 := f~� 2 �s; kjP j�ijg.(b) The even verti
es of the dual prin
ipal graph of the in
lusion N �M are labeled bythe equivalen
e 
lasses of irredu
ible 
omponents of the bimodules M~�, with ~� 2 �s0.Proof. Let M~� =LiQ~�;i be the de
omposition of theM{M bimoduleM~� into irredu
ibleM{M-bimodules. Then it follows from Lemma 1.12,(b), and Proposition 5.7 thatXi ind(Q~�;i) � ind(M~�)dim(End(M~�)) � ind(M~�)jStabGs1~�j :Let now (Qj)j = S~�(Q~�;i)i be the 
olle
tion of mutually nonisomorphi
 representatives ofirredu
ibleM{M submodules of any module M~� with ~� 2 �s0. Then we haveXj ind(Qj) � XGs1�orbits2�s0 ind(M~�)jStabGs1~�j == 1ks�1 X~�2�s0 ind(M~�) = 1ks�1 (1k X�2� d2�)s = (X�2�0 d2�)s;where we use Lemma 3.1,(d), for the last equality. But the sum (P�2�0 d2�)s is equal toP�2�0 ind(K�), as was already shown in the proof of Theorem 5.8. Hen
e the inequalitiesabove must be equalities, and our set of bimodules (Qj)j must already exhaust all possibleM{M-bimodules in the higher relative 
ommutant, by Lemma 1.12. }Remark 5.10. If the stabilizer StabGs1~� is trivial, whi
h usually is the 
ase for most labels, thebimoduleM~� is irredu
ible, and its de
omposition intoN{M-bimodules is again determinedby the fusion 
oeÆ
ients L�~�. Unfortunately, our theorem does not say anything about whatEnd(M~�) looks like if jStabGs1~�j � 4. E.g., if the stabilizer has four elements, End(M~�) 
ouldbe isomorphi
 to C 4 or to the 2 � 2 matri
es. Neither does it say how the submodules ofM~� de
ompose into irredu
ible N �M modules in these 
ases.6. Examples6.1. Examples of C�-tensor 
ategories. 1. The easiest example for our set-up is therepresentation 
ategory Rep(G) of �nite dimensional unitary representations of a �nitegroup. Here the braiding stru
ture is just given by the permutation of tensor fa
tors,whi
h 
ommutes with the group a
tion. This makes the S-matrix a rank 1 matrix, i.e.noninvertible unless G is trivial. However, at least in prin
ipal, the dual prin
ipal graph 
an31



be 
omputed from a general result about �xed point algebras of a group K and its subgroupH. In our setting, K = Gs and H �= G, whi
h is embedded by g 2 G 7! (g; g; � � � ; g) (stimes). See [KMY℄ for details.In the spe
ial 
ase when the subgroupK is normal, we obtain prin
ipal and dual prin
ipalgraphs of the fa
tor group H=K. This is the 
ase in our setting if G is abelian.2. Let � be a II1 fa
tor representation of the in�nite braid group B1 su
h that theJones index for the in
lusion of fa
tors �(B2;1)00 � �(B1)00 is �nite. Let us de�ne An =�(Bn+1;1)0 \ �(B1)00. We moreover assume that there exists, for some k 2 N, a proje
tionp 2 Ak su
h that p�(B1)00p = p�(Bk+1;1)00. It is possible to de�ne from this a C�-tensor
ategory, with the obje
ts being the proje
tions in An. Most of this has already been done in[W2℄, Se
tion 2, without mentioning 
ategories. We shall not do this here. We just remarkthat the 
onstru
tions of this paper will work in this setting without expli
itly exhibitingthe 
ategory; this has already been done in [E1℄. In parti
ular, this 
an be applied to theJones subfa
tors as well as to the He
ke algebra and BCD type subfa
tors.3. Let Uqg be the Drinfeld-Jimbo deformation of the universal enveloping algebra Ugof a semisimple Lie algebra g. It is well-known that the 
ategory of its �nite dimensionalrepresentations has a braiding stru
ture. It 
an not be unitarized ex
ept for q = 1. Ifq is a root of unity 6= 1, one 
an de�ne a spe
ial 
lass of representations 
alled tiltingmodules whi
h again forms a braided tensor 
ategory. It 
an be shown that the 
ategoryof tilting modules has a semisimple quotient with only �nitely many simple modules upto equivalen
e; this is often referred to as a fusion 
ategory (see [A℄,[AP℄). Moreover, forq being 
ertain roots of unity (usually of the form q = e�2�i=l for suitable integers l (see[W3℄ for pre
ise values), this quotient 
an be unitarized. This yields a large and important
lass of C� tensor 
ategories. Using the one-sided subfa
tor 
onstru
tion, one obtains theJones subfa
tors for X being the Uqsl2-analog of the 2-dimensional representation of sl2.Similarly, He
ke algebra subfa
tors and BCD type subfa
tors 
an be obtained from fusion
ategories of quantum groups of 
lassi
al Lie types.These C�-fusion 
ategories 
an also be obtained by a 
ompletely di�erent 
onstru
tionusing the 
ategory of positive energy representation of a loop group. The diÆ
ulty inthis 
onstru
tion 
omes from the fa
t that one 
an not use the usual tensor produ
t forrepresentations; instead one has to de�ne a new, so-
alled fusion tensor produ
t (see [Wa℄).4. Let N � M be an in
lusion of II1 fa
tors with �nite index and �nite depth. Thenthe 
ategory of N{N bimodules obtained as dire
t sums of summands of the bimodulesM
n = M 
N M 
N � � � 
N M (n times), n 2 N de�nes a C�-tensor 
ategory whi
h mayor may not be braided. One 
an similarly also de�ne the C�-tensor 
ategory of M -Mbimodules generated by M
n.If these 
ategories are not braided, one 
an apply a general 
onstru
tion, 
alled the
ategori
al quantum double 
onstru
tion to 
onstru
t from our 
ategory of bimodules alarger braided C� tensor 
ategory. It was shown that this 
ategory is equivalent to the
ategory of M{M-bimodules for the asymptoti
 in
lusion N � M derived from N � M ,32



see [M2℄. If the original 
ategory already was braided, the asymptoti
 in
lusion 
oin
ideswith the 2-sided in
lusion 
onstru
ted in this paper.5. Our 
onstru
tions of bimodules in this paper are based on 
ertain endomorphismsof II1 fa
tors. The approa
h to 
ategories via endomorphisms has been used for a longtime for type III fa
tors in the framework of algebrai
 quantum �eld theory (see e.g. [LR℄,[FRS℄, [X℄). Here subtleties involving 
oupling 
onstants do not matter, and obje
ts aregiven dire
tly by morphisms.6.2. Examples for our 
onstru
tion. 1. Let us �rst list examples of C�-tensor 
ategorieswith invertible S-matrix.(a) The S-matrix for the full fusion tensor 
ategories as 
onstru
ted in [A℄,[AP℄ is in-vertible under the 
onditions for unitarizability, as stated in [W3℄. Hen
e if we 
an �ndan obje
t X su
h that all irredu
ible representation of the fusion 
ategory appear in sometensor power of X, we have C0 = C and the dual prin
ipal graph is equal to the prin
ipalgraph. Su
h representations 
an be found in all 
ases, but usually 
an not be 
hosen to beirredu
ible. E.g., for Lie type A (the 
ase of Jones subfa
tors and He
ke algebra subfa
tors),one 
an 
hoose X = 11 � V , where V is the analog of the ve
tor representation.(b) Similarly, the S-matrix for the quantum double of a C� tensor 
ategory is alwaysinvertible (see e.g. [M2℄). Hen
e, as soon as we have found an obje
t X for whi
h allirredu
ible representations of the double 
ategory appear in some tensor power of X, thedual prin
ipal graph of our s-sided in
lusion with respe
t to X is equal to the prin
ipalgraph.2. It turns out that our 
onstru
tion does not only depend on the 
ategory C, but alsoon the 
hoi
e of the obje
t X. Even though in the 
ase of the fusion tensor 
ategories theS-matrix for C is invertible, the S matrix for the 
ategory C0 may not be invertible. E.g.,for type A if one takes X = V , the S-matrix for C0 is invertible only if the degree of theroot of unity is 
oprime to k. If this is not the 
ase, however, our results for noninvertibleS-matri
es apply. This will be shown in more detail in the following subse
tion at anexample.6.3. Subfa
tors related to Jones subfa
tors. We illustrate our examples in some detailfor the fusion 
ategory C of Uqsl2, with q = e2�i=l. There also exist other, more elementarymethods to 
onstru
t these 
ategories using the Temperley-Lieb algebras, see e.g. the book[T℄. As mentioned before, this is also one of the 
ases where the subfa
tor 
onstru
tions
an be done on the level of braid representations, as it was 
arried out in the original paper[E1℄.We give a brief des
ription of this 
ategory. Up to isomorphism, we have exa
tly l � 1simple obje
ts in C, whi
h are denoted by [i℄, 1 � i � l � 1. The de
omposition of tensorprodu
ts is given by(6.1) [i℄
 [j℄ = [ji� jj � 1℄� [ji� jj+ 1℄� � � � � [m℄;where m is the minimum of i+ j� 1 and 2l� 1� i� j. One sees easily that [1℄ 
orrespondsto the trivial obje
t. It follows from the tensor produ
t rules by indu
tion on n that all33



simple obje
ts in [2℄
n are labeled by even numbers if n is odd, and by odd numbers if n iseven. Hen
e k = 2 and the simple obje
ts of C0 are labeled by odd numbers. This expli
itlydes
ribes the prin
ipal graph for N �M, 
onstru
ted with X = [2℄, by Theorem 4.6.Observe that [i℄ 
 [l � 1℄ = [l � i℄ for all 1 � i < l. Hen
e the obje
ts [1℄ and [l � 1℄together with the operation 
 form a group G whi
h is isomorphi
 to Z=2Z. Moreover, theS matrix is well-known to be of the form S = (sin(ij�=l)), up to a s
alar.It is very easy to 
he
k that if l is even and j is odd, then sin(i(l � 1)�=l)) = sin((i�=l))for any i = 1; 2; : : : ; l� 1. Hen
e the 
ategory T 
ontains at least the obje
ts [1℄ and [l� 1℄.It 
ontains no more simple obje
ts as obviously sin(i�=l) = sin(ij�=l) for 1 < j < l only ifj = l�1. So the 
onditions at the beginning of Subse
tion 5.2 are satis�ed with jGj = 2 = k.We have shown most of the followingProposition 6.1. Let N �M be the subfa
tor 
onstru
ted from the s-sided in
lusion fromthe Jones subfa
tor at an l-th root of unity, with l even. Then we have(a) The even verti
es of the prin
ipal graph are labeled by all s-tuples of odd positivenumbers less than l and the odd verti
es are labeled by all odd positive numbers lessthan l. The number of edges between two verti
es 
an be 
omputed from the tensorprodu
t rule stated in 6.1.(b) Ea
h s-tuple of positive integers less than l whose sum is even and whi
h 
ontainsthe number l=2 at most on
e labels an even vertex of the dual prin
ipal graph; thenumber of edges emanating from su
h a vertex 
an be 
omputed as in (a). The M{M bimodules M~� labeled by an s-tuple ~� 
ontaining the number l=2 exa
tly r > 1times satis�es dim(End(M~�)) = 2r�1.Proof. Part (a) follows from Theorem 4.6 and our expli
it des
ription of the simple obje
tsof C0. For part (b), we have already 
he
ked the 
onditions stated at the beginning ofSubse
tion 5.2. It remains to 
al
ulate StabGs1~� for any ~� 2 �s. Re
all that the a
tionof the nontrivial element of G on our labeling set is given by i 7! l � i. Obviously, theonly �xed point is l=2 for l odd. It is now not hard to show that ~� 2 �s has a nontrivialstabilizer in Gs1 if and only if r � 2 of its 
omponents are equal to l=2, and that in this 
asethe stabilizer has exa
tly 2r�1 elements. Statement (b) now follows from Theorem 5.9. }Remark 6.2. If s = 3, part (b) of the last proposition 
ompletely determines the numberof edges in the dual prin
ipal graph ex
ept for the de
omposition of the bimodule M~�with ~� = (l=2; l=2; l=2), whi
h 
ould de
ompose into the dire
t sum of four nonisomorphi
irredu
ible M{M bimodules or into the dire
t sum of two isomorphi
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