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PREFACE

This velume is the cndproduct of a Symposium titled Probability Towards 2000
held at Columbia University, New York from October 2-6, 1995. 'The Sympostum was
generousty sponsored by the Istituto defl’Enciclopedia Italiano in Rome and organized
in New York through the cooperation of the Centro Vito Volterra, University of Rome,
Tor Vergata, the Italian Academy for Advanced Study in America at Columbia and
the Center for Applied Probability at Colunbia.

A key objective of the Symposium was to obtain a broad view of probability and
where the subject is heading. This matter was addressed both through 34 talks and
at o round table discussion on the last afternoon, at which it was decided 1o produce
this velume of perspectives. The intention is to chart a course ahead for probability
and versions of selected conference talks plus some additional commissioned material
are included.

To elucidate the perspective of the Symposium and this volume, the Manifesto of
the Symposium, written by L. Accardi, and an Opening Address to the Symposium
by J.L. Teugels, then President of the Bernoulli Society for Mathematical Statistics
and Probability are included in the Preface.

GOAL OF THE SYMPOSIUM: MANIFESTO

Luigi ACCARDI

The fact that nov:days there exists no scientific field, from biology to economics,
from physics to social seicnees, from medicine to complexity theory, from meteorology
to decision theory,... in which probability theoty does not pla;r a major role, should
not let one forget that only the period between the two world wars marks the definitive
entrance of probability theory among the fundamental mathematical disciplines such
as geometry, analysis, algebra, ... In these years P. Lévy, AN. Kolmogorov and
N. Wiener opened the way to the establishment of strong connections of probability
theory with several branches of ¢lassical mathematics: combinatorial theory, classical

analysis, in particular measure theory, elliptic and parabolic equations, potential
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SOME RECENT DEVELOPMENTS FOR QUEUEING NETWORK
5

R. J. WILLIAMS,* University of Californie, San Diego

1. Introduction
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0 the beha networks in he:.ivy traffic. The aim of this paper is to describe
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concrete sctting (a} how stability is quantified, and (b) the form of the heavy traffic
approximatkm. Tn section 3, a brief synopsis of heavy traffic limit theory for single
class and some mmulticlass queueing networks is given. One may cxtrapolate from this,
as was done in [22, 24, 25, 31], to conjecture a gencral form for the heavy traffic limit of
a wide variety of multictass networks. In section 4, an example similar to one given by
Dai and Wang (16] flustrates that carc is required with such an extrapolation, in the
sense that not all multiclass queucing networks have a heavy traffic approximation of
the form conjectured in (22, 24, 25, 31]. A variety of explanations might be proposed
for the failure of the approximation in this case. Two possible explanations that
might be proposed are (a) the example is not stable, i.e., one has the wrong notion
of heavy traffic, or (b) the example may satisfy a different kind of limit theorem than
the “conventional” one proposed in {22, 24, 25, 311, Indeed, contemporaneous work
on stability of multiclass networks (see eg., [42, 44, 53, 4, 4, 55]), illustrates that
the problem of determining conditions for the stability of multiclass petworks with
feedback is morc complex than previously supposed. Furthermore, work of Harrison
and Williams [32] (see also section 4 of [65]), shows that not all multiclags networks
with feedback have conventional heavy traffic behavior. The paper concludes with a
final sectlon on open problems.

2. A Single Class Tandem Queue

Consider the tandem queueing network pictured in Fig. 1 under the following as-
sumptions. Customers {or jobs) arrive at station 1 from outside the system according
to a renewal process where the i.i.d. interarrival times are assumed to have positive
finite mean 1/a and finite variance o? (o is thus the (long Tun average) external
arrival rate). There is a single server al each of the two stations and the service
times at station @ are assumed to be 1i.d. with positive finite mean m; and variance
of, for i =1,2. The sequences of interarrival and service times are assumed to be
mutually independent. Customers are served on a first-in-first-out (FIFO) basis at
each station. After receiving service at station 1, a customer goes next to station
9. Upon completing service there, with probability p € {0,1), the customer is routed
back to join the end of the quene at station 1, and with probability 1—p the customer
exits the system. Such a tandem queue might be used to model a simple processing
facility where a completed job requires total rework with probability p.

Congestion is measured through the behavior of the two-dimensional queue length
process Q) = (@1(-},Q2(+}), where for i =1,2, Q:{t) is the number of customers
at station i (waiting and being served) at time t. With the general distributional
assumptions described above, this system cannot be analyzed exactly. However, when
it is stable, but heavily loaded, one can approximate a normalized version of the queue
length process by a reflecting Brownian motion living in the positive two-dimensional
quadrant.

"To describe this approximation, the frst question that arises is what does “stable
and heavily loaded” mean? Ilere it will be taken to mean that the system s stable
and near the boundary between stability and instability, where “stable” means that
the mean queue lengths are bounded for all time. Stability can be quantified in terms
of the station level traffic intensity parameters pi, i = 1,2, defined as follows. Let A

R
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{1 ma 1-p

Figure 1. A Single Class FIFO Tandem Queue with Feedback

be the unique solution of the traffic equation

(1) A=a+pA
The traffic intensity parameters are defined by

(2) pi = Amg, i=12
The system is stable if and only if

3) oi <1, fori=12,

(see e.g., [47]). Assuming this helds, one can interpret A as the long run average rate
at which customers visit stations 1 and 2 (it is the same for each station because of
the tandem structure of the network). Then the flow balance equation (1) is a natural
consistency condition. Also, the traffic intensity parameter p; can be interpreted as
the long run average rate at which work {measured in units of required service time)
arrives at station £, 1 =1,2.

A heavy traffic limit theorem for this system may be described as follows. Consider
a sequence of systems indexed by n (with associated parameters and processes having
a superscript of (n)), all with the same common structure as described above except
that the exogenous arrival rate af™ for the n'* system tends to a value & in such a
way that the traffic intensity vector p{™ = (p&"), pV) for the nt* system tends to the
vector (1,1) in the following manner:

(4) VAl 1) e as n-r oo,

where ¢; is a finite negative constant for ¢ = 1, 2. (The uegativity of the ¢; guarantees
that the heavy traffic lmit will be positive recurrent [29].) Normalize the two-
dimensional queue length process QU for the n‘® system using a central limit theorem
{or diffusion) type of scaling: ‘

Q™in - )

(8) QM- )= —
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Figure 2. State Space and Directions of Reflection for Z

"The process (™ takes values in the space of two-dimensional r.c.l.l. {right continuous
with finite left limits} paths defined on {0, 00}, When this space is endowed with the
usual Skorokhod Jy-topalogy [56, 20, '™ converges in distribution as n -~ oo to
a reflecting Brownian motion Z that lives in the positive quadrant and which has a

semimartingale decomposition of the form
(6) Z =X+ RY,

where X is a two-dimensional Brownian motion with constant diift ¢ and non-
degenerate covariance matrix

3

(7 po [ a%0h + ol +pum(l — p+ppdod) —(uiod +ppdch) ]
 —(et +puded) i} + o

for pi = 1/my, 1 =1,2,

(8) R:[—ll _1p]

is called the reflection matrix, and Y is a two-dimensional ¢ontinuous non-decreasing
process that starts from the origin and is such that Y; can increase only when Z; is
zero (in fact, m.¥; is the limit in distribution of the normalized cumulative idletime
process for station i, where the normalization is the same central limit theorem type
of scaling (5) used for the queue length processes).

Informally, the behavior of the reflecting Brownian motion Z may be described
as follows. In the interior of the quadrant, Z behaves like the Brownian motion X.
The erratic movements of this Brownian motion are the limit of the up and down
movements of the queue length processes corresponding to arrivals and departures,
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respectively. The process Z is confined to the quadrant by “pushing” at the boungd
in the fixed dircctions shown in Fig. 2. These directions of control are givey |
the columns of the matrix R and for historical reasons stemming from the One.
dimensional case are called directions of “reflection”, thongh one should not thinl
of constructing the process by anty kind of mirrer reflection. These directionsg may
be loosely interpreted as follows. Consider the case where 21 = 0. This correspondg
to the first queuc being empty. Imagine that when the queueing network is ip thig
situation, the server at quene 1 continues working even though there are no Customerg
to serve. The server thereby generates “potential” services. To prevent Q; from
becoming negative (due to the completion of such a service), cach potential Bervice
performed by server I necds to be corrected by a unit step in the positive 1 direction
to keep @ zero. This lost potential service also has an cffect on the second queue ip ;
the sense that there is “lost polential Aow™ to the second queue. Accordingly, for each
corrective unit step in the positive ¢, direction, there is a corresponding downward
unit step in the @, direction. Tn the heavy traffic limit, this behavior translates tg
instantaneous pushing at the boundary Z; = 0 in the direction (1,~1) indicated in
Fig. 2. In an analogous manner, on the boundary Zy = 0 one has pushing in the

direction {~p,1). The term ~p comes from the lost

potential flow from queue 2 back
to quene 1. '

The limit result cited above is justified by the heavy traffic theorem of Reiman [30]-
Besides varying the arrival rate as n — 00, one can also allow suitable variations '
in the initial queue lengths, service rates, arrival and service time variances, and
the routing probability p. The reader is refered to 150) for such refinements. Exis-
tence and uniqueness of the limiting diffusion process Z follows from a path-by-path
construction due to Harrison and Reiman [27).

This tandem quene is a single class network in the sense that at each station there is
Just one class of customer, i.e., the customers are indistinguishable from one another.
Although the result of Reiman [50] was cited 1o Justify the approximation in this
two-station case, his result applies to a general d-statian (d > 1) single class FIFO
network. Similarly, the existence and uniqueness theorem of Harrison and Reiman
[27) applies to the associated reflecting Brownian motion which lives in the positive
d-dimensional orthant. This has a form that is the d-dimensional analogue of (6) and
in particular the reflection matrix B = [ — ', where F is the transition matrix for a
transient Markov chain on d states (corresponding to the Markovian routing matrix
for the queueing network),

A brief synopsis of the extant heavy traffic limit theory for single and some multi-
class networks is given in the next section. For more details the rcader is refered to
the paper [65] and references therein.

3. Heavy Traffic Limit Theorems: A Brief Synopsis

To facilitate comparison of different results, in the sequel, queneing networks will
be assumed to have the following common features. There is a single server at each
station, the arrival process for cach customer class is a renewal process for which the
interarrival times have finite means and.-variances, the service times for each class are
given by a sequence of i.i.d. random variables having finite means and variances, the
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i i ice times : ] routin;
outing is Markovian, and the arrival processes, service times and customer " 12
i . oy 3 RITT er cl:
rare mutually independent. For single class networks there is Just one umon: 1 d.sts
o . 3 o] &1 St
or station, whereas for multiclass networks there may be several dlﬂ"erertl ; as »
, ‘ i i 12 stations is

pf customers served at a single station and the mapping from classes to sta
0
many-to-one,

' Heavy traffic limit theory has been concerned largely with open netwwforks 1:1 wh‘fjl;
ustomers arrive from outside the system, receive a finite number of services al vaa;ll e
Cta_tions and then exit the system. Furthermore the theory is n?os.t well devel c?pe o
:ingle class networks with FIFQ (first-in-first-out) service discipline. Let us consl
open networks first.

The heavy traffic limit theorem of Iglehart and Whitt [3.5,.3611, for a~51%ii(f0$?j;
FIFQ station, is the prototype fm-1 (:oﬂlvcntim:a;-i&_cav].y t?ﬁfel;l:;tf ffiﬁb'qtmons i
i arrison {21} proved a heavy traffic limi §
:ﬁgefnozl;f;tgout feedt[)ac}k;j and first identified a :c;arnplc pa,t:.h repre{;entila_m;)[? E?,f 222
two-dimensional limit pracess, which is a reﬂecm_ng Bmwmfm motlémt uéing;le e
positive quadrant. His limit theorem was g(.:ncrahzed by Reiman F ']I‘ho . fetworks
FIFQ networks with Markovian routing which may have feedback. Thes
are sometimes referred to as generalized Jackson nelworks.

In multiclass networks, different classes of customers, perhaps havn;g (lsxtiizzx:lt
gervice distributions or different routing requiremcnt.s,_may‘ be.: s'ervedba_ ;e : FIF().
For such networks, it is natural to consider other service disciplines | es}l e m;
The extant heavy traffic limit theorems for such networks have_large?t{‘ ) r?;, iy
thase with (static) priority service across classes and FIFO service withy , ep e
class. In multiclass networks, the dimension of the queue length _prO(;ess lclac:‘,ges o
the number of classes served in the system {recall that .the maPpmg rom e
stations is many-to-one). Anothier process of interest is .the (Lmrr_xedlat;]a)that g
process W whose dimension is equal to the number of statlpns .'?nd is sutc) e 1t o
represents the amount of work (measured in units of service time) embo
customers at station ¢ at time &

Whitt [60} proved a heavy traffic limit theorem for a sin_gle mul;.lcltass s:it;tlfrllls 1\lelt$
two priority classes (high and low). A notable featuﬁre 'hcre is that the wt(.)— e oo
queue length process, normalized with a central limit theorem type (? Scto mé o
verges in distribution to a process in which the compqnent €orTespon nfgrit ‘(;1353 "
priority class is identically zero and that corresponding to the lov.i 1:;101.h g o
a one-dimensional reflecting Brownian motion. Johnsen {37] combll_n 4 the e
of the Reiman [50] and Whitt [60] results to prove a heavy frafﬁc. imi corer 1o
multiclass networks having two types of customers,.th'ose of t'ugh ;:‘rnoiilty_an | hose o
low priority, where a customer retains thc. same pt:mnt,y designation un;:‘lgh $ oty
sojourn through the network, i.e., oncc a high priority customer, a.iwe‘mys.:.‘ : g Pr; onty
customer etc. A network of this kind is said to .have separated pr.'tc};lm af:a;it oreon
[49} proved a heavy traffic limit theorem for multiclass networks x;nt pl;iom uyt e
{two levels, not separated), but he restricted to the case of ﬁ?ed orv.v&r e
this, the d-dimensional workload process W when normalized wi
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limit theorem type of sealing:
_ Wi(my
= h_ﬁ ,

converges in distribution to a reflecting Brownian mation 2 that Hives in the positive
d-dimensional orthant and has a semimartingale decomposition of the form {6) where
X,Y are now d-dimensional and R is a d * d matrix of the form (7 + G)~! where G is

(9) W(n)(_)

?

in the single station case [60], for each station, the limit for the high priority queue
length processes is identically zero and for the low priority queue length processes
ts proportional to the limit of the normalized workload processes for the station.
Although heavy traffic limit theorems have been proved for a single multiclass station
with feedback and certain service disciplines such as round-robin [51] and FIFO [13],
there is currently no general heavy traffic limit theorem for open multiclass networks
with feedback.

Closed queueing networks, in which a fixed number of customers or jobs circulate
perpetually in the system, are natura! models for some manufacturing systems., Ana-
logues of the open network heavy traffic limit theorems of Reiman [50] and Johnson
[37] have been proved by Chen and Mandelbaum [8] for closed networks. In particular,
they considered closed networks that are single class or have separated priorities. For
a closed network, the heavy traffic parameter n has a natural interpretation as the
fixed number of customers in the system. Then a natural central limit theoremn type
of scaling for the queue length process Q% ig given by

« (n)y..2,
o) Qo = 20

Under suitable conditions, the (low priotity) d-dimenstonal queue length process
normalized as in (10) converges in distribution as n — oo 1o 5 reflecting Brownian
motion that lives in the d-dimensional simiplex (see Harrison, Williams and Chen [33]
for same analysis of this limit process), and the normalized high priority queue length
Process vanishes in the heavy traffic linit. Despite these positive results, as in the
open network case, there is currently no general heavy traffic limit theorem for closed
muiticlass queueing networks.

In contrast to the lack of a general heavy traffic limit theorem for multiclass
networks with feedback, there is » rigorous existence and uniqueness theory for
semimartingale reflecting Brownian motions (SRBMs). These diffusion processes
have a semimartingale form as in {6) where the reflection matrix R need only satisfy a
natural feasibility condition that it be completely-S, i.e., for each principal submatrix
R of R there is a positive vector ¥ such that R§ > 0. Reiman and Williams [52]
established the necessity of this condition and Taylor and Williams [57] established
its sufficiency for existence and uniqueness in law of a SRBM, provided one adds
to the definition the mild condition that X minus its drift process is a martingale
relative to the filtration generated by X,Y,Z. For an extension of these results to

convex polyhedral state spaces, which is relevant to closed network approximations,
see Dai and Williams [18].

SOt g for queueinyg nelworks
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Figure 3. A Multiclass Open Network with FIFO Service

Extrapolating from the extant limit 1-.}1eorems: Harrison [22] ar:imli;;l:;so(lz rar;;ll
Nguyen [24, 25] conjectured a reflecting Brov\{man motion appL::v dmation (or o
imate “Brownian model”} for open mult.1cl_a.ss queueing netw: S i
appr'om'mai traffic. An analogous approximation was proposed in t. ic Append

to Haris 162.1‘;3:1 Williz;ms [31], where static priority and processor sharing service
EC.) I‘_Ia-ll'iHSOﬂ ‘:e included in addition to FIFQ. Despite the appeal of these ap;gro:;l(;
disciplines ar t from the situations covered by [35, 36, 21, 50, 60, 37, 49_, 31, 1};:11 '
mammf’- ?!Ii)(ﬁimit theorem has been proved to justify them._ However, it was s é aﬁ
23?;gisen\lwhen Dai and Wang [16] produced an examnple w.h1c}:'_ 220“:(‘1, atrlilit}.tr;c; ol

iclas ing networks can have such an approximation. variz

253:13;5 l:;:‘lid;igsl;gll: ler;cgp?a.nations for it are described in the next section.

4. Dai-Wang-Type Example and Stability of Open Networks

The following variant of the Dai-Wang cxample appears in the paper of Dai and
N%!}’e;c{: ]éhe two-tation network pictured in Fig. 3. Arrivals to this ru’zrtfv:::i::r:
assuc;ﬂed to be given by a Poisson process with arrival rate o E} (0, 11).the in.emork

i 5 h of the two stations. Customers are rloutec‘l_ through ‘ ok
‘Smgle ctormi a't te 2cmanner making visits to the two stations in t}'le following or .
L la‘.'zd;telrmlxlsc:lstomer awaiting or undergoing its k** service is mllzd la i\:ﬁg £
coston ’r _k =1,2,3,4,5. Thus, classes 1, 2,5 are served at station 1 an ic asd on,a
ore sorw ;1 t ‘t', til)r; 2, Customers at a station, regardless of class, are serve

i SFTVE ; E‘t',dllt».asis ’lThus for example, after receiving service as a, cla§s 3 custorper
ﬁl'St'm_-ﬁl‘S;'Ou st,or;:er chainges to class 4 and goes to the end of thg line _a,t s‘ta.t.:‘og
;t S”.tfatféosr:en:i:ec:imes are assumed to be independent and exponentially distribute
w&th mean my for class &, k = 1,2,3,4,5, where

' 112344 )

(11) e (E’E‘ﬁ’w’a '

Interarrival and service times are mutually independent.

ey
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The trallic intensity parameters for the two stations are given by
(12) m = admy +my +ms) and  pa = almg + g ).

Traditionally p; has been interpreted as the long run average rate at which work
arrives at station ¢ {implicit here is an assumption that such long run average behavior
exists). Extrapolating from existing theory, it natural to define heavy traffic for this
example as occeuring when these traffic intensity parameters are close to ene. Indeed,
the approximation proposed in {22, 24, 25, 31| would say that with & = 1 - !

Vn
1

(and s0 p, =1 — ot i = 1,2), for n sufficicutiy large one can approximate the two-
dimensional workload process {normalized with the central limit theorem scaling as
in (9)}, by a reflecting Brownian motion that lives in the positive quadrant and has
the form (6), where the reflection matrix is given by

—31i0 16
B
(13) R—[Zﬂ —m]’

However, this reflection matrix corresponds to divections of reflection that point out
of the quadrant. ‘There is no semimartingale reflecting Brownian motion living in the
positive quadrant with such dircctions of reflection. Consequently, the conjectured
limit theorem cannot hold in this case. Indeed, investigation by Dai and Nguyen [14}
of this example showed that the normalized workload processes cannot converge in
distribution to a continuous limit.

Around the time that the Dai-Wang counterexample was produced, there was a
scparate growing interest in the stability of open muilticlass networks. For a single
class, d-station, open queueing network satisfying the conditions described at the
beginning of section 3, the condition for stability is that

(14) pi<1 fori=1,...,d,

(see e.g., Meyn and Down [47]). Here the traffic intensity parameters p; are defined
by

(18) /o= Aoy,
where A = (A1,..., )" is the solution of the vector traffic equation
(16) A=a+PA

a = {a1,... ,eq) i the vector of exogenous arrival rates (one component for cach
station), P is the d x d matrix of Markovian routing probabilities {so that /%; denotes
the probability that a customer completing service at station £ goes next to station j),
and m; is the mean service time per customer at station 4. It is ratural to conjecture
that (14) is also the condition for stability of maulticlass networks, provided p; is now
defined by

(17} pi = Z AL,

kel
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Figure 4. A Multiclass Open Network with Priority Service

where C; denotes the constituency of station 4, ie, it consists of those customer
classes k that are served at station £, my, denotes the mean service time for clasf; k
customers k= 1,..., X, and A = (A1,... ., Ag)" is the solution of the wraffic equation
(16) now considered to be written at the class level, so that o is the vector of cl?,ss
level cxogenous arrival rates and P is the class level matrix of .Markowa.n routing
probabilities. Despite some cases [37, 49] where this conjecture is true, IFumm: a.nd
coworkers [42, 44] have given simple two-station deterministic examples ‘w1th priority
service which show that it is false in general for multiclass networks with feedback,
i_e., they have given examples of networks in which p; < 1 for each 1, but the networlfs
are unstable. Rybko and Stolyar (53] gave the first stochastic counterexample. This
is a two-station network with priority service which has similar structure to the Lu-
Kumar [44] example. _ o

Another counterexample can be given by considering the network pictured in Fig. 4.
This is a hybrid of the Lu-Kumar and Rybko-Stolyar examples. Here the arrivals are
given by a Poisson process of rate one. Customers are routed through the network
in a deterministic manner, making visits to the two stations in the order 1,2,2,1.
Customers that are awaiting or undergoing their L service will be calleq class k
customers, & = 1,2,2, 4. All services are independent and class k service times are
exponentially distributed with mean ms > 0, k=1,234. Eax:l? server follows a.
preemptive resume priority diseipline where classes 2 and 4 havg pnor_lty over classes
3 and 1, respectively. The traffic intensities for the two stations arc given by

(18) pmo=my+my and  pr =tz +Ma.
Dai and Weiss [17] have shown that this network is stable if

(19) pi<l fori=12 and me+ms <l

Furthermore, Dai and VandeVate [15] have recently shown that if any of the inequal-
ities in (19) is violated with strict inequality, then the network is unstable. Thus,
for example, if g = my = 1/4, my = my = 2/3, then the network is unstakle, but
s« lfori=1,2 - o
p!Whilst, it miéht be argued that one can see {with hindsight) Lhat.‘ Phe Prmnﬁes
in the Lu-Kumar/Rybko-Stolyar type examples are “bad” for stability, 1t Was a
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further surprise when Bramson [3, 4] gave a two-station stochastic counterexample
having FIFQ service discipline.  {Also, Seidman (53] gave a deterministic FIFO
counterexample.)

The appearance of tliese counterexamples was followed by a burst of activity con-
cerned with the stability of open multiclass networks. Frequently Lyapunov functions
have been used as a tool for establishing sufficient conditions for stability. Early
work used mathematical programming to determine such Lyapunov functions for the
queuncing networks {see for example, Kumar and Meyn {41] and Bertsimas et al. [2]).
A significant advance was made when Dai {10] showed that the stability of associated
fluid limits (obhtained as limnits of a Markovian state descriptor for the queucing
network under a law of large numbers type of scaling), was sufficient for stability of the
original queueing network. {An analogue of this result for semimartingale reflecting
Brownian motions was proved a little earlier by Dupuis and Williams [19].) Thus to
determine sufficient conditions for stability, one can seek Lyapunov functions for the
often simpler fluid limits rather than for the original queneing networks. This idea has
been exploited by a number of authors, especially in combination with piecewise linear
Lyapunov functions, to prove sufficient conditions for the stability of open multiclass
networks (see Dai [11] for a survey). Networks with FIF( service disciplines can be
especially difficult to analyze because of the need to keep track of the order In which
customers arrive at each queue. Since the writing of 1 1], by establishing the stability
of associated fluid limits, Bramson (5] has proved the stability of open Kelly-type
networks with FIFQ service discipline, provided p; < 1 for each i. Here Kelly-type
means that the service rate is the same for all customers at a given station, i.e., m.
is the same for all k € ;. Bramson [6] has also shown stability for networks with a
processor sharing service discipline and p; < 1 for all i. Here proeessor shering means
that service at each station is equally divided amongst all customers present at the
station. In a very recent paper, Chen and Zhang [9] claim to prove stability of open
multiclass networks with FIFQO service when p; < 1 for each 7, assuming a spectral
radius condition on one of the data matrices. At this time, it is not known if there is
a large natural class of multiclass networks satisfying this condition.

In light of this work on stability, one might be tempted to conjecture that the
Dai-Wang type examples fail to have Brownian approximations because they are
not stable, i.e., oue has the wrong notion of heavy traffic. However, a deterministic
network example of Whitt [61), which exhibits large vscillations of the queue length
processes, suggests that one might also entertain other possible explanations, such
as the wrong scaling, the wrong topology on path space, or the wrong limit process.
In general, one might consider one or more of the above as explanations for why a
multiclass network does not follow a “conventional” heavy traffic limit theorem of the
form proposed in {22, 24, 25, 31].

Indeed, in a recent work, Harrison and Williams [32] proved a heavy traffic limit
theorem for a queueing network which is a closed network analogue of the Lu-
Kumar/Rybko-Stolyar hybrid shown in Fig. 4 and which incorporates all of the
possible exceptional features mentioned above, The network is obtained simply by
turning off the exogenous arrival process and closing the loop on the left of Fig. 4 so
that customers return to class 1 after completing service in class 4. Unconventional
features of this litnit theorem are as follows: (a) the notion of heavy traffic is different
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from (or at lcast a refincment ol) that used by Chen and Mandelbavwm for closed
networks; indeed, the network parameters are cliosen so that (19) holds with equality
in place of inequality (the motivation here is that since the closed network with a fixed
number of customers is automatically stable, it is natural to consider parameters that
correspond to the boundary between stability and instability in the open network), (b)
the normalization of the queue length processes is different from the usual central limit
theorem type of scaling, and (c) the limit of the normalized queue length processes is
not obtained from a reflecting Brownian motion, although it is related to Brownian
motion. Morcover, to fully describe the limit process, non-trivial limits of all of the
normalized queue length procvesses are needed and for the convergence in distribution,
the topology on path space is weaker for some components than the usual Skorokhod
J1-topology. For further details of this example, the reader is refered to the survey
paper [65] or the full paper [32].

5. Open Problems

Some of the open problem areas for heavily traffic analysis of queueing networks
are described below. For details the reader is refered to the papers cited.

(i) Stability. As mentioned in section 4, one of the very active areas of Furrent
research on queusing networks is concerned with determining sufficient conditions for
the stability of open multiclass networks. Whilst some progress has been made (see
e.g., 9, 6, 15, 17, 41]) on identifying service disciplines and network stn‘mtures for
which the conventional condition “p; < 1 for all i is sufficient for stability, we are
still a considerable distance from a general classification.

(ii) Heavy Traffic Approzimation of Queucing Networks. As described in section
3, there is no general heavy traffic limit theorem for multiclass queucing networks,
the extant limit theorems being restricted to single class networks {or ones with
separated priorities) or to multiclass priority networks with a feedforward structure.
It is a compelling problem to identify a “good” class of multiclass networks for which
conventional heavy traffic limit theorems can be proved, Conversely, it would be
helpful to know the size of the collection of networks that do not have conventiongl
heavy traffic behavie, for example, is it a small set in some measurc theoretic
sense? In the same vein, it would be interesting to identify the spectrum of possible
unconventional heavy traffic behavior. For instance, the example of Harrison and
Williams [32] illustrates several ways in which a heavy traffic limit theorem can be
unconventional, but are there others?

There are many possible variations on the queueing network models described here.
For instance, heavy traffic approximations for state- and Jor time-dependent networks
with Markovian assumptions have been established by some authors (see e.g., {40, 45,
46, 48]}. Also, heavy traffic approximations have been proposed (but no limit theorer.n
has been proved) for queueing netwarks that incorporate server breakdown and repair
{26}. Such models are especially relevant for manufacturing applications. o

(iii) Semimartingale Reflecting Broumian Motions. Although there is a solid exis-
tence and uniqueness theory for semimartingale reflecting Brownian motions (SRBMs),
several problems associated with the analysis of these processes remain. A necessary
and sufficient condition for positive recurrence is known in the two-dimensional case
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[34, 62], but therc is no general recurrence classification in dimensions three or more,
although some sufficient conditions for positive recurrence are known [29, 30, 63]. The
result of Dupuis and Willians [19] implics that ene can obtain sufficient conditions for
positive recurrence by study of a simpler deterministic dynamical system {see a recent
paper of Chen [7] for an illustration of how this can he applied to simplify the proofs
of previously known sufficient conditions for positive recurrence). When an SRBM
is positive recurrent, its stationary distribution is characterized as the solution of a
certain integral relation (see e.g., [64]). Whilst therc is a numerical method [12] for
analyzing this relation, improvetnents of this method would facilitate analysis of larger
networks. Furthermore, the nunerical method would be enhanced by knowledge of
the tail behavior of the stationary distribution. A final problem is that of justifying
the interchange of limits inherent in using the stationary distribution of 2 SRBM as
an approximation to the equilibrium distribution of the original queueing network
(see {38] for a discussion of this in the case of closed networks).

(iv) Optimizetion. The discussion in this paper has been directed to the problem of
performance analysis for heavily loaded networks with a fixed structure. However, in
some network applications once may have control over some of the system parameters,
£.g., service discipline or routing, and want to choose them so as to optimize a measure
of performance. Such control problems frequently cannot be analyzed exacily. One
possible solution is to optimize an approximate model. This kind of approach, using
approximate Brownian models, has been pursued by a few authors (see e.g., 128, 39,
43, 58, 59]), but this is an area with potential for much further development.
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