PATH INTEGRALS ON MANIFOLDS

LARS ANDERSSON AND BRUCE K. DRIVER

Abstract. A typical path integral is a formal expression of the form
\[\frac{1}{Z} \int f(x)e^{-E(x)}dx \]
where \(\mathcal{F} \) is a space of maps from one manifold to another, \(f \) is a real valued function on \(\mathcal{F} \), \(E(x) \) is the energy of the map \(x \), \(dx \) is "Lebesgue measure" and \(Z \) is a normalization constant. The use of path integrals for "quantizing" classical mechanical systems (whose classical energy is \(E \) started with Feynman in [2] with very early beginnings being traced back to Dirac [1]. Path integrals are still heavily used by physicists for both the quantum mechanics of elementary particles and more recently for conjecturing new topological invariants of manifolds. In this talk, I will discuss joint work with Lars Andersson, on defining the path integral in Eq. (1) when \(\mathcal{F} \) is the space of continuous maps \((x) \) from \([0,T]\) to a compact Riemannian manifold \((M)\) and \(E(x) \) is the standard Riemannian energy of the path \(x \). The idea is to approximate \(\mathcal{F} \) by finite dimensional subspaces consisting of broken geodesics and then to pass to the limit of finer and finer approximations. This method of defining (1) leads to a quantum mechanical system whose Hamiltonian is of the form \(H = -\frac{1}{2} \Delta + \kappa Scal \), where \(\Delta \) is the Laplacian on \(M \), \(Scal \) is the scalar curvature of \(M \) and \(\kappa \) is a constant which depends on how one interprets \(dx \).

References

[1] P. A. M. Dirac, Physikalische Zeitschrift der Sowjetunion 3 (1933), 64.

Department of Mathematics, Royal Institute of Technology, S-100 44 Stockholm, Sweden
E-mail address: lars@math.kth.se

Department of Mathematics, 0112, University of California, San Diego, La Jolla, CA 92093-0112
E-mail address: driver@euclid.ucsd.edu

Date: July 19, 2000 File:ucsd2000.tex.
Possible UCSD 2000 Talk, August 2000.