Math 140A: Final Exam
Foundations of Real Analysis

- You have 3 hours.
- No books and notes are allowed.
- You may quote any result stated in the textbook or in class.
- You may not use homework problems (without proof) in your solutions.
1. (10 points) Let J be the set of all positive integers. Let A be an infinite set.
 (a) (5 points) Prove that there exists a 1-1 function $f : J \rightarrow A$.
 (b) (5 points) Prove that the set of all 1-1 functions $f : J \rightarrow A$ is uncountable.
2. (10 points) Let X be a nonempty set. For $x \in X$ and $y \in X$, define

$$d(x, y) = \begin{cases}
1, & \text{if } x \neq y \\
0, & \text{if } x = y
\end{cases}$$

(a) (3 points) Prove that d is a distance function.

(b) (3 points) Prove that if X is connected, then X has exactly one element.

(c) (4 points) Prove that if X is compact, then X is finite.
3. (10 points) Let \(\{x_n\} \) be a sequence of real numbers. Assume that the “even” and “odd” subsequences \(\{x_{2n}\} \) and \(\{x_{2n+1}\} \) are convergent. Denote \(a = \lim_{n \to \infty} x_{2n} \) and \(b = \lim_{n \to \infty} x_{2n+1} \).

(a) (5 points) Prove that if \(a \neq b \), then the sequence \(\{x_n\} \) is not convergent.

(b) (5 points) Prove that if \(a = b \), then the sequence \(\{x_n\} \) is convergent and \(\lim_{n \to \infty} x_n = a \).
4. (10 points) Let \(\{x_n\} \) be a bounded sequence of real numbers. Denote \(\alpha = \limsup_{n \to \infty} x_n \).

Define a new sequence \(\{y_m\} \) by letting \(y_m = \sup\{x_n | n \geq m\} \), for every \(m \geq 1 \).

(a) (5 points) Prove that the sequence \(\{y_m\} \) is monotonically decreasing and convergent.

(b) (5 points) Prove that \(\lim_{m \to \infty} y_m = \alpha \).
5. (10 points)

(a) (5 points) Prove that the series $\sum \frac{n^3}{3^n}$ converges.

(b) (5 points) Let $\{a_n\}$ be a sequence of real numbers such that $a_1 \geq a_2 \geq a_3 \geq ... \geq 0$. Assume that $3a_{2n} \leq a_n$, for all $n \geq 1$. Prove that the series $\sum a_n$ converges.
6. (10 points) Let \(\{a_n\} \) be a sequence of real numbers.

(a) (5 points) Assume that the series \(\sum a_n \) is absolutely convergent. Let \(\{b_n\} \) be a bounded sequence of real numbers. Prove that the series \(\sum a_n b_n \) is absolutely convergent.

(b) (5 points) Assume that the series \(\sum a_n b_n \) is convergent, for any bounded sequence \(\{b_n\} \) of real numbers. Prove that the series \(\sum a_n \) is absolutely convergent.
7. Let A be a nonempty set of real numbers and let $f : A \to [0, \infty)$ be given by $f(x) = x^2$.

(a) (5 points) Prove that if A is bounded, then f is uniformly continuous.

(b) (5 points) Prove that if A is open and f is uniformly continuous, then A is bounded.
8. Let \(\mathbb{R} \) denote the set of real numbers. Let \(f : \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R} \to \mathbb{R} \) be continuous functions. Assume that \(f(x) = g(x) \), for every rational number \(x \).
Prove that \(f(x) = g(x) \), for every \(x \in \mathbb{R} \).
Do not write on this page.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>out of 10 points</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>out of 10 points</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>out of 10 points</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>out of 10 points</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>out of 10 points</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>out of 10 points</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>out of 10 points</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>out of 10 points</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>out of 40 points</td>
</tr>
</tbody>
</table>