Problem 1.

Using change of variables, find the area of the first quadrant region bounded by the curves
\[xy = 2, \ xy = 4, \ xy^3 = 1, \ xy^3 = 2. \]

Solution: We make the change of variables
\[u = xy, \ v = xy^3 \]
so that
\[2 \leq u \leq 4, \ 1 \leq v \leq 2. \]

We have
\[\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} y & x \\ y^3 & 3xy^2 \end{vmatrix} = 2xy^3 = 2v. \]

Therefore
\[\frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{2v}. \]

Thus
\[dx \ dy = \frac{1}{2v} \ du \ dv. \]

We find that the area is
\[\text{Area} = \int \int dx \ dy = \int_1^2 \int_2^4 \frac{1}{2v} \ du \ dv = \int_1^2 \frac{1}{2v} \ dv \cdot \int_2^4 \ du = \frac{1}{2} \ln v \bigg|_{v=1}^{v=2} \cdot u \bigg|_{u=2}^{u=4} = \ln 2. \]
Problem 2.

Using spherical coordinates, find the mass of the solid with density
\[\delta = z^3 \]
contained between the sphere
\[x^2 + y^2 + z^2 = 2 \]
and the cone
\[z = \sqrt{x^2 + y^2}. \]

Solution: The intersection between the cone and the sphere is
\[z = 1, \quad x^2 + y^2 = 1. \]
The vertex angle of the cone is \(\frac{\pi}{4} \) with the \(z \)-axis. In spherical coordinates, we have
\[0 \leq \rho \leq \sqrt{2}, \quad 0 \leq \phi \leq \frac{\pi}{4}, \quad 0 \leq \theta < 2\pi. \]
The density is
\[\delta = z^3 = \rho^3 \cos^3 \phi. \]
The integral to be computed is
\[\int \int \int \delta \, dV = \int_{0}^{1} \int_{0}^{\frac{\pi}{4}} \int_{0}^{2\pi} \rho^3 \cos^3 \phi \cdot \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta. \]
Separating variables, the integral becomes
\[\int_{0}^{\sqrt{2}} \rho^5 \, d\rho \cdot \int_{0}^{\frac{\pi}{4}} \cos^3 \phi \sin \phi \, d\phi \cdot \int_{0}^{2\pi} \, d\theta. \]
We have
\[\int_{0}^{\sqrt{2}} \rho^5 \, d\rho = \frac{1}{6} \rho^6 \big|_{\rho=0}^{\sqrt{2}} = \frac{4}{3}. \]
Similarly,
\[\int_{0}^{\frac{\pi}{4}} \cos^3 \phi \sin \phi \, d\phi = -\frac{1}{4} \cos^4 \phi \big|_{\phi=0}^{\frac{\pi}{4}} = \frac{1}{4} \left(1^4 - \left(\frac{1}{\sqrt{2}} \right)^4 \right) = \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{16}. \]
Finally, \(\int_{0}^{2\pi} \, d\theta = 2\pi \). Putting everything together, the mass becomes
\[\frac{4}{3} \cdot \frac{3}{16} \cdot 2\pi = \frac{\pi}{2}. \]
Problem 3.

Using cylindrical coordinates, find the volume of the solid between by the sphere

\[x^2 + y^2 + z^2 = 2 \]

and the paraboloid

\[z = x^2 + y^2. \]

Solution: The intersection of the sphere and paraboloid can be found by solving the two equations simultaneously:

\[x^2 + y^2 + z^2 = 2, \quad z = x^2 + y^2 \implies z + z^2 = 2 \implies z = 1, \quad x^2 + y^2 = 1. \]

In cylindrical coordinates, we have

\[dV = dz \ (r \ dr) \ d\theta. \]

Clearly,

\[0 \leq r \leq 1, \quad 0 \leq \theta \leq 2\pi. \]

To find the limits for \(z \), we fix \(r \), and we see that

\[r^2 \leq z \leq \sqrt{2 - r^2}. \]

The integral is

\[
\int_0^{2\pi} \int_0^1 \int_{r^2}^{\sqrt{2-r^2}} dz \ r \ dr \ d\theta = 2\pi \int_0^1 (\sqrt{2-r^2} - r^2) r \ dr = 2\pi \left(\int_0^1 r \sqrt{2-r^2} \ dr - \int_0^1 r^3 \ dr \right) \\
= 2\pi \left(\frac{(2 - r^2)^{3/2}}{-2 \cdot \frac{3}{2}} \bigg|_{r=1} - \frac{1}{4} \right) = 2\pi \left(\frac{2^{3/2} - 1}{3} - \frac{1}{4} \right) = \frac{\pi}{6} \left(8\sqrt{2} - 7 \right).
\]
Problem 4.

Calculate the volume of the set $S \subset \mathbb{R}^5$ given by

$$x^2 + y^2 + z^2 + t^2 + w^{2n} \leq 1.$$

In order to carry out the calculation, we may need the volume of the unit ball in \mathbb{R}^4 computed in class to be $\beta_4 = \frac{\pi^2}{2}$.

Solution: Clearly $-1 \leq w \leq 1$. As w is kept fixed, the slice of the solid S for fixed w is simply the ball

$$x^2 + y^2 + z^2 + t^2 \leq 1 - w^{2n}.$$

This is a four dimensional ball of radius $(1 - w^{2n})^{\frac{1}{2}}$. The volume of the ball in \mathbb{R}^4 of radius R is $\frac{\pi^2}{2} R^4$. For the cross section, the volume is therefore

$$\frac{\pi^2}{2} (1 - w^{2n})^4.$$

The five dimensional volume of A is

$$\frac{\pi^2}{2} \int_{-1}^{1} (1-w^{2n})^2 \, dw = \pi^2 \int_{0}^{1} (1-w^{2n})^2 \, dw = \pi^2 \int_{0}^{1} (1-2w^{2n}+w^{4n}) \, dw = \pi^2 \left(1 - \frac{2}{2n+1} + \frac{1}{4n+1} \right).$$
Problem 5.

(i) Consider $X \subset \mathbb{R}$ a set of measure 0. Show that $X \times [0, 1]$ is also of measure zero in \mathbb{R}^2.

(ii) Let $f : [0, 1] \rightarrow \mathbb{R}$ and $g : [0, 1] \rightarrow \mathbb{R}$ be integrable functions. Let $h : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ be the function with separated variables

$$h(x, y) = f(x) \cdot g(y).$$

Using the integrability theorem stated in class and the properties of sets of measure zero, prove that h is integrable as well.

(iii) Show that the upper Riemann sums are related by

$$U_N(h) = U_N(f) \cdot U_N(g).$$

Conclude from here the separation of variables formula

$$\int_0^1 \int_0^1 h(x, y) \, dx \, dy = \left(\int_0^1 f(x) \, dx \right) \cdot \left(\int_0^1 g(y) \, dy \right).$$

Solution:

(i) Since X is of measure 0, for each $\epsilon > 0$, we can cover X by intervals $B_1, B_2, \ldots, B_k, \ldots$ such that

$$\sum_k \text{vol}_1(B_k) < \epsilon.$$

We can therefore cover $X \times [0, 1]$ by the boxes

$$B_1 \times [0, 1], B_2 \times [0, 1], \ldots, B_k \times [0, 1], \ldots$$

which have total volume

$$\sum_k \text{vol}_2(B_k \times [0, 1]) = \sum_k \text{vol}_1(B_k) \cdot \text{vol}_1([0, 1]) = \sum_k \text{vol}_1(B_k) < \epsilon.$$

This verifies the definition of the fact that $X \times [0, 1]$ has measure zero in \mathbb{R}^2.

(ii) If the set of discontinuities for f is denoted by X and the set of discontinuities for g is denoted by Y, then by the integrability theorem, X and Y have measure 0 since f, g are integrable.

Now, if

$$h(x, y) = f(x)g(y)$$

is discontinuous at (x, y) then either f is discontinuous at x or g is discontinuous at y, because otherwise f, g would be both continuous at x and y, hence so will their product. This means that

$$(x, y) \in X \times [0, 1] \cup [0, 1] \times Y.$$

This set has measure zero since it is the union of two sets $X \times [0, 1]$ and $[0, 1] \times Y$ which we know to have measure zero by part (i).
Furthermore, since \(f \) and \(g \) are integrable, \(f \) and \(g \) must be bounded. Thus the product function \(h \) must be bounded as well.

Since \(h \) is bounded and continuous away from a set of measure zero, it must be integrable.

(iii) This problem is proved in the book in Chapter 4.1. We argue that

\[
U_N(h) = U_N(f) \cdot U_N(g).
\]

Indeed, we have

\[
U_N(h) = \sum_C \sup_{(x,y) \in C} h(x,y) \cdot \left(\frac{1}{2^N}\right)^2.
\]

Any dyadic square \(C \) appearing in the sum above can be written as \(C = D \times E \) where \(D, E \) are the two dyadic intervals that give the two sides. Clearly

\[
\sup_{(x,y) \in C} h(x,y) = \sup_{(x,y) \in D \times E} f(x) \cdot g(y) = \sup_{x \in D} f(x) \cdot \sup_{y \in E} g(y).
\]

Thus

\[
U_N(h) = \sum_{D,E} \sup_{x \in D} f(x) \cdot \sup_{y \in E} g(y) \cdot \left(\frac{1}{2^N}\right)^2 = \left(\sum_{D} \sup_{x \in D} f(x) \cdot \frac{1}{2^N}\right) \cdot \left(\sum_{E} \sup_{y \in E} g(y) \cdot \frac{1}{2^N}\right)
\]

\[
= U_N(f) \cdot U_N(g).
\]

Making \(N \to \infty \), we have

\[
\lim_{N \to \infty} U_N(h) = \lim_{N \to \infty} U_N(f) \cdot \lim_{N \to \infty} U_N(g),
\]

or equivalently,

\[
\int_0^1 \int_0^1 h(x,y) \, dx \, dy = \left(\int_0^1 f(x) \, dx\right) \cdot \left(\int_0^1 f(y) \, dy\right).
\]