Math 20D - Fall 2008 - Final Exam

(A.) **Modelling** with differential equations:
- (i) savings account and mixture problems: \(\frac{dQ}{dt} = \text{rate in} - \text{rate out} \).

(B.) First order equations
- (i) Linear equations:
 \[y' + p(t)y = q(t). \]
 * Solve by **integrating factors**. Bring the equation in standard linear form;
 * Integrating factor
 \[u(t) = \exp \left(\int p(t) \, dt \right) \]
 * Multiply by \(u \), rewrite the equation as
 \[(uy)' = uq. \]
- (ii) Nonlinear equations
 * **Separable**
 \[\frac{dy}{dx} = f(x)g(y). \]
 Separate variables, then integrate.
 * **Autonomous equations**
 \[\frac{dy}{dx} = f(y). \]
 Equilibrium solutions are the roots of \(f \).
 * **Exact**
 \[M(x, y) + N(x, y)y' = 0. \]
 Check exactness:
 \[M_y = N_x. \]
 Find a function \(f \) such that \(f_x = M, f_y = N \). Set \(f = \text{constant} \).

(C1.) Second order **homogeneous equations**
- (i) General facts:
 * **superposition**: if \(y_1, y_2 \) are solutions, \(c_1y_1 + c_2y_2 \) is also a solution.
 * **fundamental pair of solutions**: the Wronskian
 \[W(y_1, y_2)(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix} \neq 0. \]
 For a fundamental pair, the general solution is
 \[y = c_1y_1 + c_2y_2. \]
 * **Abel’s theorem**
 \[W(y_1, y_2) = C \exp \left(- \int p(t) \, dt \right). \]
- (ii) **Constant coefficient equations**: \(p(t) = p, q(t) = q \).
 * Characteristic equation \(r^2 + pr + q = 0 \).
 * If the roots \(r_1, r_2 \) are real, then the fundamental solutions are
 \[y_1 = e^{r_1t}, y_2 = e^{r_2t}. \]
* Complex roots: fundamental solutions are the real and imaginary part of e^{rt}. If $r_1 = \alpha + i\beta$, then
 \[
y_1 = e^{\alpha t} \cos \beta t, \quad y_2 = e^{\alpha t} \sin \beta t.
 \]
* Repeated roots $r_1 = r_2 = \alpha$, fundamental solutions
 \[
y_1 = e^{\alpha t}, \quad y_2 = te^{\alpha t}.
 \]

(C2) **Inhomogeneous second order** equations.
(i) General solution
 \[
y = y_p + y_h,
 \]
 where y_p is the particular solution, y_h is the homogeneous solution.
(ii) Find a particular solution by **undetermined coefficients**
 \[
y'' + py' + qy = g(t).
 \]
 Three cases: $g(t)$ can be exponential, trigonometric, polynomial.
 * For $g(t)$ polynomial, look for y_p as a polynomial with undetermined coefficients. Try to
guess its degree first.
 * For trigonometric $g(t)$, look for $y_p = A \cos t + B \sin t$.
 * For exponential case $g(t) = e^{at}$, use
 \[
y_p = \frac{e^{at}}{f(a)}
 \]
 with $f(a) = a^2 + pa + q$. If $f(a) = 0$, look for $y_p = e^{at} (A + Bt)$ for undetermined A, B.
 * For a term $g(t) = e^{at} \times$ polynomial or trigonometric function, substitute $y = e^{at}u$, find
 the differential equation for u using the D-notation, then solve for u by undetermined
 coefficients.
(iii) Alternatively, you may use **variation of parameters**
 \[
y = u_1(t)y_1(t) + u_2(t)y_2(t)
 \]
 where
 \[
u_1(t) = -\int \frac{y_2(t)g(t)}{W(y_1, y_2)} dt, \quad u_2(t) = \int \frac{y_1(t)g(t)}{W(y_1, y_2)} dt.
 \]

(D) **First order systems** of equations $x' = Ax$.
(i) Find **eigenvalues** λ of A:
 \[
det(A - \lambda I) = 0
 \]
or alternatively for 2×2 matrices
 \[
\lambda^2 - \lambda \text{Tr}A + \det A = 0.
 \]
 Eigenvectors are found by solving the system
 \[
(A - \lambda I)v = 0.
 \]
(ii) Finding solutions: find eigenvalues λ_1, λ_2 with eigenvectors v_1 and v_2. General solution
 \[
x = c_1 e^{\lambda_1 t}v_1 + c_2 e^{\lambda_2}v_2.
 \]
(iii) Repeated eigenvalues $\lambda_1 = \lambda_2 = \lambda$.
 * **Defective case**: one eigenvector v. Solutions
 \[
x_1 = e^{\lambda t}v, \quad x_2 = e^{\lambda t}(\alpha + tv)
 \]
 where α is a generalized eigenvector
 \[
(A - \lambda I)\alpha = v.
 \]
(iv) **Phase portraits**.
 * saddles: real eigenvalues of opposite sign,
 * nodes (sink or source): real distinct eigenvalues of same sign,
* spiral (sink or source) complex eigenvalues. To find the direction of spirals compute the velocity vector at a point on the trajectory.
* improper nodes: repeated eigenvalues.

(v) **Fundamental matrix**

\[\Psi(t) = [x_1 \ x_2] . \]

The Wronskian is the determinant of the fundamental matrix

\[W(x_1, x_2) = \det \Psi(t). \]

The normalized fundamental matrix / **matrix exponential**:

\[\Phi(t) = \Psi(t)\Psi(0)^{-1} = e^{At}. \]

Solution to IVP \(x' = Ax \) and \(x(0) = x_0 \) is

\[x = e^{At}x_0. \]

(vi) **Decoupling systems** and diagonalization. Let

\[T = \Psi(0) = [v_1 \ v_2] . \]

Then

\[T^{-1}AT = D \]

is diagonal. Applications:
* Solve systems

\[x' = Ax + b. \]

Look for \(x = Ty \) where \(y \) satisfies the decoupled system

\[y' = Dy + T^{-1}b. \]

(E) **Series solutions.**

(i) Radius of convergence.
(ii) Finding the recurrence relations between the coefficients.

(F) **Laplace transform.**

(i) When \(f \) has exponential growth,

\[f \sim F(s) = \int_0^\infty e^{-st} f(t) \, dt. \]

(ii) Laplace transforms of the standard functions:

\[1 \sim \frac{1}{s}, \quad t^n \sim \frac{n!}{s^{n+1}}, \quad e^{at} \sim \frac{1}{s-a}, \quad e^{at}f(t) \sim F(s-a) \]

\[\sin(at) \sim \frac{a}{s^2+a^2}, \quad \cos(at) \sim \frac{s}{s^2+a^2}. \]

(iii) Solving differential equations with Laplace transform:

\[f' \sim sF(s) - f(0), \]

\[f'' \sim s^2F(s) - sf(0) - f'(0). \]

(iv) Discontinuous functions:

\[u_a(t) \sim \frac{e^{-sa}}{s}, \quad u_a(t)f(t-a) \sim e^{-sa}F(s). \]