Math 140A - Homework 7. Due Friday, December 12.

1. Rudin, Chapter 4, solve problems 14, 16.

2. Show that if $f : [0, 1] \to \mathbb{R}$ is continuous and $f(0) = -1$ and $f(1) = 0$, then there exists $x \in [0, 1]$ such that
 $$f(x) = 1 - 2x.$$

3. Show that the function
 $$f : \mathbb{R} \to \mathbb{R}, \quad f(x) = \begin{cases}
 0 & \text{if } x = 0 \\
 \sin \left(\frac{1}{x} \right) & \text{if } x \neq 0
 \end{cases}$$
does have the intermediate value property without being continuous.

4. Solve the following version of Rudin, Chapter 4, Problem 18.

Consider the Thomae function $f : (0, 1) \to \mathbb{R}$ given by
 $$f(x) = \begin{cases}
 \frac{1}{q} & \text{for rational numbers written in lowest terms } x = \frac{p}{q}, \gcd(p, q) = 1 \\
 0 & \text{if } x \text{ is irrational.}
 \end{cases}$$

(i) Explain that f is discontinuous at all rational numbers x.

(ii) Show that for any $\epsilon > 0$, there are finitely many rational numbers $x \in [0, 1]$ such that $f(x) > \epsilon$.

 Hint: For instance, think of a very small ϵ, such as $\epsilon = \frac{1}{10000000000}$. How many x’s have the property that $g(x) > \epsilon$? Can you then write down a proof that works for any ϵ?

(iii) Using (iii) and the $\epsilon - \delta$ definition, show that f continuous at all irrational numbers x in $(0, 1)$.

(iv) What kind of discontinuities does f have?