Stochastic Processing Networks

Ruth J. Williams
University of California, San Diego
http://www.math.ucsd.edu/~williams
Maurice Belz (1897-1975)
Founding Professor of Statistics, University of Melbourne, 1955-1963
Maurice Belz (1897-1975)
Founding Professor of Statistics, University of Melbourne (1955-1963)

Statistical Methods for the Process Industries (1973)
Stochastic Processing Networks: What, Why and How?

Ruth J. Williams
University of California, San Diego
http://www.math.ucsd.edu/~williams
OUTLINE

- What is a Stochastic Processing Network?
- Applications
- Questions
- A Simple Example
- Approximations
- Perspective
- Two Motivating Examples
- Main Topics for Remaining Lectures
Stochastic Processing Networks (cf. Harrison ‘00)

An activity consumes from certain classes, produces for certain (possibly different) classes, and uses certain servers.
Stochastic Processing Networks

SPN Activities are Very General

- Queueing network
- Flexible servers, alternate routing
- Simultaneous actions
Semiconductor Wafer Fab: P. R. Kumar
Multiclass Queueing Network
Call Center: First Direct (branchless retail banking)
Larreche et al., INSEAD ‘97 (see also Gans, Koole, Mandelbaum ‘93)
Differentiated Service Center
(Parallel server system, alternate routing)
NxN Input Queued Packet Switch: Prabhakar
2x2 Input Queued Packet Switch
Data Network (Roberts and Massoulie, ‘00)
Simultaneous Resource Possession
Stochastic Processing Networks

■ APPLICATIONS
Complex manufacturing, telecommunications, computer systems, service networks

■ FEATURES
Multiclass, service discipline, alternate routing, complex feedback, heavily loaded

■ PERFORMANCE MEASURES
Queue length, workload and server idle time
QUESTIONS

■ STABILITY
■ PERFORMANCE ANALYSIS (when heavily loaded)
■ CONTROL (involves performance analysis for “good” controls)
A SIMPLE EXAMPLE:
SINGLE SERVER QUEUE
M/M/1 Queue

- Poisson arrivals at rate λ (independent of service times)
- i.i.d. exponential service times mean m
- FIFO order of service, infinite buffer
M/M/1 Queue

- Poisson arrivals at rate λ (independent of service times)
- i.i.d. exponential service times mean m
- FIFO order of service, infinite buffer

- Traffic intensity $\rho = \lambda m$
M/M/1 Queue

- Poisson arrivals at rate \(\lambda \) (independent of service times)
- i.i.d. exponential service times mean \(m \)
- FIFO order of service, infinite buffer

- Traffic intensity \(\rho = \lambda m \)
- Queue length is a birth-death process (Markov)
M/M/1 Queue

- Poisson arrivals at rate λ (independent of service times)
- i.i.d. exponential service times mean m
- FIFO order of service, infinite buffer

- Traffic intensity $\rho = \lambda m$
- Queue length is a birth-death process (Markov)
- Positive recurrent (stable) iff $\rho < 1$
M/M/1 Queue

- Poisson arrivals at rate \(\lambda \) (independent of service times)
- i.i.d. exponential service times mean \(m \)
- FIFO order of service, infinite buffer

- Traffic intensity \(\rho = \lambda m \)
- Queue length is a birth-death process (Markov)
- Positive recurrent (stable) iff \(\rho < 1 \)
- Stationary distribution \(\pi_i = \rho^i (1 - \rho), \quad i = 0, 1, 2, \ldots \)
- Mean steady-state queue length \(L = \rho / (1 - \rho) \)
M/M/1 Queue

- Poisson arrivals at rate λ (independent of service times)
- i.i.d. exponential service times mean m
- FIFO order of service, infinite buffer

- Traffic intensity $\rho = \frac{\lambda}{m}$
- Queue length is a birth-death process (Markov)
- Positive recurrent (stable) iff $\rho < 1$
- Stationary distribution $\pi_i = \rho^i (1 - \rho)$, $i = 0, 1, 2, \ldots$
- Mean steady-state queue length $L = \frac{\rho}{1 - \rho} = \frac{\lambda W}{\mu}$
M/GI/1 Queue

\[
\lambda \rightarrow \text{server} \rightarrow m, \sigma_s^2 \rightarrow 1
\]
M/GI/1 Queue

- Mean steady-state queue length

\[L = \rho + \frac{\rho^2 + \lambda^2 \sigma_s^2}{2(1 - \rho)} \]

(Pollaczek-Khintchine)
GI/GI/1 Queue (+mild reg. assumptions)
GI/GI/1 Queue (mild reg. assumptions)

\[(1 - \rho)L \approx \frac{\lambda^2 (\sigma_a^2 + \sigma_s^2)}{2}\] for \(\rho \approx 1\)

(Smith ‘53, Kingman ‘61)
M/M/1 Queue
(Simulation of Dynamics)

\[\lambda = m = 0.9524 \]

\[\rho = \lambda = 0.9524 \]
M/M/1 Queue

(Simulation of Dynamics)

\[\rho = \lambda = 0.9524 \]
M/M/1 Queue
(Simulation of Dynamics)

\[\rho = \lambda = 0.9524 \]
GI/GI/1 Queue (Dynamics)

$Q(t) = \text{queue length at time} \ t$

Start system empty (for simplicity)

Theorem (A. Borovkov ‘67, Iglehart-Whitt ‘70): For $\rho \approx 1$,

$$(1 - \rho)Q(\cdot/(1 - \rho)^2) \approx Q^*(\cdot)$$

where $Q^*(\cdot)$ is a one-dimensional reflecting Brownian motion with drift $-m^{-1}$ and variance parameter $\lambda^3 \sigma_a^2 + m^{-3} \sigma_s^2$
One-dimensional Reflecting Brownian Motion

\[Q^*(t) = X^*(t) + Y^*(t) \]

\[Y^*(t) = \sup\{-X^*(s) : 0 \leq s \leq t\} \]

\[X^* = \text{Brownian motion} \]
Most SPNs cannot be analyzed exactly
Consider approximate models (valid under some scaling limit, e.g., heavily loaded, many sources, many servers, large networks)

Two main classes of approximate models:
- Fluid models (functional law of large numbers)
- Diffusion models (functional central limit theorem)
ANSWERS

(OPEN MULTICLASS HL QUEUEING NETWORKS)

Last 15 years: development of a theory for establishing stability and heavy traffic diffusion approximations for open multiclass queueing networks with non-idling head-of-the-line (HL) service disciplines.

Head-of-the-line: service allocated to a buffer goes to the job at the head-of-the-line (jobs within buffers are in FIFO order).
<table>
<thead>
<tr>
<th>Perspective</th>
<th>MQN</th>
<th>SPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sufficient conditions for stability and diffusion approximations</td>
<td>e.g., parallel server system, packet switch</td>
<td></td>
</tr>
<tr>
<td>Non-HL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.g., LIFO, Processor Sharing (single station, PS: network stability)</td>
<td>e.g., Internet congestion control / bandwidth sharing model</td>
<td></td>
</tr>
</tbody>
</table>
MOTIVATING EXAMPLES

Stability
Performance
Control
Two-Station Priority Queueing Network
(Rybko-Stolyar ‘92)
Two-Station Priority Queueing Network
(Rybko-Stolyar ‘92)

- Poisson arrivals at rate λ to buffers 1 and 3
- Exponential service times: m_i mean rate of service for buffer i
- Preemptive resume priority: * denotes high priority classes
Two-Station Priority Queueing Network
(Rybko-Stolyar ‘92)

• Poisson arrivals at rate 1 to buffers 1 and 3
• Exponential service times: \(m_i \) mean rate of service for buffer \(i \)
• Preemptive resume priority: * denotes high priority classes
• Simulation: \(m_1 = m_3 = 0.33, \ m_2 = m_4 = 0.66 \)
• Traffic intensities: \(\rho_1 = m_1 + m_4 = 0.99 \quad \rho_2 = m_2 + m_3 = 0.99 \)
Two-Station Priority Queueing Network
(Rybko-Stolyar ‘92)

--- Server 1 (sum of queues 1 & 4) --- Server 2 (sum of queues 2 & 3)
Parallel Server System

\[\lambda_1 = 0.05, \lambda_2 = 1.2, \lambda_3 = 0.35 \]

\[m_1 = 0.5, m_2 = 1, m_3 = 1, m_4 = 2 \]
Parallel Server System

Simulation with static priority discipline:
server 1 gives priority to buffer 1, server 2 gives priority to buffer 2

Queue lengths for buffer 1 ---, buffer 2 ---, buffer 3 --- versus time
Parallel Server System

Simulation with dynamic priority discipline:
server 1 gives priority to buffer 1, server 2 gives priority to buffer 2, except when queue 2 goes below threshold of size 10

Queuelengths for buffer 1 ---, buffer 2 ---, buffer 3 --- versus time
MAIN TOPICS FOR REMAINING LECTURES

- Open Multiclass HL Queueing Networks: Stability and Performance

- Control of Stochastic Processing Networks: Some Theory and Examples