Problem set 6

Do for Friday, May 11.

1. Prove that the family \(\{ \sin nx, n = 1, 2, 3 \ldots \} \) is not equicontinuous on the interval \([-1, 1]\).

2. Prove that the family of all polynomials of degree \(\leq N \) with coefficients in the interval \([-1, 1]\) is uniformly bounded and equicontinuous on any compact interval.

3. For any continuous, real valued function \(f \) on \([0, 1]\), let \(F_f(x) = \int_0^x f(t) \, dt \). Show that the set of functions
 \[\mathcal{F} = \{ F_f : \|f\| \leq 1 \} \]
 is bounded and equicontinuous.

4. Give an example of a metric space \(X \) and a sequence of functions \(\{f_n\} \) on \(X \) such that \(\{f_n\} \) is equicontinuous but not uniformly bounded.

5. Give an example of a uniformly bounded and equicontinuous sequence of functions on \(\mathbb{R} \) which does not have any uniformly convergent subsequences.

6. Let \(X \) be a metric space such that \(X = \bigcup_{n=1}^{\infty} K_n \), where each \(K_n \) is compact and such that any bounded open set \(U \) is contained in \(K_n \) for some \(n \). (An example is \(X := \mathbb{R}^k \) with \(K_n := \{ x \in \mathbb{R}^n : \|x\| \leq n \} \).)
 Let \(\{f_j\} \) be a sequence of functions which are pointwise bounded on \(X \) and whose restriction to any \(K_n \) is equicontinuous. Show that there exists a subsequence \(\{f_{n_j}\} \) that converges to a continuous function on \(X \).
 Hint: Use a diagonal trick.