
WENZL’S RESEARCH

In the following a brief description of the main directions of Wenzl’s research is given. It is
then followed by short summaries of some of his papers. The numbers for references refer to the
enclosed list of publications.

(i) Period until promotion to full professor Wenzl’s research started out in the construction
of examples of subfactors of the hyperfinite II1 von Neumann factor. The idea is to find unitary
factor representations of the braid group on infinitely many strands, and to obtain the subfactor
from suitable subgroups. These constructions were carried out by analyzing unitary braid repre-
sentations factoring through Hecke algebras (see [5]) and algebras found in collaboration with Joan
Birman (see [3], and for the subfactor constructions, [12]), and independently by Murakami. The
latter algebras are referred to here as q-Brauer algebras, and are also referred to as BMW -algebras.
These algebras depend on one resp. two parameters. One of the difficulties in these constructions
comes from the fact that the structure of these algebras is more complicated when one of these
parameters is a root of unity - however, subfactors can only be constructed in these cases. These
examples are closely connected to new (at that time) results in knot theory and turned out to be
useful for constructing new invariants of 3-manifolds (see [14], [17]). Moreover, trace techniques
from operator algebras also were useful in solving a long-standing problem about semisimplicity of
Brauer’s centralizer algebras (see [4]).

(ii) Period after promotion to full professor It was recognized that the results mentioned in
part (i) can be appropriately described in the language of tensor categories - the latter can be
understood as a generalization of the description of group symmetries and contains representation
categories of groups as a special case. In particular, the cases treated in Wenzl’s research described
in part (i) correspond to certain deformations of representation categories of classical Lie groups,
i.e. unitary, orthogonal and symplectic Lie groups. An important example of such categories are
the representation categories of Drinfeld-Jimbo quantum groups, which are quantum deformations
of universal enveloping algebras of Lie algebras depending on a parameter q. It was shown by H.H.
Andersen that for q a root of unity the category of a special class of modules of quantum groups has
a semisimple quotient with only finitely many irreducible objects up to equivalence; this quotient
is referred to as a fusion category. The name comes from the fact that tensor categories equivalent
to these quotient categories play an important role in several areas of mathematical physics. They
have also found applications in mathematics such as the construction of topological invariants, as
outlined below.

Subfactors: It was shown in [20] that for certain roots of unity these fusion categories have
a C∗-structure. As an important consequence one obtaines a sequence of subfactors for each
representation of a semisimple Lie algebra. In particular, the Jones subfactors and most of the
examples in Wenzl’s previous research appear in this construction as special cases. The approach
essentially goes back to the one in [12]; however more advanced theory of quantum groups is
necessary for the general case. This is so far the only publication which constructs these examples
for all Lie types and all representations. In this context one should mention that an important
analogous construction for type III1 factors was carried out by Wassermann and his former student
Toledano-Laredo via loop groups which so far has been published for the classical Lie types, and
subfactors have also been constructed for certain representations of all Lie types except F4 and E8

by Feng Xu. It should be noted that all of these approaches are quite involved. This was one of the
motivations for another approach in [27] to construct subfactors related to spinor representations
via representations of braid groups of type B. This is similar to the comparatively elementary
construction in [12], and also simplifies some of the steps there. Similarly, also the results of the
EN paper could be used to give an elementary construction of subfactors for type E6 by explicitly
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constructing path representations of braid groups as it was done in the Hecke algebra paper.

Categories: In spite of the just mentioned results, the more elementary braid approach turned
out to have several applications in its own right: The most important one deals with the classi-
fication of tensor categories via their Grothendieck semiring, i.e. via their tensor product rules.
More precisely, in [15] and [30], a complete classification of all tensor categories is given, whose
Grothendieck semirings are the one of the representation category of a classical Lie group G, i.e.
for G a unitary, orthogonal or symplectic group. Moreover, this classification extends to fusion cat-
egories related to these groups. This is useful as there are a number of different ways to construct
tensor categories using R-matrices, Hopf algebras or loop groups.

Another application of these techniques was found in Freedman’s approach towards building
a quantum computer which could implement Shor’s algorithm of factoring numbers in polyno-
mial time. He needed a complete classification of all possible tensor ideals of the Temperley-Lieb
category, a tensor category which is closely related to the Lie group SU(2). The solution of this
problem was obtained by Wenzl in joint work with F. Goodman and was written up in an appendix
to Freedman’s paper (see [28]). Other applications include elementary constructions of modular
tensor categories (which, in particular, produce invariants of 3-manifolds; see [19]) as well as the
study of certain integrality structures of such categories (see [21]).

Braid representations and exceptional groups: The applications sketched in the last paragraph
were only obtained for categories related to classical Lie groups. Another direction of Wenzl’s
research was to extend his braid type approach to categories related to spinor groups (see the
already mentioned work [27]) and exceptional groups. For studying braid representations in con-
nection with exceptional groups one only needs to consider representations for which the standard
generators have at most 5 eigenvalues. As a first step, a complete classification of representations
of the braid group B3 with this property was given in [24], together with some applications for
dimension formulas. Moreover, a detailed analysis of the combinatorics and the associated braid
representations of an important part of tensor powers of certain representations of the quantum
analog of the Kac-Moody algebras of type EN was obtained in [29]. As an application, one ob-
tains a so-called first fundamental theorem for tensor powers of the minuscule representations of
quantum groups of type E6 and E7: it is shown that the commutant of the quantum group action
is generated by the braid representation together with one additional generator. The analogous
result for the representation categories of the corresponding Lie groups of type E6 and E7 follows
from this and is also new even in this more classical setting.

Subgroup analogs and module categories It is well-known that although SO(N) is a subgroup of
SU(N), this embedding can not be extended to an embedding of the corresponding Drinfeld-Jimbo
quantum groups. Nevertheless, Wenzl has constructed subfactors which correspond, at least on
a combinatorial level, to such subgroups on the level of fusion categories. The combinatorics of
such subfactors is studied in [32]. The subfactors are constructed in the preprint Fusion symmetric
spaces and subfactors via another q-deformation of Brauer’s centralizer algebras (which is studied
in detail in the preprint A q-Brauer algebra). These constructions seem to be closely related to
certain co-ideal subalgebras of quantum groups, which were obtained by Letzter and Noumi, and
to subfactors constructed by Feng Xu and Antony Wassermann via loop groups. The co-ideal
algebra approach might make it possible to do this for all Lie types, similarly as it was done in [20]
for fusion categories. This is currently being investigated.

Also, the joint paper [31] with Erlijman can be viewed as part of this program. Here an
asymptotic construction is given for the construction of subfactors corresponding to the embedding
of a braided C∗ tensor category C into Cs, for an integer s > 0. For the representation category of
a finite group G, this would correspond to the diagonal embedding g ∈ G 7→ (g, g, ... g) ∈ Gs.
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Here are short summaries of some of Wenzl’s papers:

[3] Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. 313 (1989), joint work
with Joan Birman. New quotient algebras of the group algebras of the braid groups are defined
using Kauffman’s link invariant. Their dimensions and decomposition in simple components in
the generic case are determined. These algebras, also referred to as BMW -algebras, inspired
and played an important role in Wenzl’s further research (see [4], [12], [14], [17], [27], [30]) as
well as with other authors. E.g. more recently, several authors considered BMW algebras of
other Lie types (Häring-Oldenburg, A. Cohen and D. Wales, F. Goodman)

[4] On the structure of Brauer’s centralizer algebra Ann. of Math. (2) 128 (1988). The Brauer
algebras depend on a parameter x. Brauer showed that for x = N they map surjectively
on the commutant of the action of the orthogonal group O(N) on the tensor powers of its
N -dimensional representation. It is shown that these algebras are semisimple whenever x has
nonintegral value. Moreover, an intrinsic description is given for the kernel of the map just
mentioned for x = N as the annihilator ideal of a certain trace functional.

[5] Hecke algebras of type An and subfactors Invent. Math. 92 (1988), Subfactors of the hyperfi-
nite II1 factor are constructed via unitary braid representations which factor through Hecke
algebras of type A. The Hecke algebras depend on a parameter q. To obtain interesting sub-
factors, this parameter has to be a certain root of unity for which the structure of the Hecke
algebras is quite complicated. Additionally, a useful estimate for the relative commutant of
subfactors constructed via inductive limits of finite dimensional algebras is proved.

[10] Littlewood-Richardson coefficients for Hecke algebras at roots of unity. Adv. Math. 82 (1990),
joint work with Fred Goodman. Using idempotents for Hecke algebra representations at roots
of unity, quotients of the representation semiring of unitary groups are defined and their
structure coefficients are computed in terms of the ones of the unitary groups.

[12] Quantum groups and subfactors of type B, C, and D, Comm. Math. Phys. 133 (1990): A
classification of all unitary braid representations factoring over the q-Brauer algebra found in
[3] is given. Indices and relative commutants of the resulting subfactors are computed. Here
quantum groups are used for obtaining crucial data about unitarizibility of braid representa-
tions without having to deal with their very complicated representation theory for roots of
unity.

[14] Quantum invariants of 3-manifolds associated with classical simple Lie algebras, Internat. J.
Math. 4 (1993), joint work with Vladimir Turaev. It was shown by Reshetikin and Turaev
that one can define invariants of 3-manifolds in connection with the Lie algebra sl2 and a root
of unity. The work in [3] and [5] is used in this paper to extend their approach to all classical
Lie algebras.

[15] Reconstructing monoidal categories, Adv. Soviet Math., 16, Part 2 joint work with David
Kazhdan: This paper shows that any monoidal semisimple rigid tensor category whose Gro-
thendieck semiring is the one of a special unitary group SU(N) must necessarily be equivalent
to one of N possible twists of the representation category of the quantum group UqslN for
q not a root of unity. This can be considered a generalization of a result by Drinfeld which
says that there is essentially only one possible deformation of the representation category of
SU(N). Similar classification results are also proved for the above mentioned fusion categories
in the UqslN case, for which one can not use deformation techniques.

[17] Braids and invariants of 3-manifolds, Invent. Math. 114 (1993) This paper gives another proof
of the results in [14]. Here the invariants of 3-manifolds are obtained in a limiting process of
certain link invariants.

[19] Semisimple and modular categories from link invariants, Math. Ann. 309 (1997), joint work
with Vladimir Turaev: This gives an elementary construction of modular tensor categories
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associated to orthogonal and symplectic groups. From these categories one obtains a wealth
of topological invariants such as invariants of links and 3-manifolds, representations of mapping
class groups and, more generally, topological quantum field theories.

[20] C∗-tensor categories from quantum groups, J. Amer. Math. Soc. 11 (1998): This paper
shows that certain quotient categories of the representation categoy of Drinfeld-Jimbo quantum
groups at roots of unity (in the followin also referred to as fusion categories), which were
constructed by H.H. Andersen, can be supplied with a C∗ structure for certain good roots
of unity. As a consequence, one obtains for any representation of a semisimple Lie algebra
a sequence of subfactors of the hyperfinite II1 factor whose indices converge to the square
of the dimension of the given representation. Additional invariants, called higher relative
commutants, have also been computed. The Jones subfactors as well as various other examples
of subfactors related to Hecke algebras and q-Brauer algebras appear as special cases of this
general construction.

[21] Integral modular categories and integrality of quantum invariants at roots of unity of prime
order, J. Reine Angew. Math. 505 (1998), joint work with Gregor Masbaum: It is shown
that invariants of 3-manifolds related to classical Lie algebras take values in Z[ξ], where ξ is
the root of unity of prime order for which the invariant is defined. This extended previous
results for the sl2 case. The motivation for this research comes from the so far not very well
understood problem of finding and understanding good interpolations of the invariants when
the parameter is not a root of unity.

[24] Representations of the braid group B3 and of SL(2,Z), Pacific J. Math. 197 (2001), joint
work with Imre Tuba: A complete classification of all irreducible representations of the just
mentioned groups is given up to dimension 5. Essentially, they are uniquely determined by
the eigenvalues of one of the standard braid generators. As applications one obtains generic
dimension formulas for representations of exceptional Lie algebras; moreover, this observation
also proved useful in Wassermann’s studies of fusion for Lie type E8.

[27] q-Centralizer algebras for spin groups J. Algebra 253 (2002) joint work with Rosa Orellana: It
is possible to study centralizer algebras involving a spinor representation in a similar uniform
way as it was done before for the vector representations of classical groups. These algebras are
quotients of the group algebras of braid groups of type B and depend on three parameters.
In order to determine the unitarizability of these braid representations, it is necessary that
a certain important trace functional has positive values on minimal idempotents. The main
result of the paper is the calculation of these values in terms of these three parameters. The
construction of subfactors can now be carried out along the lines of [12].

[29] On tensor categories of Lie type EN , N 6= 9, Adv. Math. 177 (2003): It is well-known
that the decomposition of tensor powers of the vector representations of the special unitary
groups can be studied via the symmetric groups; a similar uniform behaviour is known for the
decomposition of tensor powers of the vector representations of the orthogonal and symplectic
groups, using Brauer’s centralizer algebras. These uniform behaviours also carry over to the
quantum group case. In this paper, it is shown that there exists a similar uniform behaviour for
certain representations of Lie resp Kac-Moody algebras of Lie type EN , N 6= 9. More precisely,
it is shown that there exists a uniform decomposition behaviour for a certain nontrivial part
of the tensor powers called the ‘new part’. Moreover, it is shown that this new part carries
a braid representation which essentially (i.e. up to one additional generator) generates the
commutant of this new part, similarly as it was done before by Hecke algebras (for Lie type
A) and by q-Brauer algebras (for Lie types BCD); in particular, it contains these algebras
as quotients. This also has connections to the exceptional series of Lie algebras conjectured
by Vogel and Deligne, which deals with the adjoint representations of exceptional Lie groups.
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In addition, one obtains a first fundamental theorem for Lie types E6 and E7, as already
mentioned in the general outline.

[30] On tensor categories of type BCD, joint paper with Imre Tuba, Crelle’s Journal, 581 (2005)
Here analogous results to the ones in [15] are proved for braided tensor categories whose
Grothendieck semirings are isomorphic to the one of the representation category of an orthog-
onal or symplectic group. As before, they are essentially classified by a complex number q
which can not be a root of unity except for 1, and two possible twists. Again, the techniques
also apply to the associated fusion categories.

[31] Subfactors from braided C∗ tensor categories In previous papers, Erlijman had constructed
new examples of subfactors from unitary braid representations such as the ones in [5] and
[12]. The subject of this paper is to further generalize the construction to any braided C∗

tensor category. This contains two extreme cases which are comparatively well understood.
In the classical case C = Rep G for a finite group G, this corresponds to the embedding of
g ∈ G 7→ (g, g, ..., g) ∈ Gs, where s > 1. In the other extreme, we have a braided fusion
category for which an important invariant derived from the braiding, called the S-matrix, is
invariant (in the group case, the S-matrix only has rank 1). In the latter case, it is proved
that the principal and dual principal graphs coincide, and can be calculated from the tensor
product rules. In the group case, this is only true for the principal graph, while the dual graph
is different. The dual principal graph is also calculated for other important examples with
non-invertible S-matrix.

[32] Quotients of representation rings Many of the fusion categories can be considered to be quo-
tients of representation categories of Lie groups; in particular, their Grothendieck semirings
can be obtained via a quotient construction from the corresponding ones of Lie groups. In this
paper, we observe that also the classical representation rings of full orthogonal and symplectic
groups can be obtained as quotients of a formal representation category Rep O(∞). This
allows us to calculate restriction coefficients from Gl(N) to O(N) from generic ones via an
explicit quotient map. In particular, this approach can then be extended to similar restric-
tion rules on the level of fusion categories which appear as multiplicities of principal graphs
of certain subfactors. Those subfactors have been constructed in a recent preprint, Fusion
symmetric spaces and subfactors, via another q-deformation of Brauer’s centralizer algebra.
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