1 Notation

In the problems below,

- \(G \) represents a graph on \(n \) vertices, with vertex set \(V \) and edge set \(E \).
- \(A \) represents the adjacency matrix of \(G \).
- \(D \) represents the diagonal degree matrix of \(G \).
- \(L \) represents the combinatorial Laplacian of \(G \), so \(L = D - A \).
- \(\mathcal{L} \) represents the (normalized) Laplacian of \(G \), so \(\mathcal{L} = I - D^{-1/2}AD^{-1/2} \).

Problem 1. Find examples of families of graphs with different eigenvectors for \(A \), \(L \), and \(\mathcal{L} \) (that is, show that the three spectra are fundamentally different).

Problem 2 (*). Find two nonisomorphic graphs that are cospectral with respect to \(A \). Find two nonisomorphic graphs that are cospectral with respect to \(L \).

31 March 2011

Here we define \(P = D^{-1}A \), the probability transition matrix for a random walk on \(G \), and \(\pi \) to be the stationary distribution of such a walk. We further define the following three measures of the distance between \(P^t \) and the stationary distribution \(\pi \):

\[
\Delta_{TV}(t) = \max_{u \in V} \max_{A \subseteq V} \sum_{v \in A} \left| \sum_{u \in V} \chi_u P^t(v) - \pi(v) \right|,
\]

\[
\Delta(t) = \max_{u, v \in V} \frac{|\chi_u P^t(v) - \pi(v)|}{\pi(v)},
\]

\[
\Delta_{\chi}(t) = \max_{u} \left(\sum_{v \in V} \frac{(\chi_u P^t(v) - \pi(v))^2}{\pi(v)} \right)^{1/2}.
\]

Problem 1. Prove that

\[
\Delta_{TV}(t) = \frac{1}{2} \max_{u \in V} \sum_{v \in V} |\chi_u P^t(v) - \pi(v)|.
\]

Problem 2. Prove that \(\Delta(t) \geq \Delta_{\chi}(t) \).
Problem 3. Complete the proof (begun in class) that
\[\Delta(t) \leq \max_{u,v \in V} \frac{\bar{\lambda} \| \chi_u D^{-1/2} \| \| \chi_v D^{1/2} \|}{d_v \text{Vol}(G)}, \]
where \(0 = \lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_{n-1} \) are the eigenvalues of \(\mathcal{L} \) and
\[\bar{\lambda} = \max_{i \neq 0} |1 - \lambda_i|. \] (1)

Problem 4. Prove that the eigenvector corresponding to the eigenvalue 0 of \(\mathcal{L} \) is given by
\[\varphi_0(v) = \sqrt{d_v / \text{Vol}(G)}. \]

5 April 2011
Here we define
\[\| P^t \|_r = \max_u \left(\sum_v \pi(v) \left(\frac{P^t(u,v) - \pi(v)}{\pi(v)} \right)^r \right)^{1/r}. \]
Notice, then, that using the definitions given in the previous lecture, \(\| P^t \|_1 = 2\Delta TV(t), \| P^t \|_2 = \Delta \chi(t), \) and \(\| P^t \|_\infty = \Delta(t). \)

Problem 1. Prove that if \(r \leq s, \| P^t \|_r \leq \| P^t \|_s. \)

Problem 2. Given \(\epsilon > 0 \) and \(\bar{\lambda} \) as in (??), prove that if \(\| P^t \|_1 < \epsilon, \) then \(t > \frac{1}{ \lambda_{\text{min}} \log(1/\epsilon)}. \)

7 April 2011
Problem 1. Use the Rayleigh quotient to prove the following facts about the spectrum of \(\mathcal{L} \):
 1. \(\lambda_{n-1} \leq 2 \) (Hint: use the fact that \((a - b)^2 \leq 2(a^2 + b^2) \))
 2. \(G \) is bipartite if and only if \(\lambda_{n-1} = 2 \)
 3. If \(G \) is bipartite, and \(\lambda_i \) is an eigenvalue, then \(2 - \lambda_i \) is also an eigenvalue of equal multiplicity.

Problem 2. Find the spectrum of \(C_n \) and a corresponding orthonormal eigenbasis. More generally, find the eigenvalues of any symmetric cyclic matrix.

Problem 3 (*). If \(D \) is the diameter of a \(k \)-regular graph \(G \), prove that \(\lambda_1 \leq 1 - \frac{2\sqrt{k-1}}{k} (1 - \frac{2}{D}) + \frac{2}{D}. \)

Problem 4 (**). Develop a bound for \(\lambda_1 \), similar to the Alon-Boppana bound (above) for general graphs.