Math 140A: Midterm 1
Foundations of Real Analysis

• You have 50 minutes.
• No books and notes are allowed.
• You may quote any result stated in the textbook or in class.
• You may not use homework problems (without proof) in your solutions.
1. (10 points) Let A and B be two nonempty sets of positive real numbers. The “product of A and B” is defined as $C = \{ab | a \in A, b \in B\}$.

Prove that C is bounded below and $\inf C = (\inf A)(\inf B)$.

2. (10 points)
(a) (5 points) Prove that \(\inf \left\{ \frac{1}{n} \mid n \text{ positive integer} \right\} = 0. \)
(b) (5 points) Prove that if \(x, y, z \in \mathbb{R}^k \) (the euclidean \(k \)-space), then
\[
|x| + |y| + |z| \leq |x + y - z| + |x - y + z| + |-x + y + z|.
\]
3. (10 points) Let J be the set of all positive integers.
(a) (5 points) Let A be the set of all finite subsets of J. Prove that A is countable.
(b) (5 points) Let B be the set of all subsets of J. Prove that B is uncountable.
4. (10 points) Let X be a metric space with distance function d. Let A be a subset of X and x be a point in X. The “distance from x to A” is defined as $d(x, A) = \inf \{d(x, y) \mid y \in A\}$.

(a) (5 points) Prove that $x \in \overline{A}$ if and only $d(x, A) = 0$.

(b) (5 points) Assume that A is compact. Prove that there exists a point $y \in A$ such that $d(x, y) = d(x, A)$.

<table>
<thead>
<tr>
<th></th>
<th>out of 10 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>out of 40 points</td>
</tr>
</tbody>
</table>