Homework #6

1. Show the Adams-Moulton methods are all stable.

2. Consider the method
 \[x_{n+1} = x_n + \frac{h}{2} [f_{n+1} + f_n] \]
 applied to the initial value problem
 \[
 \begin{cases}
 x' = f(t, x), & a \leq t \leq b \\
 x(a) = \alpha
 \end{cases}
 \]
 (a) Show the method is consistent.
 (b) Let \(x(t) \) be the exact solution of the initial value problem. Show
 \[
 x(t_{n+1}) - x(t_n) - \frac{h}{2} [f(t_{n+1}, x(t_{n+1})) + f(t_n, x(t_n))] = O(h^m)
 \]
 for some \(m \).
 (c) Thus, what is the order of the local truncation error for the multistep method? Verify this order is \(\geq 2 \), which is required for consistency.

3. Determine if the multistep method
 \[x_{n+1} = x_{n-1} + 2hf_n \]
 is convergent.

4. Discuss the stability and consistency of the multistep methods:
 (a) \[x_{n+1} - x_n = h \left[\frac{3}{5} f_{n+1} + \frac{19}{24} f_n - \frac{5}{24} f_{n-1} + \frac{1}{24} f_{n-2} \right] \]
 (b) \[x_{n+1} + 4x_n - 5x_{n-1} = h [4f_n + 2f_{n-1}] \]
 (c) \[x_{n+1} - 3x_n + 2x_{n-1} = h [f_{n+1} + 2f_n + f_{n-1} - 2f_{n-2}] \]

5. A multistep method is called weakly stable if \(p \) has a zero \(\lambda \) satisfying: \(\lambda \neq 1, |\lambda| = 1 \), and \(q(\lambda) < \lambda p'(\lambda) \). Show Milne’s method,
 \[x_{n+1} - x_{n-1} = h \left[\frac{1}{3} f_{n+1} + \frac{4}{3} f_n + \frac{1}{3} f_{n-1} \right], \]
 is weakly stable.

6. A multistep method is called strongly stable if \(p(1) = 0, p'(1) \neq 0 \), and all other roots \(z \) of \(p \) satisfy \(|z| < 1 \). Which of the methods in problem 4 are strongly stable?
7. (Matlab) Consider the initial value problem
\[
\begin{align*}
\dot{x} &= 0, \quad t \geq 0 \\
x(0) &= 1
\end{align*}
\]
Program up the multistep method
\[x_{n+1} + 4x_n - 5x_{n-1} = h[4f_n + 2f_{n-1}]\]
applied to the initial value problem satisfying:

- Input: stepsize \(h \); initial guess at 0, \(x_0 \); initial guess at \(h \), \(x_1 \); \(N \).
- Output: \(x_i \), for \(i = 0, \ldots, N \).

(a) Write out or print out your program.
(b) Run your program with \(h = 0.01 \), \(x_0 = 1 \), \(x_1 = 1 \), \(N = 100 \) and print out a plot of the \(x_i \). Are these approximate values close to the exact solution, \(x(t) = 1 \)?
(c) Run your program with \(h = 0.01 \), \(x_0 = 1 \), \(x_1 = 1.0001 \), \(N = 10 \) and print out a plot of the \(x_i \). Also look at what happens with larger \(N \). Are these approximate values close to \(x(t) = 1 \)?