HOMEWORK 2 SOLUTIONS

4.5.6. (a) Note that the smallest \(n \)-dimensional cube containing the \(n \)-dimensional unit sphere is the \(n \)-fold product

\[[-1,1] \times \cdots \times [-1,1] \]

which has volume \(2^n \). We need to show that the sequence \(\frac{\beta_n}{2^n} \) is decreasing. Indeed, this amounts to proving that for \(n \geq 2 \), we have

\[\frac{\beta_n}{2^n} < \frac{\beta_{n-1}}{2^{n-1}} \iff \beta_n < 2\beta_{n-1}. \]

We have seen in class that

\[\beta_n = c_n \beta_{n-1}, \]

so it suffices to show that

\[c_n < 2. \]

We have

\[c_n = \frac{n-1}{n} c_{n-2} \]

as shown in class, hence

\[c_n < c_{n-2}. \]

Therefore, for \(n \) odd we have

\[c_n < c_{n-2} < c_{n-4} < \ldots < c_1 = 2. \]

For \(n \) even,

\[c_n < c_{n-2} < c_{n-4} < \ldots < c_2 = \frac{1}{2} c_0 = \frac{1}{2} \cdot \pi < 2. \]

We can show even more, namely that the above sequence decreases to 0 i.e.

\[\lim_{n \to \infty} \frac{\beta_n}{2^n} = 0. \]

To this end, we will consider the even and odd terms separately. For \(n \) even, \(n = 2k \), we have

\[\frac{\beta_n}{2^n} = \frac{\pi^k}{2^{2k} \cdot k!} = \left(\frac{\pi}{4} \right)^k \cdot \frac{1}{k!} \to 0, \]

where in the limit above we used that \(\frac{\pi}{4} < 1 \), hence \((\pi/4)^k \to 0 \), while \(k! \to \infty \).

By a similar argument using the formula for \(\beta_n \) for \(n = 2k + 1 \) odd, we have

\[\frac{\beta_{2k+1}}{2^{2k+1}} = \frac{\pi^k k!}{(2k+1)!} = \frac{\pi^k}{(k+1) \cdots (2k+1)} < \frac{\pi^k}{4^k} \to 0. \]

By the squeeze theorem, the odd terms also converge to 0.
We conclude that
\[\frac{\beta_n}{2^n} \to 0, \quad \text{as} \quad n \to \infty. \]

(b) \(n = 9 \) (use a calculator)
(c) \(n = 18 \) (use a calculator)
(d) We note that:
\[\frac{\beta_{2(k+1)}}{\beta_{2k}} = \frac{\pi^{k+1}}{\frac{k!}{(k+1)!}} = \frac{\pi}{k+1} \]
and that \(\frac{\pi}{k+1} < 1 \) for \(k \geq 3 \). In other words, if \(k \geq 3 \), then
\[\beta_{2(k+1)} < \beta_{2k}, \]
and so the maximum cannot occur at \(\beta_{2k} \) for \(k \geq 4 \). Similarly, using formula for \(\beta_n \) for \(n \) odd, we get that the maximum cannot occur at \(\beta_{2k+1} \) for \(k \geq 3 \). Combining the two cases together gives that the maximum cannot occur at \(\beta_n \) for \(n \geq 7 \). Thus all we must do is evaluate \(\beta_n \) for \(1 \leq n \leq 6 \) (using a calculator) and determine which is largest; the largest is \(\beta_5 = 5.263789014 \ldots \).

4.5.12. (a) We assume \(a > 0 \). The limits of integration give us the region
\[D : 0 \leq x \leq a, \quad x^2 \leq y \leq a^2. \]
The region looks like a “right triangle” with vertices \((0,0), (0,a^2)\) and \((a,a^2)\), except that the “hypotenuse” connecting \((0,0)\) to \((a,a^2)\) is part of the parabola \(y = x^2 \). Assuming the integrability hypotheses of Fubini’s Theorem are satisfied (they are), by Fubini’s Theorem the given iterated integral equals
\[\int \int_D \sqrt{y}e^{-y^2}dA. \]

Side Remark: If the region \(D \) is bounded, and if the function \(f(x,y) \) is bounded and continuous on the interior of \(D \), then the integrability hypotheses of Fubini’s Theorem are satisfied.

(b) The region \(D \) from part (a) can be written as a horizontally simple region:
\[D : 0 \leq y \leq a^2, \quad 0 \leq x \leq \sqrt{y}. \]

Therefore, by Fubini’s Theorem, the given iterated integral and the above integral are both equal to
\[\int_0^{a^2} \left(\int_0^{\sqrt{y}} \sqrt{y}e^{-y^2}dx \right)dy. \]
(c) The above integral equals:
\[
\int_0^{a^2} \left[x \sqrt{y e^{-y^2}} \right]_{x=0}^{\sqrt{7}} dy = \int_0^{a^2} ye^{-y^2} dy = \left[\frac{-1}{2} e^{-y^2} \right]_{y=0}^{a^2} = \frac{1}{2} \left(1 - e^{-a^4} \right).
\]

4.5.16. To integrate the absolute value of the function \(f(x, y) \) over a region \(D \), break up \(D \) into two parts: the part where \(f \) is positive and the part where \(f \) is negative, then do each integral separately.

In our case the region \(D \) is the unit square \(0 \leq x \leq 1, 0 \leq y \leq 1 \). Let:
\[
A = \{(x, y) \in D \mid y - x^2 \geq 0\}, \quad B = \{(x, y) \in D \mid y - x^2 \leq 0\}.
\]
Note that \(A \) is the region from Exercise 4.5.12 with \(a = 1 \), and \(B \) is the remaining part of the unit square. We then have that
\[
\int \int_D \left| y - x^2 \right| dA = \int \int_A \left| y - x^2 \right| dA + \int \int_B \left| y - x^2 \right| dA =
\int \int_A (y - x^2) dA + \int \int_B (x^2 - y) dA.
\]
Note that \(A \) and \(B \) are both vertically simple regions:
\[
A: 0 \leq x \leq 1, \ x^2 \leq y \leq 1, \quad B: 0 \leq x \leq 1, \ 0 \leq y \leq x^2.
\]
Therefore, by Fubini’s Theorem, the desired integral is then equal to
\[
\int_0^1 \int_0^{x^2} (y - x^2) dy dx + \int_0^1 \int_0^{x^2} (x^2 - y) dy dx =
\int_0^1 \int_{x^2}^{1} y^2 - x^2 dy dx + \int_0^1 \int_0^{x^2} x^2 y - \frac{x^2}{2} y^2 dx =
\int_0^1 \left(\frac{1}{2} x^2 - x^4 + \frac{4}{2} x^4 \right) dx + \int_0^1 \left(x^4 - \frac{x^4}{2} \right) dx =
\int_0^1 \left(x^4 - x^2 + \frac{1}{2} \right) dx = \left[\frac{x^5}{5} - \frac{x^3}{3} + \frac{x^1}{2} \right]_{x=0}^{1} = \frac{11}{30}.
\]

Problem 3. We have
\[
\int \int_D 3y \ dy \ dx = \int_0^1 \int_0^3 3y \ dy dx + \int_1^\frac{\sqrt{7}}{3} \int_0^\frac{\sqrt{7}}{3} 3y \ dy dx = \int_0^1 \left[\frac{3y^3}{2} \right]_0^{\frac{\sqrt{7}}{3}} dx + \int_1^\frac{\sqrt{7}}{3} \left[\frac{3y^3}{2} \right]_0^{\frac{\sqrt{7}}{3}} dx =
\int_0^1 \left(\frac{27 - 3x^2}{2} \right) dx + \int_1^\frac{\sqrt{7}}{3} \left(\frac{3 - 3x^3}{2x} \right) dx = \left[\frac{27x - x^3}{2} \right]_0^{\frac{\sqrt{7}}{3}} + \left[\frac{3 \ln |x| - x^3}{2x} \right]_1^{\frac{\sqrt{7}}{3}} = 1 + 3 \ln 3.
\]

Problem 4. Reversing the order of integration, we obtain
\[
\int_0^4 \int_0^{\sqrt{4-x}} x \, dy \, dx.
\]

We evaluate the first integral:

\[
\int_0^2 \int_0^{4-y^2} x \, dx \, dy = \int_0^1 \left[\frac{x^2}{2} \right]_0^{4-y^2} dy = \int_0^2 \frac{16 - 8y^2 + y^4}{2} \, dy = \frac{1}{2} \left[\frac{240y - 40y^3 + 3y^5}{15} \right]_0^2 = \frac{128}{15}.
\]

Similarly,

\[
\int_0^4 \int_0^{\sqrt{4-x}} x \, dy \, dx = \int_0^4 \left[\frac{xy}{2} \right]_0^{\sqrt{4-x}} dx = \int_0^4 x\sqrt{4-x} \, dx = \int_0^4 (4-u)\sqrt{u} \, du = \left[\frac{8}{3}u^{3/2} - \frac{2}{5}u^{5/2} \right]_0^4 = \frac{128}{15}.
\]