#11: Show that \(\{\text{cis} \, k : k \text{ a non-negative integer} \} \) is dense in \(T = \{z \in \mathbb{C} : |z| = 1\} \). For which values of \(\theta \) is \(\{\text{cis}(k\theta) : k \text{ a non-negative integer} \} \) dense in \(T \)?

To show that \(\{\text{cis} \, k : k \text{ a non-negative integer} \} \) is dense in \(T \), we need only show that the closure of \(\{\text{cis} \, k : k \text{ a non-negative integer} \} = T \). Observe that cis \(k \) consists of infinitely many points on the unit circle. (Repetition could only occur if \(k = j + 2\pi l \), for some integer \(l \) and \(2\pi \notin \mathbb{Z}. \)) We claim that the closure of that set will consist of the unit circle itself, which is precisely \(T \).

To prove this claim, though, we shall prove a stronger statement. Namely, we shall prove:

The set \(\{\text{cis}(2\pi k \theta)\} \) is dense in \(T \) if and only if \(\theta \) is irrational. \((*)\)

Notice that in the case where \(\theta = 1/2\pi \), we have precisely the problem above.

Define \(\text{frac}(x) = x - \lfloor x \rfloor \), where \(\lfloor x \rfloor \) denotes the floor of \(x \).

Showing \((*)\), is equivalent to showing the following:

The sequence \(\text{frac}(\theta), \text{frac}(2\theta), \ldots \) is dense in \([0, 1)\) if and only if \(\theta \) is irrational. \((**)\)

The equivalence follows from the fact that cis \(2\pi k \theta\) is determined by the value \(2\pi k \theta\). So, we essentially want to show that the angle is dense on the interval \([0, 2\pi)\). However, we need to consider \(2\pi k \theta \pmod{2\pi}\), since the unit circle wraps around.

Dividing through by \(2\pi\), we are left with showing that \(k \theta \pmod{1} \) is dense in \([0, 1)\), which is precisely what \((**)\) looks to be establish with the same if and only if statement.

Before we prove \((**\), we shall prove some lemmas.

Lemma 1: If \(\theta \) is irrational and \(n \neq m \), then \(\text{frac}(n\theta) \neq \text{frac}(m\theta) \).

Proof: Suppose not. That is, suppose \(\text{frac}(n\theta) = \text{frac}(m\theta) \). Then we have that \(n\theta - \lfloor n\theta \rfloor = m\theta - \lfloor m\theta \rfloor \), i.e. \((n - m)\theta = \lfloor n\theta \rfloor - \lfloor m\theta \rfloor \), i.e. \(\theta = \frac{\lfloor n\theta \rfloor - \lfloor m\theta \rfloor}{n - m} \in \mathbb{Q} \), which is a contradiction to \(\theta \) being irrational, which completes the proof. Note: We used the fact that \(n \neq m \) to ensure that the denominator is non-zero. \(\blacksquare\)
Lemma 2: Suppose $\theta \in [0, 1)$ is irrational. Then for all $\epsilon > 0$, there exists $h, k \in \mathbb{Z}^+$ such that $|k\theta - h| < \epsilon$.

Proof: Subdivide $[0, 1)$ into half-open intervals of equal length less than ϵ. By Lemma 1, two of the fractional parts lie in the same subinterval. That is, there exists $n, m \in \mathbb{Z}^+$ (with $n \neq m$) such that $|\text{frac}(n\theta) - \text{frac}(m\theta)| < \epsilon$. (This follows from the Pigeonhole Principle.)

Thus, we have that $|(n-m)\theta - (\lfloor n\theta \rfloor - \lfloor m\theta \rfloor)| < \epsilon$. Letting $k = n - m$ and $h = \lfloor n\theta \rfloor - \lfloor m\theta \rfloor$, we complete the proof. ■

Now we have all of the necessary machinery to prove (**).

One direction is trivial. If $\theta \in \mathbb{Q}$, then $\{\text{frac}(n\theta): n \in \mathbb{Z}^+\}$ is finite and thus cannot be dense in T. (A finite subset of \mathbb{C} is closed and therefore cannot be dense in an infinite set.)

Suppose θ is irrational. Without loss of generality, we may suppose $\theta \in [0, 1)$. Indeed, we may replace θ with $\text{frac}(\theta)$ after noticing that $\text{frac}(n\theta) = \text{frac}(n \text{frac}(\theta))$.

Let $\epsilon > 0$ be given and $\alpha \in [0, 1)$. We need to find an integer m such that $|\text{frac}(m\theta) - \alpha| < \epsilon$, since this will show that $\{\text{frac}(n\theta): n \in \mathbb{Z}^+\}$ is dense in $[0, 1)$.

Using the notation from Lemma 2, suppose that $k\theta > h$. (The argument is almost identical in the case $k\theta < h$.)

Choose the largest $N \in \mathbb{Z}^+$ such that $\text{frac}(k\theta) < 1/N$. Consider the sequence:

$0, \text{frac}(k\theta), \text{frac}(2k\theta), \ldots, \text{frac}(Nk\theta)$.

In light of $\text{frac}(mk\theta) = m\text{frac}(k\theta)$ if and only if $\text{frac}(k\theta) < 1/m$, we see that the above sequence is increasing and equally-spaced with common difference $\text{frac}(k\theta)$.

(The equal spacing is readily apparent and the increasing property follows from the fact that the sequence is never greater than 1.)

Thus, we have subdivided the unit interval into $N + 1$ subintervals with the following partition: $[0, \text{frac}(k\theta)), [\text{frac}(k\theta), \text{frac}(2k\theta)), \ldots, [\text{frac}(Nk\theta), 1)$.

Since α lies in one of the subintervals above, it suffices to show the following claim.
Claim: \([0, \frac{k}{q}), \frac{2k}{q}, \ldots \frac{Nk}{q}, 1) \) divides \([0, 1)\) into subintervals of length less than \(\epsilon \).

Proof: By the proof of Lemma 2, we have that the first \(N \) subintervals have length \(\frac{k}{q} < \epsilon \). Thus, we need only consider the last subinterval.

By the def. of \(N \), we have that
\[
N \frac{k}{q} > \frac{N}{N+1} = 1 - \frac{1}{N+1} .
\]
This implies that
\[
0 < 1 - \frac{Nk}{q} < \frac{1}{N+1} < \frac{k}{q} < \epsilon ,
\]
proving the claim and completing the proof. ■

Thus, we have shown that the sequence \(\frac{q}{k}, \frac{2q}{k}, \ldots \) is dense in \([0, 1)\) if and only if \(\theta \) is irrational. From our discussion earlier, though, this is equivalent to showing that the set \(\{\text{cis}(2\pi k\theta)\} \) is dense in \(T \) if and only if \(\theta \) is irrational. ■

By the proof of the slightly more general theorem, we see that \(\{\text{cis}(k\theta)\} \) will be dense in \(T \) provided \(\theta \neq 0 \) or \(\theta \neq m\pi/n \), where \(m, n \in \mathbb{Z} \). This ensures that then \(k\theta \) will never be equal to \(2\pi \), thereby ensuring that \(\text{cis}(k\theta) \) maps to infinitely many points on the unit circle. And by the proof of (**), we have that the set will be dense in \(T \). ■

Pg 17

#4: Prove the following generalization of Lemma 2.6. If \(\{D_j: j \in J\} \) is a collection of connected subsets of \(X \) and if for each \(j \) and \(k \) in \(J \) we have \(D_j \cap D_k \neq \emptyset \), then \(D = \bigcup \{D_j: j \in J\} \) is connected.

If we suppose that \(J \) is countable (which may not be the case), then we can apply the following inductive argument. A general proof for the case when \(J \) may not be countable appears afterwards.

For this first (incomplete) proof, suppose that \(J \) is countable. We shall proceed via induction on \(|J| \), the number of \(D_j \). Let \(S = \{\{D_j: j \in J\} \) is a collection of connected subsets of \(X \) and if for each \(j \) and \(k \) in \(J \) we have \(D_j \cap D_k \neq \emptyset \), then \(D = \bigcup \{D_j: j \in J\} \) is connected\}.\]

Notice that \(1 \in S \), trivially. We also have that \(2 \in S \), since if \(D_1 \cap D_2 \neq \emptyset \), then there exists a point \(x_{1,2} \in D_1 \cap D_2 \). By Lemma 2.6, we have that \(D = D_1 \cup D_2 \) is connected.
Suppose that \(n \in S \) for some \(n \). We want to show that \(n + 1 \in S \) as well. Consider a collection \(\{D_j : j \in J\} \) of connected subsets of \(\mathcal{X} \), where \(|J| = n + 1 \). Consider \(D = \bigcup \{D_j : j \in J\} \). Let \(D_{1\ldots n} = D_1 \cup D_2 \cup \ldots \cup D_n \). By the inductive hypothesis, we have that \(D_{1\ldots n} \) is connected. We can rewrite \(D \) as \(D = D_{1\ldots n} \cup D_{n+1} \).

Since \(D_j \cap D_k \neq \emptyset \) for all \(j, k \), we have that \(D_{1\ldots n} \cap D_{n+1} \neq \emptyset \). Thus, there exists a point \(x_{1\ldots n,n+1} \in D_{1\ldots n} \cap D_{n+1} \). Again, by Lemma 2.6, we have that \(D_{1\ldots n} \cup D_{n+1} \) is connected, which completes the inductive hypothesis and hence the proof.

Essentially, we can draw a series of line segments through each \(x_{jk} \), passing through the \(D_j \), thus connecting them. ■

![Figure 1](image-url): An illustration of how the \(D_j \) may be connected via line segments

Now, suppose we do not have any restriction on \(J \). That is, \(J \) is only an index set.

Let \(A \) be a subset of the metric space \((\mathcal{D}, d)\) that is both open and closed and suppose that \(A \neq \emptyset \). Our goal is to show that \(A = \mathcal{D} \), since that implies that \(\mathcal{D} \) is connected.

\(A \cap D_j \) is open in \((\mathcal{D}_j, d)\) for each \(j \) and also \(A \cap D_j \) is closed in \((\mathcal{D}_j, d)\). (These statements follow from Exercises 1.8 and 1.9, respectively.)

Since \(D_j \) is connected, then either \(A \cap D_j = \emptyset \) or \(A \cap D_j = D_j \). Since \(A \neq \emptyset \), we know that there exists at least one \(k \) such that \(A \cap D_k \neq \emptyset \), i.e. \(A \cap D_k = D_k \).

By hypothesis, there exists \(x_{jk} \in D_j \cap D_k \) for all \(j, k \in J \).

This implies that \(x_{jk} \in D_k = A \cap D_k \) and \(x_{jk} \in D_j \), i.e. \(x_{jk} \in A \cap D_k \cap D_j \), which implies that \(x_{jk} \in A \cap D_j \).

Hence, we have that \(A \cap D_j \neq \emptyset \). Thus, it must be that \(A \cap D_j = D_j \). We can continue this process for each index \(j \). Thus, \(A \cap D_j = D_j \), i.e. \(D_j \subseteq A \) for each index \(j \).

This gives that \(D = A \), which shows that \(D \) is connected. ■
#5: Show that if $F \subset X$ is closed and connected, then for every pair of points a, b in F and each $\epsilon > 0$, there are points z_0, z_1, \ldots, z_n in F with $z_0 = a, z_n = b$ and $d(z_{k-1}, z_k) < \epsilon$ for $1 \leq k \leq n$. Is the hypothesis that F be closed needed? If F is a set which satisfies this property then F is not necessarily connected, even if F is closed. Give an example to illustrate this.

Fix a. Let $\epsilon > 0$. Consider $A = \left\{ z \in F : \exists \{z_j\}_{j=0}^n \text{ with } z_0 = a, \ldots, z_n = z \text{ s.t. } d(z_j, z_{j+1}) < \epsilon' \right\}$. Our goal is to show that $A = F$, so we need to show A is both open and closed in F and $A \neq \emptyset$. Observe that $a \in A$, so we have that $A \neq \emptyset$.

To show A is open in F, consider $B(z, \epsilon)$. We want to show that $B(z, \epsilon) \cap F \subseteq A$. This follows from the fact that if we can find a path from a to z, then we can find a path to a point, say x, in $B(z, \epsilon)$ by adding one more path from z to x. Since $d(z, x) < \epsilon$, we have that the conditions of inclusion in A are met. Thus, A is open in F.

To show that A is closed in F, we shall show that $A^C \subseteq F$ is open. Given $x \in A^C$, we need to show that $B(x, \epsilon) \subseteq A^C$. Consider $y \in B(x, \epsilon)$. We claim that $y \in A^C$.

Suppose not. Then $y \in A$. Since $d(x, y) < \epsilon$, by the same argument for why A is open, we have that there is a path from a to x via y, hence $x \in A$. But this is a contradiction, hence $y \in A^C$, which implies that $B(x, \epsilon) \subseteq A^C$, i.e. A^C is open in F. Thus A is also closed in F. So, we conclude that $A = F$ and hence connected.

Note: We did not need the hypothesis that F is closed in this proof.

As a counterexample, consider $F = \{0\} \cup \left\{ \frac{2k+1}{2^j} : j, k \in \mathbb{Z^+}, \ 2k+1 \leq 2^j \right\}$. For any $\epsilon > 0$, we can find dyadic rationals such that $d(z_i, z_{i+1}) < \epsilon$, but F is not connected. ■

Pg 20

#5: Show that every convergent sequence in (X, d) is a Cauchy sequence.

Suppose $\{x_n\} \xrightarrow{\text{w}} x$ is a convergent sequence in (X, d). Then for every $\epsilon > 0$, there exists an integer N such that $d(x, x_n) < \epsilon/2$ whenever $n \geq N$.

Recall, a sequence $\{x_n\}$ is a Cauchy sequence if for every $\epsilon > 0$, there is an integer N such that $d(x_n, x_m) < \epsilon$, for all $n, m \geq N$.

Consider $d(x_n, x_m)$. By the fourth property of metric spaces (the triangle inequality), we have $d(x_n, x_m) \leq d(x_n, x) + d(x, x_m) < \epsilon/2 + \epsilon/2 = \epsilon$, for all $n, m \geq N$, as desired. ■
#8: Suppose \(\{x_n\} \) is a Cauchy sequence and \(\{x_{n_k}\} \) is a subsequence that is convergent. Show that \(\{x_n\} \) must be convergent.

Suppose \(\{x_n\} \) is a Cauchy sequence and \(\{x_{n_k}\} \) is a subsequence that is convergent, say to \(x \).

By the definition of convergence, for all \(\epsilon > 0 \), there exists an integer \(K \) such that for all \(n_k \geq K \), \(d(x_{n_k}, x) < \epsilon/2 \).

By the definition of a Cauchy sequence, there exists an integer \(N \) such that for all \(n, n_k \geq N \), \(d(x_n, x_{n_k}) < \epsilon/2 \).

Let \(N' = \max\{K, N\} \)

For all \(n \geq N' \), we have \(d(x_n, x) \leq d(x_n, x_{n_k}) + d(x_{n_k}, x) < \epsilon/2 + \epsilon/2 = \epsilon \), where the first \(\epsilon/2 \) comes from the fact that we have a Cauchy sequence and the second \(\epsilon/2 \) comes from the fact that we have a convergent sequence.

Thus, we have that for all \(\epsilon > 0 \), there exists an integer \(N' \) such that \(d(x_n, x) < \epsilon \) whenever \(n \geq N' \).
Additional Problems to Look At and Know

Pg 13

#2: Which of the following subsets of \(\mathbb{C} \) are open and which are closed: (a) \(\{ z : |z| < 1 \} \); (b) the real axis; (c) \(\{ z : z^n = 1 \text{ for some integer } n \geq 1 \} \); (d) \(\{ z \in \mathbb{C} : z \text{ is real and } 0 \leq z < 1 \} \); (e) \(\{ z \in \mathbb{C} : z \text{ is real and } 0 \leq z \leq 1 \} \)?

(a) \(\{ z : |z| < 1 \} \) is open. ■

(b) the real axis is closed; \(x \in (-\infty, \infty) \). (It is not open since any ball is not completely contained in the interval.) It is closed because a limit of real numbers converges to a real number. ■

(c) \(\{ z : z^n = 1 \text{ for some integer } n \geq 1 \} \) is closed, since it consists of a finite set of points. If \(z = r \text{cis} \theta \), then \(z^n = r^n \text{cis}(n\theta) \). Since \(z^n = 1 \), we have that \(z^n = \text{cis}(n\theta) \), which consists only of (finitely many, actually \(n \)) points on the unit circle. ■

(d) \(\{ z \in \mathbb{C} : z \text{ is real and } 0 \leq z < 1 \} \) is neither open or closed, since the left endpoint is included but the right endpoint is not. ■

(e) \(\{ z \in \mathbb{C} : z \text{ is real and } 0 \leq z \leq 1 \} \) is closed, since both endpoints are included. ■
#3: If \((X, d)\) is any metric space, show that every open ball is, in fact, an open set. Also, show that every closed ball is a closed set.

Let \(x\) and \(r\) be fixed. Consider \(B(x, r) = \{y \in X : d(x, y) < r\}\).

Suppose that \(y \in B(x, r)\). We want to show that there exists \(\epsilon > 0\) such that \(B(y, \epsilon) \subseteq B(x, r)\).

Since \(y \in B(x, r)\), there exists a positive number \(\epsilon\) such that \(d(x, y) = r - 2\epsilon\). For all points \(s\) such that \(d(y, s) < \epsilon\), we have that \(d(x, s) \leq d(x, y) + d(y, s) < r - 2\epsilon + \epsilon = r - \epsilon < r\), so we have that \(s \in B(x, r)\). Thus, \(B(x, r)\) is open.

A pictorial description appears to the right. ■

Let \(x\) and \(r\) again be fixed. Consider \(\overline{B}(x, r) = \{y \in X : d(x, y) \leq r\}\). To show that \(\overline{B}(x, r)\) is a closed set, we need to show that \(\overline{B}(x, r)^C = \{y \in X : d(x, y) > r\}\) is open.

That is, we want to show that there exists \(\epsilon > 0\) such that \(B(y, \epsilon) \subseteq \overline{B}(x, r)^C\).

Suppose that \(y \in \overline{B}(x, r)^C\). Thus, there exists \(\epsilon > 0\) such that \(d(x, y) = r + 2\epsilon\). By the triangle inequality, we have that \(d(x, y) \leq d(x, s) + d(s, y)\), i.e. \(d(x, s) \geq d(x, y) - d(y, s)\). For all points \(s\) such that \(d(y, s) < \epsilon\), we have that \(d(x, s) \geq d(x, y) - d(y, s) = r + 2\epsilon - \epsilon = r + \epsilon > r\), so we have that \(s \in \overline{B}(x, r)^C\). Thus, \(\overline{B}(x, r)^C\) is closed.

Again, a pictorial description appears to the right. ■

1.11 Proposition. Let \((X, d)\) be a metric space. Then:

(a) The sets \(X\) and \(\emptyset\) are closed;

(b) If \(F_1, \ldots, F_n\) are closed sets in \(X\), then so is \(\bigcup_{k=1}^n F_k\);

(c) If \(\{F_j : j \in J\}\) is any collection of closed sets in \(X\), \(J\) any indexing set, then \(\bigcap_{j \in J} F_j\) is also closed.

#5: Prove Proposition 1.11.

We begin with the following, useful lemma.
Lemma 3: Let $\{F_k\}$ be a (finite or infinite) collection of sets F_k. Then

(i) $\left(\bigcup_{k} F_k\right)^C = \bigcap_{k} (F_k)^C$ and (ii) $\left(\bigcap_{k} F_k\right)^C = \bigcup_{k} (F_k)^C$

Proof: If $x \in \left(\bigcup_{k} F_k\right)^C$, then $x \notin \bigcup_{k} F_k$, hence $x \notin F_k$ for any k, hence $x \in (F_k)^C$ for every k, so that $x \in \bigcap_{k} (F_k)^C$. Thus, we have that $\left(\bigcup_{k} F_k\right)^C \subseteq \bigcap_{k} (F_k)^C$.

Conversely, if $x \in \bigcap_{k} (F_k)^C$, then $x \notin (F_k)^C$ for every k, hence $x \notin F_k$ for any k, hence $x \notin \bigcup_{k} F_k$, so that $x \in \left(\bigcup_{k} F_k\right)^C$. Thus, $\left(\bigcup_{k} F_k\right)^C \supseteq \bigcap_{k} (F_k)^C$.

It follows that $\left(\bigcup_{k} F_k\right)^C = \bigcap_{k} (F_k)^C$, which completes the proof of (i). ■

To prove (ii), we take the complement of both sides of (i) and replace F_k with $(F_k)^C$. ■

(a) Recall, a set is closed if its complement is open. Since $X^C = \emptyset$ and $\emptyset^C = X$, each of which is open, we have that both X and \emptyset are closed. ■

(b) By Lemma 3(i), $\left(\bigcup_{k} F_k\right)^C = \bigcap_{k} (F_k)^C$ and $(F_k)^C$ are open, since F_k are closed.

Thus, Proposition 1.9(b) implies that $\left(\bigcup_{k=1}^{n} F_k\right)^C = \bigcap_{k=1}^{n} (F_k)^C$ is open as well. Thus, we have that $\bigcup_{k=1}^{n} F_k$ is closed, as desired. ■

(c) By Lemma 3(ii), $\left(\bigcap_{k} F_k\right)^C = \bigcup_{k} (F_k)^C$ and $(F_k)^C$ are open, since F_k are closed.

Thus, Proposition 1.9(c) implies that $\left(\bigcap_{k} F_k\right)^C = \bigcup_{k} (F_k)^C$ is open as well. Thus, we have that $\bigcap_{k} F_k$ is closed, as desired. ■
I.6.7 \[d(z, z') = \frac{2|z - z'|}{\sqrt{(1 + |z|^2)(1 + |z'|^2)}} \]

I.6.8 \[d(z, \infty) = \frac{2}{\sqrt{1 + |z|^2}} \]

#7: Show that \((\mathbb{C}_\infty, d)\) where \(d\) is given by (I.6.7) and (I.6.8) is a metric space.

To show that \((\mathbb{C}_\infty, d)\) is a metric space, we need to show that \(d\) satisfies:

(i) \(d(z, z') \geq 0\) and \(d(z, z') = 0\) if and only if \(z = z'\).
\(d(z, \infty) \geq 0\) and \(d(z, \infty) = 0\) if and only if \(z = \infty\).

Notice that \(d(z, z') \geq 0\) from its construction. \(d(z, z') = 0\) iff \(|z - z'| = 0\), which happens if and only if \(z = z'\).

Similarly, \(d(z, \infty) \geq 0\) and if we consider the limit as \(z \rightarrow \infty\), we see that \(d(z, \infty) = 0\) if and only if \(z = \infty\), since the denominator heads towards infinity. ■

(ii) \(d(z, z') = d(z', z)\) and \(d(z, \infty) = d(\infty, z)\).

\[d(z, z') = \frac{2|z - z'|}{\sqrt{(1 + |z|^2)(1 + |z'|^2)}} = \frac{2|-(z' - z)|}{\sqrt{(1 + |z'|^2)(1 + |z|^2)}} = \frac{2|z' - z|}{\sqrt{(1 + |z'|^2)(1 + |z|^2)}} = d(z', z). \]

And we have that \(d(z, \infty) = d(\infty, z)\) by its construction. ■

(iii) \(d(z, z'') \leq d(z, z') + d(z', z'')\),
\(d(z, z'') \leq d(z, \infty) + d(\infty, z'')\),
\(d(z, \infty) \leq d(z, z') + d(z', \infty)\).

These follow immediately from the fact that this metric represents the Euclidean distance between the stereographic images on the Riemann sphere and the triangle inequality holds for Euclidean distance. ■
#3: Which of the following subsets \(X \) of \(\mathbb{C} \) are connected: if \(X \) is not connected, what are its components? (a) \(X = \{ z : |z| \leq 1 \} \cup \{ z : |z - 2| < 1 \} \), (b) \(X = [0, 1) \cup \left\{ 1 + \frac{1}{n} : n \geq 1 \right\} \), (c) \(X = \mathbb{C} - (A \cup B) \), where \(A = [0, \infty) \) and \(B = \{ z = r \text{cis} \theta : r = \theta, 0 \leq \theta \leq \infty \} \)?

(a) \(|z| \leq 1 \) defines a unit disk centered at the origin while \(|z - 2| < 1 \) defined a unit disk (without its perimeter) centered at \((2, 0)\). The subset is connected via the point \((1, 0)\). Thus, we have that \(X = \{ z : |z| \leq 1 \} \cup \{ z : |z - 2| < 1 \} \) is connected. ■

(b) \(X = [0, 1) \cup \left\{ 1 + \frac{1}{n} : n \geq 1 \right\} \) is not connected. \(\lim_{n \to \infty} 1 + \frac{1}{n} = 1 \not\in [0,1) \). If the two pieces were to be connected, they would meet at the point \(x = 1 \). ■

(c) \(X = \mathbb{C} - (A \cup B) \) is not going to be connected. Notice that \(X = \{ \text{shaded region} \} \). If we only considered \(\mathbb{C} - B \), then this would be connected. The subtraction of half of the real axis ensures that we will have a set of spirals, none of which are connected to each other. ■
#4: Let \(z_n, z \) be points in \(\mathbb{C} \) and let \(d \) be the metric on \(\mathbb{C}_\infty \). Show that \(|z_n - z| \to 0 \) if and only if \(d(z_n, z) \to 0 \). Also show that if \(|z_n| \to \infty \), then \(\{z_n\} \) is Cauchy in \(\mathbb{C}_\infty \). (Must \(\{z_n\} \) converge in \(\mathbb{C}_\infty \)?)

Looking at I.6.7, it is clear that if \(|z_n - z| \to 0 \), then \(d(z_n, z) \to 0 \). Similarly, for I.6.8, if \(z = \infty \), then if \(|z_n - \infty| \to 0 \), then \(d(z_n, \infty) \to 0 \).

In I.6.7, suppose that \(|z_n - z| \not\to 0 \). We want to show that \(d(z_n, z) \not\to 0 \) as well. There are two cases to consider: (i) \(|z_n - z| \to \infty \) (which necessarily implies that \(|z_n| \to \infty \)) and (ii) \(|z_n - z| \to L \), where \(0 < L < \infty \) (which implies that \(|z_n| \) is finite).

For (i), \(d(z_n, z) = \frac{2|z_n - z|}{\sqrt{(1 + |z_n|^2)(1 + |z|^2)}} \geq \frac{2|z_n| - 2|z|}{1/|z_n|} = \frac{2 - 2(|z|/|z_n|)}{\sqrt{\left(1/|z_n|^2 + 1\right)(1 + |z|^2)}} \). As \(n \to \infty \), we have that \(\frac{2 - 2(|z|/|z_n|)}{\sqrt{\left(1/|z_n|^2 + 1\right)(1 + |z|^2)}} \to \frac{2}{\sqrt{(1 + |z|^2)}} > 0 \), so we have that \(d(z_n, z) \not\to 0 \). For (ii), since \(|z_n - z| \not\to 0 \), it suffices to verify that the denominator \(\sqrt{(1 + |z_n|^2)(1 + |z|^2)} < \infty \). However, since \(z \) is fixed and \(|z_n| \) is finite, we are done.

In I.6.8, notice that if \(d(z_n, \infty) \to 0 \), then it must be that \(z_n \to \infty \), i.e. \(|z_n - \infty| \to 0 \).

Now, suppose \(|z_n| \to \infty \). We want to show that for \(n, m \) sufficiently large, then we have that \(d(z_n, z_m) < \epsilon \) for any \(\epsilon > 0 \). Let \(\epsilon > 0 \) be fixed. By the triangle inequality, \(d(z_n, z_m) \leq d(z_n, \infty) + d(\infty, z_m) = \frac{2}{\sqrt{1 + |z_n|^2}} + \frac{2}{\sqrt{1 + |z_m|^2}} \). Since \(|z_n| \to \infty \), there exists \(N_1 \) such that \(\frac{2}{\sqrt{1 + |z_n|^2}} < \frac{\epsilon}{2} \) for all \(n > N_1 \). Similarly, since \(|z_m| \to \infty \), there exists \(N_2 \) such that \(\frac{2}{\sqrt{1 + |z_m|^2}} < \frac{\epsilon}{2} \) for all \(m > N_2 \). Let \(N = \max \{N_1, N_2\} \). Then \(d(z_n, z_m) \leq \epsilon/2 + \epsilon/2 = \epsilon \) for all \(m, n > N \). \(\blacksquare \)
#6: Give three examples of non-complete metric spaces.

We want to find a metric space \((X, d)\) such that there exists a Cauchy sequence that does \textit{not} have a limit in \(X\).

1. Let \(X = \mathbb{Q}\), with the standard metric of absolute value. Consider the (Cauchy) sequence defined by \(x_1 = 1\), \(x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n}\). The limit, \(x\), of the sequence would need to satisfy \(x^2 = 2\). No rational number solves this equation. ■

2. Let \(X = \mathbb{R}\setminus\{0\}\), again with the standard metric. Consider the (Cauchy) sequence \(\{1/n^2, \, n = 1, 2, \ldots\}\). The limit of this sequence is 0, which is not in \(X\). ■

3. Let \(X\) be the open interval \((0, 1)\), again with the standard metric. In a similar fashion as in (2), consider the (Cauchy) sequence \(\{1/n, \, n = 2, 3, \ldots\}\). The limit of this sequence is 0, which is not in the interval. ■

#7: Put a metric \(d\) on \(\mathbb{R}\) such that \(|x_n - x| \to 0\) if and only if \(d(x_n, x) \to 0\), but that \(\{x_n\}\) is a Cauchy sequence in \((\mathbb{R}, \, d)\) when \(|x_n| \to \infty\). (Hint: Take inspiration from \(C_{\infty}\).)

Let \(d(x_n, x) = \frac{2|x_n - x|}{\sqrt{(1 + |x_n|^2)(1 + |x|^2)}}\). The desired properties hold based on the results from Problem #4 (above). ■