
Problem 1. Let a_1, \ldots, a_5 be pairwise distinct constants. Find the singularities of the projective hyperelliptic curve of genus 2:

$$y^2z^3 = (x - a_1z) \ldots (x - a_5z).$$

Answer: Let

$$f(x, y, z) = y^2z^3 - (x - a_1z) \ldots (x - a_5z).$$

Then f is singular at p if and only if

$$f(p) = \frac{\partial f}{\partial x}(p) = \frac{\partial f}{\partial y}(p) = \frac{\partial f}{\partial z}(p) = 0.$$

Since

$$\frac{\partial f}{\partial y} = 2yz^3,$$

we see that if $p = [x : y : z]$ is a singular point then $y = 0$ or $z = 0$.

If $y = 0$, from $f(p) = 0$ we obtain $x = a_i$ for some i. Because we are free to scale the coordinates in \mathbb{P}^2, $p = [a_i : 0 : 1]$. We compute

$$\frac{\partial f}{\partial x} = -(x - a_2z)(x - a_3z)(x - a_4z)(x - a_5z) - (x - a_1z)(x - a_3z)(x - a_4z)(x - a_5z)$$

$$- (x - a_1z)(x - a_2z)(x - a_4z)(x - a_5z) - (x - a_1z)(x - a_2z)(x - a_3z)(x - a_5z)$$

$$- (x - a_1z)(x - a_2z)(x - a_3z)(x - a_4z).$$

Similarly,

$$\frac{\partial f}{\partial z} = 3y^2z^2 + a_1(x - a_2z)(x - a_3z)(x - a_4z)(x - a_5z) + a_2(x - a_1z)(x - a_3z)(x - a_4z)(x - a_5z)$$

$$+ a_3(x - a_1z)(x - a_2z)(x - a_4z)(x - a_5z) + a_4(x - a_1z)(x - a_2z)(x - a_3z)(x - a_5z)$$

$$+ a_5(x - a_1z)(x - a_2z)(x - a_3z)(x - a_4z).$$

Thus

$$\frac{\partial f}{\partial x}(p) = \prod_{j \neq i} (a_j - a_i) \neq 0$$

since a_i are distinct. Thus $[a_i : 0 : 1]$ are not singular points.

If $z = 0$, $f(x, y, z) = x^3 = 0$, which is only possible when $x = 0$. Then $p = [0 : 1 : 0]$. The formulas above show

$$f(p) = \frac{\partial f}{\partial x}(p) = \frac{\partial f}{\partial y}(p) = \frac{\partial f}{\partial z}(p) = 0.$$

Thus $[0 : 1 : 0]$ is the only singular point. \(\square \)

Problem 2. Let $X \subset \mathbb{P}^n$ be a projective variety of dimension d cut out by the homogeneous equations

$$f_1 = \ldots = f_r = 0.$$

We say that X is singular at p if the rank of the $r \times (n + 1)$ Jacobi matrix of partial derivatives

$$\left(\frac{\partial f_i}{\partial x_j}(p) \right), \ 1 \leq i \leq r, \ 0 \leq j \leq n,$$

strictly less than $n - d$.

Check that the twisted cubic

$$X = \{(x_0 : x_1 : x_2 : x_3) : x_1^2 - x_0x_2 = x_2^2 - x_1x_3 = x_0x_3 - x_1x_2 = 0\}$$

is nonsingular.
The Jacobian matrix is:
\[\begin{pmatrix} a & 3 \\ 2 & x_1 \\ 0 & -2x_3 \\ x_3 & -x_2 \end{pmatrix} \]

Because the Jacobian has rank less than 2, we conclude that X has rank 0.

\[J(\mathbf{p}) = \begin{pmatrix} -a & 2 & 0 \\ 0 & -2b & -a & 0 \\ b & 2 & -a & 0 \\ 2 & -a & -a & 0 \end{pmatrix} \]

If \(\mathbf{p} \) is a singular point, the submatrix

\[\begin{vmatrix} -a & 2 \\ 0 & -2b \end{vmatrix} = 0. \]

because the Jacobian has rank less than 3 - 1 = 2. That implies either \(a = 0 \) or \(b = 0 \). Suppose \(a = 0 \). Suppose \(b = 0 \). Then the matrix

\[J(\mathbf{p}) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \]

has rank 2. Therefore \(\mathbf{p} \) is not a singular point. Similarly \(\mathbf{p} \) is not a singular point. We conclude X is not singular as desired.

\[\square \]

Problem 3.

(i) Prove that if \(C = Z(f) \) and \(D = Z(g) \) are curves in \(\mathbb{P}^2 \), then

\[\text{Sing } (C \cup D) = \text{Sing } (C) \cup \text{Sing } (D) \cup (C \cap D). \]

To prove this, note first that \(C \cup D = Z(fg) \).

(ii) Deduce that a nonsingular curve \(Z(F) \) in \(\mathbb{P}^2 \) is irreducible. Indeed, argue that if \(F \) has at least two distinct factors \(f \) and \(g \), then \(f \) and \(g \) must be homogeneous, and thus \(f \) and \(g \) must have at least a common zero which is a singular point for \(Z(F) \). Is this statement true for affine plane curves?

Answer:

(i) We first show that

\[\text{Sing } (C) \cup \text{Sing } (D) \cup (C \cap D) \subset \text{Sing } (C \cup D). \]

If \(\mathbf{p} \in \text{Sing } (C) \), we have

\[f(\mathbf{p}) = \frac{\partial f}{\partial x_i}(\mathbf{p}) = 0. \]

Under these assumptions,

\[(fg)(\mathbf{p}) = 0, \quad \frac{\partial (fg)}{\partial x_i}(\mathbf{p}) = f(\mathbf{p}) \frac{\partial g}{\partial x_i}(\mathbf{p}) + g(\mathbf{p}) \frac{\partial f}{\partial x_i}(\mathbf{p}) = 0. \]

So \(\mathbf{p} \in \text{Sing } (C \cup D) \). Similarly, if \(\mathbf{p} \in \text{Sing } (D) \), then \(\mathbf{p} \in \text{Sing } (C \cup D) \).

If \(\mathbf{p} \in C \cap D \), then \(f(\mathbf{p}) = g(\mathbf{p}) = 0 \). Then \((fg)(\mathbf{p}) = 0 \) and the derivatives are

\[\frac{\partial fg}{\partial x_i}(\mathbf{p}) = f(\mathbf{p}) \frac{\partial g}{\partial x_i}(\mathbf{p}) + g(\mathbf{p}) \frac{\partial f}{\partial x_i}(\mathbf{p}) = 0. \]
Therefore \(p \in \text{Sing} (C \cup D) \).

Conversely, we show

\[
\text{Sing} (C \cup D) \subset \text{Sing} (C) \cup \text{Sing} (D) \cup (C \cap D).
\]

If \(p \in \text{Sing} (C \cup D) \), at least \(p \in C \) or \(D \). If \(p \in C \), \(f(p) = 0 \).

Then this implies \(g(p) = 0 \) or else \(\frac{\partial f}{\partial x_i}(p) = 0 \) for all \(i \). Thus, either \(p \in (C \cap D) \) or \(p \in \text{Sing}(C) \).

Putting everything together, we have shown that

\[
\text{Sing} (C \cup D) = \text{Sing} (C) \cup \text{Sing} (D) \cup (C \cap D).
\]

(ii) If a curve \(C \) is the union of two curves \(C_1 \) and \(C_2 \) in \(\mathbb{P}^2 \), \(C_1 \) and \(C_2 \) must intersect in \(\mathbb{P}^2 \).

From (i) we know their intersection points are singularities of \(C \).

This doesn’t apply to affine curves. For example, \(x(x - 1) = 0 \subset \mathbb{A}^2 \) is the reducible union of two distinct lines and it is smooth.

Problem 4. Show that a general hypersurface of degree \(d \) in \(\mathbb{P}^n \) is non-singular:

(i) For any hypersurface \(Z(f) \subset \mathbb{P}^n \) of degree \(d \), view the coefficients of \(f \) as a point \(p_f \) in a large dimensional projective space \(\mathbb{P}^N \) (This projective space is called the moduli space of degree \(d \) hypersurfaces). Let \(X = \{(f, p) \in \mathbb{P}^N \times \mathbb{P}^n : p \text{ is a singular point of } f \} \).

Show that \(X \) is a projective algebraic set in \(\mathbb{P}^N \times \mathbb{P}^n \).

(ii) Conclude that the image \(\pi(X) \) of \(X \) under the projection onto \(\mathbb{P}^N \) is a projective algebraic set. What is \(\pi(X) \)? Conclude that the subset of \(\mathbb{P}^n \) corresponding to smooth hypersurfaces is open and nonempty.

Answer:

(i) Let

\[
f = \sum_I a_I X^I,
\]

where \(I \) is a multi-index. Then \(a_I \) will be the coordinates of the point \(p_f \) in \(\mathbb{P}^N \).

Let \(p = [x_0 : x_1 : \ldots : x_n] \), the condition \(f \) is singular at \(p \) is equivalent to

\[
f(p) = \frac{\partial f}{\partial X_i}(p) = 0 \text{ for all } i \text{ and }
\]

\[
\sum_I a_I x^I = \frac{\partial(\sum_I a_I X^I)}{\partial X_i}(p) = 0.
\]

Let \(a_I \) vary in \(\mathbb{P}^N \) and \(x \) vary in \(\mathbb{P}^n \), the equations above can be viewed as equations of \(a_I \) and \(x \) in \(\mathbb{P}^N \times \mathbb{P}^n \) which are bi-homogeneous in the variables. Therefore \(X \) is projective algebraic.

(ii) As shown in class, the projection \(\pi \) is a closed map e.g. \(\pi(X) \) is a projective algebraic set. Note that

\[
\pi(X) = \{f \mid f \text{ is a nonsingular homogeneous degree } d \text{ polynomial}\}
\]

The complement of \(\pi(X) \) is open, therefore nonsingular homogeneous degree \(d \) polynomial form an open set in the moduli space.
To show non-emptyness, observe that

$$f = X^d_0 + \ldots + X^d_n$$

is a homogeneous polynomial without singularities. Indeed, all derivatives of f are dX_i^{d-1} which do not have a common vanishing in \mathbb{P}^n.

\[\square\]

Problem 5. Solve problem 6.6 part (a) in the textbook.

Answer: The curve $\sigma^{-1}(C_n)$ is given by

$$f(x, ux) = (ux)^2 - x^{2n+1} = u^2 - x^{2n-1}$$

is the union of $2l$ and C_{n-1}. Continuing the process until $n = 1$, C_1 is given by $y^2 - x = 0$ is nonsingular, thus X_n resolves after a chain of n blow-ups.

\[\square\]

Problem 6. Consider the singular plane curves Z and W given by the equations

$$y^2 - x^2(x + 1) = 0 \text{ and } xy = 0$$

respectively.

(i) Explain briefly why Z and W are not isomorphic. Explain that $(0, 0)$ is an ordinary double point for both of these curves. What are the tangent directions at $(0, 0)$ for Z and W? Sketch (the real points of) Z and W. Do Z and W look alike near the origin?

(ii) Show that there are formal power series

$$\tilde{x} = f_1 + f_2 + f_3 + \ldots$$

$$\tilde{y} = g_1 + g_2 + g_3 + \ldots$$

in the variables x and y such that the equation of Z becomes

$$\tilde{x}\tilde{y} = 0.$$

(iii) Explain briefly why any ordinary double point singularity in \mathbb{A}^2 is analytically equivalent to the node $\tilde{x}\tilde{y} = 0$.

Answer:

(i) First, Z and W are not isomorphic because Z is irreducible and W is reducible.

Now, Z is defined by $y^2 - x^2(x + 1) = 0$. The tangent lines can be found by considering the lowest degree terms $y^2 - x^2$. This factors as $(y - x)(y + x)$. So the 2 tangent lines are $y - x = 0$ and $y + x = 0$.

Similarly, $W = (xy = 0)$ is the union of two lines. The tangent lines are just these two lines $x = 0$ and $y = 0$.

(ii) We hope to find f_i and g_i such that

$$(f_1 + f_2 + f_3 + \ldots)(g_1 + g_2 + g_3 + \ldots) = y^2 - x^2(x + 1).$$

First, compare the degree 2 terms, then

$$f_1 g_1 = y^2 - x^2.$$

Hence, we can take

$$f_1 = y - x \text{ and } g_1 = y + x.$$

Comparing the degree 3 terms we have

$$-x^3 = (y - x)g_2 + (y + x)f_2.$$

Let $g_2 = x^2/2$ and $f_2 = -x^2/2$ will work.

Suppose we have found f_i and g_i for $1 \leq i \leq d - 1$ and

$$(f_1 + f_2 + f_3 + \ldots)(g_1 + g_2 + g_3 + \ldots) = y^2 - x^2(x + 1)$$
up to degree \(d\). Comparing degree \(d + 1\) terms, we have:

\[f_1 g_d + f_2 g_{d-1} + \cdots + f_d g_1 = 0. \]

Now only \(f_d\) and \(g_d\) are unknown, others are fixed, we can rearrange the equation:

\[(y - x)g_d + (y + x)f_d = -(f_2 g_{d-1} + \cdots + f_{d-1} g_2).\]

Notice that

\[f_2 g_{d-1} + \cdots + f_{d-1} g_2 \]

is a homogeneous polynomial of degree \(d + 1\). Let

\[-(f_2 g_{d-1} + \cdots + f_{d-1} g_2) = ax^d + yR(x, y).\]

Isolating \(x^{d+1}\) and dividing the remaining term by \(y\) to obtain \(R\), then we need

\[x(f_d - g_d) + y(f_d + g_d) = ax^{d+1} + yR(x, y) \]

This is possible by letting

\[f_d = \frac{1}{2} \left(\frac{a}{2} x^d + R(x, y) \right) \quad \text{and} \quad g_d = \frac{1}{2} \left(-\frac{a}{2} x^d + R(x, y) \right) \]

Therefore we can find \(f_d\) and \(g_d\) and

\[(f_1 + f_2 + f_3 + \ldots)(g_1 + g_2 + g_3 + \ldots) = y^2 - x^2(x + 1) \]

up to degree \(d + 1\). Inductively, there exist

\[\tilde{x} = f_1 + f_2 + f_3 + \ldots \]
\[\tilde{y} = g_1 + g_2 + g_3 + \ldots \]

such that

\[(f_1 + f_2 + f_3 + \ldots)(g_1 + g_2 + g_3 + \ldots) = y^2 - x^2(x + 1).\]

(iii) Suppose \(C = (H = 0)\) is a curve which has a ordinary double point, we can change coordinates to assume that the singularity is at the origin. Because \(C\) has a double point at the origin,

\[H(x, y) = H_2(x, y) + H_3(x, y) + \cdots \quad \deg H_i = k \]

where \(H_2\) is a homogeneous polynomial of degree 2, with distinct factors

\[H_2 = (ax + by)(cx + dy). \]

Change coordinates so that

\[x' = ax + by, y' = cx + dy. \]

In the new coordinates,

\[H = x'y' + H_3 + H_4 + \ldots. \]

By the same method as in (ii), we inductively find

\[\tilde{x} = x' + f_2 + f_3 + \ldots \]
\[\tilde{y} = y' + g_2 + g_3 + \ldots \]

such that

\[H = \tilde{x}\tilde{y}. \]