(1) Inhomogeneous second order equations.
 (i) General solution \(y = y_p + y_h \), where \(y_p \) is the particular solution, \(y_h \) is the homogeneous solution.
 (ii) Find a particular solution by undetermined coefficients
 \[y'' + py' + qy = g(t). \]
 Three cases: \(g(t) \) can be exponential, trigonometric, polynomial.
 * For \(g(t) \) polynomial, look for \(y_p \) as a polynomial with undetermined coefficients. Try to guess its degree first.
 * For trigonometric \(g(t) \), look for \(y_p = A \cos t + B \sin t \).
 * For exponential case \(g(t) = e^{at} \), use
 \[y_p = \frac{e^{at}}{f(a)} \]
 with \(f(a) = a^2 + pa + q \). If \(f(a) = 0 \), take
 \[y_p = \frac{te^{at}}{f'(a)}. \]
 * For a term \(g(t) = e^{at} \times \) polynomial or trigonometric function , substitute \(y = e^{at}u \), find the differential equation for \(u \), then solve for \(u \) by undetermined coefficients.
 (iii) Alternatively, you may use variation of parameters
 \[y = u_1(t)y_1(t) + u_2(t)y_2(t) \]
 where
 \[u_1(t) = -\int \frac{y_2(t)g(t)}{W(y_1, y_2)} dt, \quad u_2(t) = \int \frac{y_1(t)g(t)}{W(y_1, y_2)} dt. \]

(2) First order systems of equations
 \[\mathbf{x}' = A\mathbf{x}. \]
 (i) Find eigenvalues \(\lambda \) of \(A \):
 \[\det(A - \lambda I) = 0. \]
 Eigenvectors \(\mathbf{v} \) are found by solving the system
 \[(A - \lambda I)\mathbf{v} = 0. \]
 (ii) Finding solutions: find eigenvalues \(\lambda_1, \lambda_2 \) with eigenvectors \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \). General solution
 \[\mathbf{x} = c_1 e^{\lambda_1 t}\mathbf{v}_1 + c_2 e^{\lambda_2 t}\mathbf{v}_2. \]
 (iii) Phase portraits. Distinct eigenvalues:
 * saddles (real eigenvalues of opposite sign)
 * nodes (sink or source) (real eigenvalues of same sign)
 * spiral (sink or source) (complex eigenvalues). To find the direction of spirals compute the velocity vector at a point on the trajectory.
 (iv) Repeated eigenvalues \(\lambda_1 = \lambda_2 = \lambda \). Defective case: one eigenvector \(\mathbf{v} \). Solutions
 \[\mathbf{x}_1 = e^{\lambda t}\mathbf{v}, \quad \mathbf{x}_2 = e^{\lambda t}(\mathbf{w} + t\mathbf{v}) \]
 where
 \[(A - \lambda I)\mathbf{w} = \mathbf{v}. \]
 Origin is an improper node.
(v) Fundamental matrix

\[\Psi(t) = \begin{bmatrix} x_1 & x_2 \end{bmatrix}. \]

The Wronskian is the determinant of the fundamental matrix

\[W(x_1, x_2) = \det \Psi(t). \]

The normalized fundamental matrix

\[\Phi(t) = \Psi(t)\Psi(0)^{-1} = e^{At}. \]

Solution to IVP \(x' = Ax \) and \(x(0) = x_0 \) is

\[x = e^{At}x_0. \]

(vi) Undetermined coefficients for systems.

(vii) Variation of parameters for systems

\[x' = Ax + g(t). \]

A particular solution is given by

\[x_p = \Psi(t) \int \Psi(t)^{-1} g(t) \, dt. \]

General solution is

\[x = x_p + x_h \]

where \(x_h \) solves the homogeneous system.