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Chapter 3

SOME CONNECTIONS BETWEEN
BROWNIAN MOTION AND ANALYSIS
VIA STOCHASTIC CALCULUS-

R. J. Williams'!
Department of Mathematics
University of California, San Diego

ABSTRACT

In this paper, some connections between the fundamental stochastic process
Brownian motion and the mathematical subject of analysis are made using
stochastic calculus. This calculus which was introduced by K. Itd enables
one to compute with functions of Brownian motion. A distinctive feature of
stochastic calculus is that the change of variables formula is different from that
in ordinary Newton calculus because the sample paths of Brownian motion are
of unbounded variation. In this note, some basic aspects of stochastic calenlus
are explained first. Then this calculus is used as a tool to make connections
between Brownian motion and the following problems in analysis: the classi-
cal Dirichlet problem, the Schridinger equation, and Laplace’s equation with
oblique derivative boundary conditions in a quadrant. The latter is relevant to
the study of approximations to two station queueing systems in heavy traffic.
References to some of the muititude of other properties and applications of
Brownian motion are included at the end of this paper.

1. INTRODUCTION

Brownian motion in R (d > 1) is a fundamental stochastic process because
it lies at the intersection of many different topics in probability, analysis, and
applied stochastics. In particular, if B = {B(t), t > 0} is a Brownian mo-
tion in R? that starts from the origin, then (i) B is a limit of renormalized
simple symmetric random walks, (ii) B has the self-similarity property that

it is equal in distribution to {)\"%B(/\t), t > 0} for any A > 0, (iii} B has

*Part of the material discussed in this article was presented in an MAA Invited Lecture
at the Annual Joint Mathematics Meeting held in Phoenix, Arizona, in January 1939,

"This article was written while the author was visiting the Technion, Israel, and was
supported in part by an Alfred P. Sloan Fellowship.
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76 Topics in Contemporary Probability and Its Applications

independent components, stationary independent increments, and continuous
sample paths, (iv) B is a Gaussian process, (v} B is a martingale with respect
to its own filtration, (vi) any bounded harmonic function of B yields a martin-
gale, (vii) B is a time-homogeneous Markov process with transition probability
densities that satisfy the heat equation, and (viii) B plays the role of the key
source of randomness in many models arising in applications in the physical,
biological and social sciences.

This note focuses on some connections between Brownian motion and anal-
ysis, for which property (vi) above is a prototype. Some of the examples pre-
sented here are motivated by problems arising in applications. A key tool in
the discussion that follows is a stochastic calculus that enables one to com-
pute with functions of Brownian motion. A feature of this calculus is that the
change of variables formula is different from the one in ordinary Newton calcu-
lus, because the sample paths of Brownian motion are of unbounded variation.
Before the rudimentary aspects of stochastic calculus are described, the reader
is reminded of some aspects of ordinary Riemann-Stieltjes integration. There
is no need to consider Lebesgue-Stieltjes integrals because all of the processes
considered here have continuous sample paths.

Let f,g: R4 — R be continuous functions, and suppose that g is also
locally of bounded variation, i.e., g is of bounded variation on each compact
interval in R. Under the rules of ordinary Riemann-Stieltjes integration, one
can define

g

ff(S)dg(S) lim S0 fEN @) - g, (1)

Pt tr_ €mn _
where for each n, 7, = {to,t" .,t*} is a partition of [0,2] such that 0 =
Rt <-—- <t = 1" € [t t?,,] for each i € {0,1,...,n —~ 1}, and
l7n| = max|t, ') —t# — 0 as n — oo. Furthermore, by requiring that the
followmg mtegratlon by parts formula hold,

t t
1©90) - 1(0)90) = [ f(s)da(s) + [ a1t (s), (2

one can define [f g(s)df(s), because all of the other entities in (2) are well
defined. Note that f need not be of bounded variation. However, if neither f
nor g is locally of bounded variation, then in general one cannot make sense
of the deterministic integral ff f(s)dg(s). Finally, if g is locally of bounded
variation and F : R — R is a continuously differentiable function, then one
has the change of variables formula

Flg(t)) = Flg(o) + [ F(g(s))dgls). 3

Now, consider a Brownian motion B in R. Since the sample paths of B
are continuous, for a given sample path of B, one can take f(s} = B(s) for




Brownian Motion and Analysis 77

s > 0 in the above, i.e., for a given w one can consider f(s) = B(s,w). Then
one can use the above to define fj g(s)dB(s) for any continuous function g
that is locally of bounded variation. Indeed, g can even be a sample path
of a stochastic process having these properties sample path by sample path.
However, one cannot use this procedure to define even such simple integrals as
fot B(s)dB(s), because the sample paths of Brownian motion are not locally of
bounded variation. Indeed, they are only locally of finite quadratic variation,
i.e., for each t € Ry and sequence {m,,n = 1,2,...} of partitions of [0,t] as
described before,

(Ble=lim Y (B(th) - B’ (4)
t;‘,t:‘HE'rrn

exists as a non-trivial limit in probability. Indeed, by a bare-hands calculation
one can show that [B]; = t. For many practical purposes one would like to be
able to define integrals of the form [{ f(B(s))dB(s) for continuous functions f :
IR. — R. In particular, such integrals play an essential role in the development
of a change of variables formula for sufficiently differentiable functions of B.
With regard to this, note that by use of a telescoping series,

(B@)? =(BO) + Y, 2BENBEY,)-BE) 7

747 €T

+ Y (B - B (5)

7 27 €M

where by (4) the last sum on the right tends to t in probability as n —
oo. Thus, if one defines f; B(s)dB(s) to equal the limit in probability of
> B({PHB(t,) — B(t})) as n — 0o, then one obtains from (5) that

i 1€
(B = (B +2 [ B)dB(s)+. ©)

This suggests that a change of variables formula for B does not have the
same form as (3) in general, due to an extra contribution from the quadratic -
variation of B. In fact, one can make sense of integrals such as fc'f B(s)dB(s)
as limits in probability of approximating sums of the form indicated above,
and there is a change of variables formula for twice continuously differentiable
functions of B. Since the examples that follow involve d-dimensional Brownian
motions with various starting points and sometimes additional processes with
sample paths that are locally of bounded variation, stochastic integrals and
the associated change of variables formula are described below in sufficient
generality to accommodate these examples. First, a definition of d-dimensional
Brownian motion (or equivalently, Brownian motion in RY) is given.
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A d-dimensional Brownian motion that starts from the origin is a stochas-
tic process B = {B(t) : t > 0} with continuous sample paths and inde-
pendent components By, ..., By, such that for each j € {1,...,d}, Bjisa
one-dimensional Brownian motion characterized by (i)—(iii) below:

(iYforany 0 =1tp <t; <...<tg<o00, {B;(te) —Bi{(tk—1), k=1,...,¢}
are independent random variables,

(i4) for any 0 < s < t < 00, Bj(t) — Bj(s) is a normally distributed
random variable with mean zero and variance ¢t — s,

(iii) B;(0) = 0.

A d-dimensional Brownian motion that starts from z € R? is obtained by
replacing (iii) by (iii'): B;(0) = z;, the jth component of z. In the sequel, B
denotes a d-dimensional Brownian motion starting from some z € IR%, defined
on a complete probability space (0, F, P;). Expectations with respect to P,
are denoted by E;. For each t > 0, F; = o{B(s) : 0 < s < t}, the o-field
generated by B up to time ¢t and augmented (denoted by the tilde) by the -
Pr-mull sets in F. Then, {B(t}, F:, t = 0} is a martingale [see (i)—(iii) below
for a definition]. Let m be a non-negative integer and let ¥ = {Y(¢),¢ > 0}
be an m-dimensional stochastic process defined on (Q, F, P, ), such that ¥ has
continuous sample paths and for each ¢, Y (¢) is measurable with respect to 7,
i.e., Y(t) is measurable as a function from (Q, F;) into (R™, B™) where B™
denotes the family of Borel sets in IR™. When referring to the latter property,
one says that Y is adapted to {F; : t > 0}. It is further assumed that the
sample paths of ¥ are locally of bounded variation. Let f : R? x R™ — R?
be a continuous function. Then for each t € R,

M@ = [ 1B, Y() - B
d

= dm > T HBE).YENBHR) - B ()

7=1 t?,t?+16ﬂ’n
can be shown to exist as a limit in probability, where {m,,7 = 1,2,...} is a
sequence of partitions of [0,?] as described before. Moreover, M can be taken
to have continuous sample paths and if f is bounded, then {M(t), F, t > 0}

is a martingale, i.e.,

(i) M(t) is Fi-measurable for each ¢ > 0,
(11) Ex{|M(t)l] < oc for each ¢t > 0,
(131) EL[M ()| Fs] = M(s) forall 0 < s <t < o0,

where E.[ - | 7,] denotes conditional expectation given F;. In particular,
E[M(t)] = Ex[M{0)] = 0 for all t > 0. In order to obtain the martingale
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property for M (which is inherited from that of B), it is important that one
use f;(B,Y) evaluated at the left end-point of the intervals [t7, ] in the
approximating sums of (7). Using other points in the interval can yvield a
different (non-martingale) value for the integral. This is in marked contrast
to the situation for Riemann-Stieltjes integrals. Now, if F: R x R™ — R is
such that F' = F(b,y) is twice continuously differentiable in b € R? and once
continuously differentiable in ¥ € R™, then it can be shown that Pr-as. for
allt >0,

F(B(®),Y(t})) = F(B(0),Y(0)) + [3 VsF(B(s), Y(s)) - dB(s)
+Jo VyF(B(s),Y(s)) - dY (s) + L i D F(B(s), Y(s))ds,  (8)

where V, F' denotes the gradient of F' with respect to its first d arguments, V, F
denotes the gradient of F with respect to its last m arguments, Ay F denotes
the d-dimensional Laplacian of F with respect to its first d arguments, and
the first integral in (8) is defined as a limit in probability as per (7), and the
second integral is a sum of m Riemann-Stieltjes integrals defined path-by-path
with respect to the locally bounded variation sample paths of ¥7,..., ¥y, ie.,

£ ™ t 6F
/ V(B V() aY(s) = 3 / 5 (B(5), Y (£)dYi(s).

The last integral in (8) is defined path-by-path as an ordinary Riemann inte-
gral. Formula (8) is a version of Itd’s change of variables formula in stochastic
calculus. Note that this differs from the formula in ordinary Newton calculus
by the addition of the last term in (8) that arises because the paths of Brow-
nian motion are locally of finite quadratic variation rather than being locally
of bounded variation. If d = 1 and m = 0 then (8) simplifies to

t 1 t
F(B(t)) = F(B(0)) + /0 F/(B(s))dB(s) + fo F"(B(s))ds,  (9)

and in particular, if F(b) = b2 then one recovers (6). For a justification of (7)
and (8) the reader is referred to [4]. Here the use of (8) will be illustrated with
some examples. The first of these is a classical application to the Dirichlet
problem.

2. DIRICHLET PROBLEM

Let D be a bounded domain in R? with boundary 8D. Let f be a continuous
real-valued function defined on 8D. Consider solutions % C*D)NC(D) of
the Dirichlet problem:

Au=0 in D, (10)

u=f on dD. (11)
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Here C?(D) denotes the set of real-valued functions that are defined and twice
continuously differentiable on D. The set of real-valued functions that are
defined and continuous on the closure D of D is denoted by C(D). Physically,
a solution of this Dirichlet problem yields the equilibrium temperature distri-
bution in the region D when the temperature at the boundary of the region
has a fixed distribution determined by the function f. It is well known that
in order to solve this Dirichlet problem in general, one must impose a regular-
ity condition on the boundary. Here a probabilistic definition of regularity is
given, which is equivalent to the usual analytic one.

Definition. Let 7p = inf{t > 0: B(t) ¢ D}. A point z € 8D is regular if

The boundary, 8D, is said to be regular if every point x € 8D is regular.

Thus, a point 2 € D is regular if and only if Brownian motion started at x
hits D¢ = R¥\ D immediately after time zero, with probability one. There are
examples of domains with boundary points that are not regular, Lebesgue’s
thorn being a classical example in three dimensions. The reader is referred to
[5, p. 248] or [9, Section 7.10] for more details on this and on necessary and
sufficient conditions for regularity of boundary points.

Theorem. Suppose 3D is regular. The following are equivalent.

(1) u € C*(D) N C(D) satisfies (10) and (11).
(i) u(z) = E. [f(B(rp))] for all z € D.

Proof. 1t&’s formula (8) will be used to prove that (i) implies (ii). That is, it
will be used to give a probabilistic representation for solutions of the Dirich-
let problem. Indeed, such probabilistic representations provide a convenient
means for establishing uniqueness of solutions of partial differential equations.
Given a function u satisfying (i), the representation (ii) actually holds for
xz € D without the assumption that 9D is regular, as can be seen from the
proof below. The converse, (i) implies (i), requires more knowledge of the
behavior of Brownian motion than is assumed here. A proof can be found, for
instance, in [1, Chapter 4.

Let {Dn}%2, be a sequence of subdomains of D such that D, C Dpy1 € D
for all n and | D, = D. Fix x € D and let n be sufficiently large that x € Dp.

n
Since u € C2(D) and D, is compact, % can be extended off Dy to a function
Un € C?(]Rd), the space of twice continuously differentiable functions that
together with their first and second partial derivatives are bounded on RY.
Applying (8) with m = 0 and F = up, one obtains Pr-a.s. for all ¢ = 0

t t
un( B(t)) = un(B(0)) + /0 vun(B(s))-dB(sHé /O Aun(B(s)ds.  (12)
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The stochastic integral with respect to dB defines a martingale since Vuy,
is continuous and bounded on IR%. By truncating time at tp, = inf{s > 0:
B(s) ¢ Dy}, t and u,, can be replaced by tArp, and u respectively in (12). By
Doob’s optional stopping theorem [1, p. 30], {fOtMD“ Vu(B(s))-dB(s), F;, t =
0} is a martingale and hence has zero expectation under P,. Also, Ay = 0
on Dy, so the last integral in (12) with ¢ A 7p,_, in place of ¢ is 0. Hence, after
replacing t by t A 7p, in (12) and taking expectations there, one obtains

E; [uw(B(t A7p,))] = u(z). (13)
Since D is bounded, by the properties of Brownian motion (cf. [4, Ex. 12, p.
116}),

Py(tp < 00) =1, (14)
which implies that Pr(rp, < oc) = 1 for each n. Thus, by bounded conver-
gence and the continuity of u, one can let ¢ — oo in (13) to obtain

Bz [w(B(rp,))] = u(z). (15)

Now since Df, | D and z € D, 7D, 1 7D Pr-a.s., and so by bounded conver-
gence and the contimiity of u on D, on letting n — oo in (15) one obtains

E. [uw(B(tp))] = u(z) for all = & D. (16)

Since u = f on 9D, it follows that (ii) holds for z in D.
If z € 6D, then by the regularity of 8D, rp = 0 P,-a.s., and then

Er [f(B(rp))] = f(z) =w(z). o

3. SCHRODINGER EQUATION

Let D be a bounded domain in R with regular boundary, let ¢ be a bounded,
continuous (if d = 1) or Holder continuous (if d > 2), real-valued function
defined on D, and let f be a continuous real-valued function defined on the
boundary 3D of D. Define rp as in the previous section. For notational
convenience, extend g to be zero off D. For each ¢t > 0, define

eult) = exp ( [ (B(s))ds). (7)

This e4(-) is called the Feynman-Kac functional associated with ¢. 1t is a
continuous one-dimensional process adapted to {#:} and its sample paths are
locally of bounded variation. Consider solutions u € C%(D) N C(D) of the
reduced Schridinger equation:
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%Au +gu=0 in D, (18)

u=f ondD. (19)

If ¢ is non-positive, there is a simple representation for such solutions. This
extends to positive ¢’s, or ¢'s which change sign, provided a certain integral
{(or gauge) condition (20) is satisfied.

Theorem. Suppose
w(x) = Ezleq(tp)] < oo for some z € D. (20)

The following are equivalent.

(1) u € C*(D) N C(D) satisfies (18) and (19).
(i1) u(z) = Ex [ f(B(rp))eq(tp)| for all x € D.

Proof. It is shown below that (i) implies (ii). The converse is more delicate,
and in particular uses the assumption of continuity/Holder continuity of ¢ (see
Chung (1, §4.7]).

Suppose (i) holds. Let {D,}2,, {rp,}3%, be as in the previous section.
Fix ¢ € D and let n be sufficiently large that £ € D,. As in Section 2,
extend u off D, to a function u, € CZ(R%. Then by applying (8) with
m =1, F(by) = un(b)y and Y = e,, and then truncating time at 7p_, one
obtains Pr-a.s. forallt > 0,

u(B(t ATD,) ex(tATp,) ~w(BO) = | T () Vu(B(s)) - dB(s)
s [T @B ea(s)ds

+ / T Au(B(s))eq(s)ds. (21)
1]

1
2
Since u satisfies (18) and B(-A7p,) € Dy C D P-a.s., the sum of the last two
integrals is zero. Now, e, Vun(B) is bounded on each compact time interval. It
can be shown from this that { [f eq(s)Vun(B(s))-dB(s), Ft,t > 0} is a martin-
gale, and hence by Doob’s optional stopping theorem, { féMD " eq(8)Vu(B(s))-
dB(s), Fi,t > 0} is a martingale which has zero expectation. Thus taking
expectations in (21) yields

E; [u(B{t ATp,))eq(t ATp)] = u(z). (22)

Recall from Section 2 that 7p < 0o Pr-a.s. It has been shown by Chung and
Rao [2] (see also [4, §6.4]) that under condition (20), {u(B(tATp, ))e(tATD, ) :
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t > 0, n > 0} is uniformly integrable under F, and so, by combining this with
the continuity of u on D, one can pass to the limit as t — oo and thenn — oo
in (22) to obtain

E, [u(B(rp)leq(tp)] = u{z) for all x e D.

Since v = f on &D, this again reduces to (ii) for x € D. If x € 9D, the
regularity of O gives the representation there. o

The function ¢ defined in (20) is known as the Feynman-Kac gauge. The
following gives some equivalent conditions for finiteness of this gauge. For
a proof, see {3]. (For d = 1, q is assumed to be Holder continuous in [3].
However, scrutiny of the proof reveals that in this one-dimensional case the
result still holds if ¢ is simply bounded and continuous on D.)

Proposition. The following conditions are equivalent.

(i) p(x) < o¢ for some x € D. )

(1) There is a solution u € C2(DYNC(D) of (18)-(19) satisfying v > 0 on
D.

(i12) There is no A > 0 such that the eigen-problem

IDu+qu =M in D
w =0 ondD o

has a non-trivial solution w € C*(D)NC(D).

Remark. If ¢ < 0, then (i) is easily seen to hold and hence the Proposition
vields that (ii)-(iii) hold, which is a well known fact in analysis. The case
¢ = 0 corresponds to the Dirichlet problem treated in Section 2.

4. REFLECTED BROWNIAN MOTION IN A QUADRANT

In this section, a process which is a functional of Brownian motion and that
arises as an approximation to the queue-length process in a simple queueing
network model will be considered. The queueing model is described first.

Consider two single-server queues in parallel (see Figure 1}. The two ar-
rival processes for these queues are assumed to be renewal processes that are
independent of one another. The service times for a given server are assumed
to form a sequence of independent, identically distributed random variables.
The two sequences tor the two servers are assumed to be independent of one
another and of the arrival processes. The arrival rates are assumed to be equal
and so are the service rates. Each server has an infinite waiting room. If the
first server is ever idle, customers are transferred from the queue of the second
server to that of the first server.

As it stands, in this generality, the queueing model cannot be analyzed
exactly. However, with very general assumptions on the interarrival time and
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service time distributions and service disciplines, under conditions of heavy
traffic (mean interarrival times roughly equal to mean service times), one can
approximate the two-dimensional queue length process for this pair of queues
by a diffusion process that lives in the positive quadrant of R? [11]. This dif-
fusion behaves like Brownian motion in the interior of the quadrant, and it is
confined to the quadrant by instantaneous “pushing” at the boundary, where
the direction of push is constant on a given side and these directions are il-
lustrated in Figure 2. For historical reasons the directions of push are called
directions of reflection, although one should not think of the construction as
by a mirror reflection, but rather by “deflection” or “pushing” at the bound-
ary in the prescribed directions. The directions of reflection have a natural
interpretation in terms of the original queueing model. Namely, the normal
reflection on the horizontal boundary corresponds to the enforcement of the
non-negativity constraint on the contents of queue 2, whereas the 45° down-
ward reflection on the vertical boundary corresponds to the enforcement of the
non-negativity constraint on queue 1 as well as the fact that, when server 1
has no customers from his queue to serve, he can serve customers from queue
2, causing a corresponding decrement in the contents of queue 2.

FIGURE 1.

In fact, there is an explicit representation for the diffusion process described
above. Let B be a two-dimensional Brownian motion starting from some point
x in the positive quadrant }Ri. Define for each ¢t > 0,

Yi(t) = (— min Bi(s))"

0<s<t

Zi(t) = Bi(t)+ Y1)
N
Vlt) — (— min (Bg(s)—yl(s)))

0<Ls<t
Za(t) = Ba(t) —Yi(t) + Ya(1),
where gyt = max(y,0) for y € R. Then 7 = [?} is a reflected Brownian
2

motion in ]R.?F that starts from x and has directions of reflection as indicated in
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Figure 2. Indeed, Y3, Y2 may be characterized as the unique pair of continuous,
non-decreasing processes stuch that

(3} Z(t) = B(t) + mY1(t) + voYa(t) € R2 for all ¢t > 0, and
(i1) Y;(0) = 0, Y; can increase only when Z; is zero, i = 1, 2,

where v; = (), v2 = (}) are the directions of reflection (normalized to have
inward normal component of length one) shown in Figure 2.

22

A

Yﬁlso

2

Z]

- Lt

FIGURE 2.

One of the questions of interest for the process Z is whether it ever reaches
the origin starting from x # 0. The following function, together with It&’s
formula, allows us to answer this question in a precise manner. Let (r, 8) be
polar coordinates in R2 with > 0 and 8 € [0, §]. Let

u(r,d) = r7 cos (%9) . (23)

Then u is the real part of the complex function z3 and consequently is har-
monic in RZ\{0}. Moreover, for r > 0,
=0

1 ou = lr_%sin(ll?)
a=0 2 2 =0 .

r 80
oz = % (r‘% sin (%6‘) — r‘% Ccos (-;—9))

Interpreting these equations in Cartesian coordinates yields

and

= 0.
0:%

(_22“_ _ @)

vy -Vu=0 on {zeRi\{0}: z =0}, (24)
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vi-Vu=0 on {ze€R2 T\ {0} : z1 =0} (25)

Suppose z € IR2\{0} and fix ¢, R such that 0 < € < u{(z) < R < oo. Let
Der = {z € R? : € < u(z) < R}. Then one can extend u off D¢g to a function
%@ € C#(R?). By applying [té’s formula (8) with F : R? x R? — IR given by
F(b,y} = (b + viyn + voye) for b € R?, y € IR?, one obtains Pr-a.s. for all
£>0,

AZW) = @(2(0) + ]OtVﬁ(Z(s))-dB(s)
2
+ 3 JACRLIONAA0

+ % /O " Au(Z(s))ds. (26)

The stochastic integral with respect to dB defines a martingale since Vi is
continuous and bounded on R?. By truncating time at 7.g = inf{t > 0 :
u{Z(t)) < € or u(Z(t)) > R}, and noting that Au = 0 in D.g, one obtains
Py-as. forall £ >0,

wW(Z(t ATeR)) = u(z) + / TR u(Z(s)) - dB(s)

EATeR

v Z f (o VU)(2(s))dYi(s), (27

where by Doob’s optional stopping theorem the first integral defines a martin-
gale, which has zero expectation. Moreover, since Y; can increase only when
Z;=0,and v; - Vu =0 on {z € R2\{0} : z; = 0}, the integrals in the last
term of (27) are zero. Thus, taking expectations in (27) yields

Ey [u(Z(t ATer))] = ulx). (28)
Now, one would like to let t — co in (28). For this, the following is needed.
Proposition. For each K > 0,

Prlog < o0) =1,

where o = inf{t > 0:|Z(t)| = K}.
Proof. From (i), for v = (}),

v - Z(t) =uv-B(t)+ Ya2(t) > v-B(t) forallt>0, (29)

since Ya(t) > 0. Now, v - B is equal in distribution to /2 times a one-
dimensional Brownian motion and consequently
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P:(limsup v - B(t) = +x) = 1,
t—o0
and hence by (29),
P (limsup v - Z(t) = +o0) = 1.
t-—soco
Since v - Z < 2|Z], the Proposition follows. o
Now, u(z) > [zléc where ¢ = infggjo, 1 cos(%ﬁ) > 0, and so it follows from
the above Proposition that
Pr{ter < 00) = 1. (30)

Hence, since u is bounded on D.g, one can let ¢t — oo in (28) to obtain by
bounded convergence that

E: [u(Z(rer))| = u(z). (31)

By observing the values of u at Z(.g), one concludes from (31) that

€Pp(re < 7R) + RP(rp < Te) = u(x), (32)

where 7. = inf{¢t > 0 : u(Z(t)) = r}. Since Ppo(tr < 7) =1 — P(1e < Tg) by
(30), one can rearrange (32) to obtain

Lo

R —u(x)
PI(TG < TR) = _—E——:—E——
On letting ¢ | 0 one obtains
u(z)

PZ-(T() < TR) =1~ T

Finally, letting R — oo yields

Thus, the reflected Brownian motion Z hits the origin P.-a.s. starting from
any = € R3\{0}.

Reflected Brownian motions in two-dimensional polygons and in three
and higher dimensional polyhedrons, with constant oblique reflection on each
boundary face, arise as approximations to other queueing network models un-
der conditions of heavy traffic. For more discussion of such processes, the
interested reader is referred to [6, 7, 8, 11, 12, 13].

Bibliographical note. The reader interested in pursuing more details and
applications of stochastic calculus is referred to the books [4, 5], and for further
details on many aspects of Brownian motion, see [1, 9, 10].
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