Math 220A - Fall 2015 - Midterm

Name: ________________________________

Student ID: __________________________

Instructions:

Please print your name and student ID.

There are 6 questions which are worth 70 points. You have 75 minutes to complete the test.

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>
Problem 1. [10 points.]

Find the Laurent expansions around $z = 0$ of the meromorphic function

$$f(z) = \frac{z}{z^2 - 4}$$

valid in different regions of the complex plane.
Problem 2. [10 points.]

Let \(a, b \neq 0 \) be real numbers and let \(U \) be a connected open set. Let \(f : U \to \mathbb{C} \) be a holomorphic function. Show that if \(a \Re f + b \Im f \) is constant, then \(f \) is constant.
Problem 3. [20 points; 10, 10.]

Calculate the following integrals. Make sure you explain all the estimates you use in your calculation.

(i)
\[\int_0^{\infty} \frac{x^2 \, dx}{(x^2 + 1)(x^2 + 4)}. \]
(ii)

\[\int_0^\infty \frac{\cos ax}{(x^2 + b^2)^2} \, dx, \quad \text{for } a, b > 0. \]
Problem 4. [10 points.]

Let γ_n be the boundary of the rectangle with corners
\[\pm \left(n + \frac{1}{2} \right) \pm i \left(n + \frac{1}{2} \right) \]

Evaluate the integral
\[I_n = \int_{\gamma_n} \frac{1}{z^2 \sin \pi z} \, dz. \]

Next, show that $\lim_{n \to \infty} I_n = 0$ and deduce from here the identity
\[\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2} = -\frac{\pi^2}{12}. \]
Problem 5. [10 points.]

Let $f : \mathbb{C} \to \mathbb{C}$ be a non-constant holomorphic function. Show that $f(\mathbb{C})$ is dense in \mathbb{C}.
Problem 6. [10 points.]

Let f be a nonconstant continuous function in the closed unit disc $\overline{\Delta}$, holomorphic inside the unit disc Δ. Assume that

$$|f(z)| = 1 \text{ for all } |z| = 1.$$

Show that f must have at least one zero inside Δ.