
UNIVERSITY OF CALIFORNIA, SAN DIEGO
~

Parallel Algorithms for Group

Word Problems

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Mathematics

by

David Robinson

Committee in charge:

Professor Samuel Buss, Chair
Professor John Evans
Professor Christos Papadmitriou
Professor Ramamohan Paturi
Professor Jeffrey Remmel

1993

The dissertation of David Robinson is approved, and it

is acceptable in quality and form for publication on
microfilm:

Chair

University of California, San Diego

1993

111

TABLE OF CONTENTS

Signature Page. .

Table of Contents

Vita, Publications, and Fields of Study

Abstract ..

I Introduction

II Preliminaries..
A. Languages, Machines, Circuits
B. Basic Group Theory
C. Circuits for Word Problems ..

III Finite Groups ..

IV Uniform Circuits.
A. Oracle Turing Machines.
B. Functions in Uniform Teo
C. Equivalence to Previous Uniformity Definitions

V Group Extensions

VI Free Groups ...

VII Nilpotent Groups and Extensions
A. Nilpotent Groups
B. Groups of Polynomial Growth Rate

VIII Polycyclic Groups

IX Other Groups

X Conclusion..

Bibliography .

Vl

III

Vl

VB

Vlll

1

4
4

10
15

17

23
23
29
33

40

45

61
61
70

74

80

86

1

July 1, 1961

1983

1984-1985

1985-1987

1988-1989

1990

1990-1992

1991

1993

VITA

Born, San Diego, California

B.A. University of California, Berkeley

Computer Programmer, Sperry Corp., San Diego, Cali­
fornia

Software Engineer, Merdan Group, San Diego, California

Teaching Assistant, Department of Mathematics, Univer­
sity of California, San Diego

M.A., University of California, San Diego

Teaching Assistant, Department of Mathematics, Univer­
sity of California, San Diego

Candidate in Philosophy
University of California, San Diego

Doctor of Philosophy
University of California, San Diego

PUBLICATIONS

"Parallel algorithms for nilpotent groups, polycyclic groups and extensions", in prepa­
ration.

VII

ABSTRACT OF THE DISSERTATION

Circuit Complexity of Group

Word Problems

by

David Robinson

Doctor of Philosophy in Mathematics

University of California, San Diego, 1993

Professor Samuel R. Buss, Chair

Given a set of generators, the word problem for a group is to determine whether

a string of generators represents the identity element. The subject of this dissertation

is boolean circuit algorithms for word problems. Of particular interest is the very low

level complexity class TCo, which consists of languages recognizable by families of

0(1)-depth polynomial-size threshold circuits. TCo is a subclass of NCI. The word

problems of polycyclic groups are shown to be in TCo. The M-group word problems

are shown to be in N CI. Uniform circuit families are explored as well. A method

of describing uniform families of threshold circuits is developed. The word problems

of solvable groups whose growth function is polynomially bounded is shown to be

in uniform-TCo, (The growth function f(n) of a group with respect to a given

set of generators is the number of elements definable by a string of length ~ n.)

This includes the class of finitely generated nilpotent groups. The word problems of

nonsolvable groups of polynomial growth are shown to be complete for NCI. The

word problems of nonabelian free groups are shown to be hard for N Cl, (these are

also known as the 2-sided Dyck languages). Polynomial-size almost log-depth circuits

are given for the word problems for free groups. Context-free groups and groups

constructed by free products and extensions are discussed.

V11l

Chapter I

Introduction

The word problem for a group G is one of the three fundamental decision

problems in combinatorial group theory formulated by Max Dehn in 1911. If G is

generated by {a, b, c, ... } then a word is defined to be a sequence of symbols from

{a, b, c, ... } U {a -1, b- 1, c- 1 , ••• }. If we view the string as a product then every word

represents a group element. The word problem for G is to determine for arbitrary

word w whether w represents the identity element of G. The subject of this thesis

is the computational complexity of the word problems of some well known classes of

groups with respect to certain models of parallel computation.

In 1986, Barrington {3] showed a class of finite group word problems to be

complete (in the sense of a many-one reduction) for the parallel complexity class

N Cl. N Cl is the set of predicates that are recognizable by polynomial size, O(log n)

depth bounded fanin boolean circuits. The class of groups that were shown to be

complete were the finite non solvable groups, (the name "nonsolvable" does not in

any way relate to algorithmic unsolvability). Further, Barrington showed that the

word problems of solvable finite group are in a subclass (conjectured to be proper but

not known) of NCI which is called ACCo, In this way the property of nonsolvability

can be said to characterize the class NC1,

A separate issue in the theory of circuit complexity is that of circuit unifor­

mity. Since an individual circuit only handles inputs of a fixed length, it is necessary

1

2

to have a family of circuits, (one for each possible' input length), to recognize general

languages. Loosely speaking, a family of circuits is "uniform" if a description of the

ith circuit of the family is easily computed. In Ruzzo [30] various versions of unifor­

mity are compared and one very natural definition has the consequence that uniform

NCl= Alogtime, (time O(log n) on an alternating Turing machine). In Barrington,

Immerman and Straubing [5] these definitions are extended to some subclasses of

NCt defined in terms of unbounded fanin circuit models, including ACCo and a class

that lies between NCt and ACCo called TCo. TCo consists of predicates recognized

by families of polynomial size, 0(1) depth unbounded fanin threshold circuits (cir­

cuits that in addition to the usual AND, OR, and NOT have M AJOR/TY gates

which output 1 if at least half their inputs are 1). In chapter 4 the issue of uniformity

is taken up in depth. There, a different approach to uniformity based on an alter­

nating Turing machine with oracles is presented which is equivalent to the previous

definitions but perhaps easier to use.

The main goal of our research has been to extend the results of [3] into the

domain of infinite groups. Since there exist solvable and nonsolvable infinite groups

with undecidable word problem [7] [18] one cannot find an immediate analogue. Our

main results are the classification of two large and important classes, the nilpotent

groups and the polycyclic groups, both of which are defined in a manner that is

similar in form to the solvable. The canonical examples of the nilpotent groups are

the groups of upper triangular matrices with 1 's along the diagonal. The polycyclic

groups are exactly those solvable groups that are isomorphic to integer matrix groups.

Chapter 2 consists mainly of definitions and background on group theory and

circuit algorithms.

Chapter 3 discusses the previous work on finite groups.

In chapter 4 a version of oracle Turing machine is defined and is used to define

a uniform version of constant depth reducibility, denoted $ucd. From this, uniform

ACCo and TCo are defined. These are denoted by uACCo and uTCo. It is proved

that this definition is equivalent to having the direct connection language recognizable

3

in Dlogtime.

The emphasis of our research has been on how the process of building groups

from other groups (extensions, free products, direct products, etc.) affects computa­

tional complexity. Chapter 5 looks at the problem of reducing the word problem for

a group to that of a normal subgroup.

Chapter 6 examines free groups and free products. There it is shown that

the word problem of a nonabelian free group is hard for Alogtime. Then polynomial

size, almost log depth circuits are presented for those groups. Lastly, the context-free

groups and free products are discussed.

The subject of chapter 7 is the nilpotent groups and their finite extensions. It

is shown that the word problems of finitely generated nilpotent groups are in uTCo.

The results of chapter 5 then allow this result to be extended to classify two classes of

groups characterized by their growth function h(n), which is defined to be the number

of elements of the group definable by a word of length::; n. For groups whose growth

function is bounded by a polynomial, it is shown that the word problems of the

solvable are in uTCo, and those of the nonsolvable are in Alogtime. The nonsolvable

polynomial growth groups are then shown to be complete for Alogtime.

In chapter 8 the word problems of polycyclic groups are shown to be in (not

necessarily uniform) TCo. Using this and the results of chapter 5 it is then shown

that the word problems of M-groups are in N Cl .

Chapter 9 discusses miscellaneous results including showing a group in none

of the above mentioned classes to be in TCo, and a recent result of Cai [9] concerning

hyperbolic groups. Finally, chapter 10 discusses open problems in the area.

Chapter II

Preliminaries

II.A Languages, Machines, Circuits

A number of terms need to be defined.

Languages. If E is some set, then E* is the set of finite length strings of

elements of E. The empty string is denoted by 1. If L ~ E* then L is a language

with alphabet E. The set of E-strings of length exactly p is denoted by EP, and the

set of E-strings whose length is a multiple of p is denoted by (EP)*. The length of

the string w is denoted by Iwl. The concatenation of strings wand x will usually

be denoted by wx, but sometimes for the sake of clarity by w 0 x. Two classes of

languages that will be of interest are the regular languages and the context-free

languages as defined in Hopcroft and Ullman [22].

Turing Machines. A basic knowledge of deterministic Turing machines (DTM),

nondeterministic Turing machines (NTM) and oracle Turing machines is assumed (see

[22]). A language that is accepted by some Turing machine is said to be decidable.

Another computation model is the alternating Turing machine (ATM) [10],

which generalizes the NTM. In an ATM each state is designated as either existential

or universal. As in an NTM, a configuration may have more than one successor. A

configuration is accepting if 1) it is existential and at least one successor configuration

is accepting or 2) it is universal and all successor configurations are accepting. An

4

5

ATM is defined to accept a string if its initial configuration is accepting. For the

applications considered here it will be necessary to allow the ATM (and in one case

the DTM as well) to access its input via an index tape. When the ATM enters a

special input state with a binary number i on its index tape, it accesses the contents

of the ith. input symbol.

Time and space bounded versions of all three types of machines are defined

in the usual way. From these, complexity classes of languages are defi1ed. The class

of languages recognized by deterministic (nondeterministic) machines whose space is

bounded by order of the log of the length of the input will be designated Dlogspace

(Nlogspace). The class P (resp. N P) is the class recognized by deterministic (resp.

nondeterministic) machines running in polynomial time. The class of languages rec­

ognized by deterministic machines using polynomial space is called P space. The class

of languages recognized by alternating Turing machines operating in time order of the

log of the length of the input will be called Alogtime.

Circuits. This dissertation will be more concerned with computation models

based on boolean circuits. In general, a circuit is a directed acyclic graph. Nodes

with no edges directed into them are input nodes. Nodes with no edges directed

out of them are output nodes. The inputs to the circuit, the outputs of the circuit,

and the inputs to each node are all considered to be ordered. Each noninput node

is labeled with a gate-type, which specifies a function f : {O,l}m {O, I}, where

m is the number of edges directed into the node. A circuit C with n input nodes

and p output nodes computes a function f : {O,l}m {O, l}p in the obvious way.

The size of a circuit is the number of nodes and the depth is the length of the

longest path from an input to an output. A circuit family C is a set of circuits

{CiheN such that Ci has i input nodes. Such a family of circuits computes a function

f : {O, 1}* {O, 1}* in the obvious way. If the range of f is {O, I} then C is said to

recognize the language f-1(1). We will also speak of languages over finite alphabets

other than {O, I} as being in these circuit classes. It will be understood that the

alphabets of these languages are encoded as {O, I} strings.

Various circuit complexity classes can be defined based on constraints on circuit

size (the number of edges), circuit depth (the length of the longest path from an

input to an output), the fanin (the number of inputs a node may have), and the

types of functions that an individual node may compute. NCk, ACk, and TCk are

all language classes in which a language is in the class if it is recognized by a family

of circuits {Ci heN such that the size of Cj is bounded by a polynomial in i, and

the depth of Cj is O(logk i). (These names of language classes will also be used to

denote the corresponding classes of circuit families.) The gates of the N C k circuits

are restricted to be of fanin 2, and they are allowed to compute only the boolean

functions AND, OR, and NOT. The gates of ACk circuits are restricted to these

same types but they are allowed to take arbitrarily large fanin. The gates of TCk

circuits may be as in ACk, with the addition of (unbounded fanin) M AJOR/TY

gates. Such a gate outputs 1 if and only if greater than or equal to half of its inputs

are L ACCk is defined to be the same as ACk with the addition of mod 9 gates for

one integer 9 per circuit family. (A mod 9 gate outputs 1 if and only if the number

of its inputs that equal 1 is a multiple of g.) Finally, the class N C is defined as

Uk eN NCk.

Some trivial inclusions are observed:

NCO c ACo c ACCo C TCo C NCI C ... C NCk C ACk C ACCk C TCk C ... C - - -.- - - ..-. - -
NC

Only the first two inclusions are known to be strict. (The class NCo is too restrictive

to be of interest and will not be mentioned further.)

As is often observed, all of these circuit classes contain nonrecursive sets. By

considering circuit families that are uniform, (meaning generally that a description

of Ci is an easily computable function of i) we can relate circuit complexity to Tur­

ing machine complexity. In Ruzzo [30] various versions of uniformity are compared

and one very natural definition has the consequence that uniform NCI is equal to

Alogtime. In Barrington, Immerman and Straubing [5] these definitions are extended

7

to some classes of unbounded fanin circuits that lie below N Cl. In the uniform setting

we have in addition to all the above inclusions:

ACO ~ ACCo ~ TCo ~ NC· = Alogtime Dlogspace ~ ACI ~ NC ~ P

Only the leftmost inclusion is known to be proper. In chapter 4 the issue of circuit

uniformity is taken up at length.

An important concept in complexity theory is that of reducibility. If L 1 and

L2 are languages and X is a complexity class, then Ll :S;X L2 means that there exists

an X-class machine/circuit family that maps elements of Ll to elements of L2 and

elements of L; to elements of L2. In this case we say that Ll is X -reducible to L2,

(in the many-one sense). If Ll :S;X L2 and L2 :S;X Ll then we write Ll =x L2 and

say that Ll and L2 are X -equivalent. If for all languages Ll in some complexity

class Y Ll <x L2, then L2 is said to be hard for Y with respect to X-reductions.

If additionally L2 E Y, then L2 is said to be complete for Y with respect to X­

reductions.

A particular many-one reduction we will use is the Dlogtime reduction, [8].

Such reductions use a DTM supplied with an index tape like that of the ATM. Suppose

f maps instances of problem Ql to problem Q2. Then f is a Dlogtime reduction if

i) for all x If(x)1 :s; p{lxl) for some polynomial p.

ii) the function j(x,i) = the ith character of f(x) is computable by a DTM in

time O(log Ixl) when i :s; p(lxl).

Another particularly simple many-one reduction will be called a homomor­

phic reduction. Suppose Ll ~ (Ei)*, L2 ~ (E~)*. We will write Ll :S;hom L2 when

Ll is reducible to L2 in the many-one sense via a function f : Ej ~ E2 with the

property that if W = W.W2 ... Wn with Wi E Ei then f(w) = f(Wl) 0 f(W2) 0 ... 0 f(wn),

with If(w,)1 = q. In other words, f maps blocks of size p to blocks of size q.

A different form of reduction is the constant-depth reduction. We write

Ll :S;cd L2 when Ll can be computed by a polynomial size, constant depth family of

unbounded fanin circuits using NOT, AND and OR gates and L2-gates. (An L2-gate

8

takes as input a sequence i and outputs 1 if and only if i E L2 -) If there is such a

circuit with the further restriction that at most one L2-gate appears in any path, then

Ll is constant depth truth table reducible to L 2 - This is denoted LI <cd-tt L2 -

Lemma 2.2:

(a) There is a Dlogtime algorithm to determine the length of the input string

in binary_

(b) if LI ::5hom L2 then Ll ::5Dlogtime L2-

(c) if Ll <Dlogtime L2 then LI ::5ACo L2-

(d) For all k > 0 the classes ACCk, ACk, TCk and NCk+1 are closed under

constant depth reducibility_

Proof: (a) The machine M writes 1, 10, 100, __ . successively on the index tape

querying the input along the way until a blank symbol is found, indicating that the

end of the input string has been surpassed. The last 0 is then erased and the index

tape head is returned to the left end. The index tape head then begins to move to

the right, changing each 0 to aI, querying the input, and changing the 1 back to a 0

if the accessed symbol is a blank. When the right end of the index string is reached

the length of the input will be written in binary on the index tape. The string can

then be copied onto a worktape. Clearly the number of steps performed is O(log n).

(b) Suppose LI ::5hom L2 via the function f with p and q as in the definition.

Two things need to be shown: that f is of polynomial growth rate and that j(x, i) is

computable in time O(log Ixl) on a DTM.

As for the growth rate: If(x)1 = ;Ixl and thus it is polynomial.

To compute j(x, i):

1) verify that i ; log Ixl
2) compute c = Li/qJ
3) compute d = (i mod q) + 1

4) put c + 1 on the index tape and read input characters Xc+b Xc+2, _ .. , X c+ p

recording the results in the finite control of the DTM

9

Step 1 can be done as in part (a). Steps 2, 3 and 4 are straightforwardly

computed in time linear in the length of i, thus linear in log Ixl.
(c) In computing the ith output bit of the reduction, at most O(log Ixl) input

bits can be accessed by a Dlogtime algorithm. Thus the ith output bit can be a

function of only that many input bits and it can be computed by a depth 3 DNF

circuit of size polynomial in Ixl. And since there are only polynomially many output

bits, it follows that the entire reduction circuit is polynomial size and depth 3.

(d) Suppose Ll $cd L2. If L2 E ACCk, ACk or TCk then a circuit of the

appropriate type that recognizes Ll can be constructed easily from L2-circuits and

the constant depth reduction circuit by simply substituting an L2-circuit in place of

every L2-gate. If L2 E NCk (for k ~ 1) then first transform the reduction circuit by

replacing all unbounded fanin ANDs and ORs with balanced trees of fanin 2 ANDs

and ORs. This may increase the depth from constant to O(1og n), where n is the

length of the input. Now as in the previous case replace the L2-gates with Lrcircuits

and we are left with a depth O(Iog n) + o (logk n) = O(logk n) circuit. In all cases it

is straightforward to see that the circuit size remains polynomial. 0

Previous work putting common functions of arithmetic into the circuit com­

plexity hierarchy is summarized in the next set of theorems. The functions Addition,

Multiplication and Division take two binary inputs and return one binary output.

The functions Iterated-Addition and Iterated-Multiplication take n n-bit binary

inputs and return respectively the (n + logn)-bit sum and n2-bit product. The func­

tion x mod m takes two binary inputs and returns the remainder of x ...;- m in binary.

Theorem 2.3 (see Chandra, Stockmeyer, Vishkin 1984 [llD:

(a) Multiplication =cd-tt Majority

(b) Iterated-Addition =cd-tt Majority

(c) Addition E ACo

Corollary 2.4:

(a) Multiplication E TCo

(b) Iterated-Addition E TCO

Proof: By lemma 2.2(d).D

Theorem 2.5 (Beame, Cook, Hoover 1986 [6]):

(a) Computing x mod m is in NCt'.

(b) Iterated-Product E NC)

(c) Division E NC!

10

In theorem 2.5 the given circuits are P-uniform. It is not known whether these

functions are in Alogtime.

II.B Basic Group Theory

A group G is a set with an associative operation 0 such that

a) there exists an element 1 (called the identity element) such that

Vg E G log = go 1 = g

b) every element has an inverse: Vg3h g 0 h = hog = 1

(Usually the circle will be omitted.) The inverse of 9 is designated by 9 -I. A sub­

group of G is a subset that is also a group under the same operation. H is a normal

subgroup of G, designated H <1 G, if for all 9 E G and all h E H, g-lhg E H. The

kernel of a group homomorphism is always a normal subgroup. Isomorphism between

groups G1 and G2 is designated Gt ~ G2 •

A subset S = {gt,g2," .} generates G if every element of G can be expressed

as a product of elements of S and their inverses. We write G = (S). If G is generated

by a single element then G is called cyclic. If for all g, h E G,gh = hg then G is called

11

abelian. The cartesian product of G and H, designated G x H, is a group whose el­

ements are {(g, h) : 9 E G, h E H} with the operation (gt,ht)O(g2, h2) :: (glog2,hloh2).

This can be generalized to an arbitrary number of groups in the obvious way. We can

now state a standard theorem, the proof of which can be found in [29]

The Fundamental Theorem of Finitely Generated Abelian Groups:

Every finitely generated abelian group G is the Cartesian product of cyclic groups.

For 9 E G, gH = {gh : h E H} is the left coset of H determined by g. The

set {gH : 9 E G} partitions G and if H <1 G it forms a group under the operation

(9IH) 0 (g2H) = (gl 0 g2)H called the quotient group of G mod H. It is designated

G I H. Also, if K f"V G I H we say that G is an extension of H by K. The element 9

is said to be a coset representative of gH, and a subset of G that has exactly one

representative for each coset is called a set of coset representatives. The cardinality

of G / H is called the index of H in G.

The rest of the lemmas in this section are standard.

Lemma 2.6: Let G be a group with H a subgroup of finite index. Then H

has a subgroup N such that N <1 G and N is of finite index in G.

Proof: Let A = {kIH, k2H, ... , knH} be a complete set of left coset represen­

tatives for H. Then each 9 E G induces a permutation on A by left multiplication:

for each i g(kiH) = kjH for some j. These permutations form a group a and the

map f : G --+ a is a homomorphism of G onto a finite group. Thus if the kernel of f

is K then K <J G and K is of finite index. Lastly, to see that K ~ H, suppose k ¢ H.

Then k(lH) :f:. H and so the permutation induced by k is not the identity and k is

not in the kerneL 0

For g, h E G, the commutator of 9 and h is [g, h] = g-lh-lgh. For H,](

subgroups of G, [H, K] is the subgroup generated by {[h, k] : h E H, k E K}. It

12

is basic that [G, G] is necessarily a normal subgroup of G, (see lemma 2.7(a)); it is

called the commutator subgroup of G.

Lemma 2.7: (a) If H <1 G then [G, H] <l G.

(b) G/[G,G] is abelian.

(c) H H <l G and R is a set of represent~tives for G / H then every 9 E G has a unique

representation as rh for some r E R an4 h E H.

(d) If H <l G then for any 9 E G and hI E H there is an h2 E H such that ghl = h2g.

Proof: (a) Define an arbitrary k E [G, H) by k = d}d2 ••• dn with di =

[gi, hd. It needs to be shown that for an arbitrary element pEG we have p-I kp =

(p- 1d1P)(p- 1d2P) _ .. (p-IdnP) it suffices to show that p-IdiP E [G, H].

-Id -1 -lh-I h p iP - P gi i gi iP

resulting in a commutator of the correct form.

(b)

a[G,G]· b[G,G] - ab[G,G]

- ab(b-Ia-Iba)[G, G]

- ba[G,G]

b[G, G] . a[G, G]

(c) Since the set {rH: r E R} partitions G it is immediate that 9 = rh for

some r E R, h E H. To show uniqueness, suppose rl hI = r2 h2• Then

rl - r2 by definition of set of representatives

h2 by cancellation

(d) Since H is normal gh1g-1 = h2 for some h2 E H, and then ghl h2g- 0

13

Two important chains of subgroups are defined: the derived series and the

lower central series.

The nth derived group G(n) is defined recursively by

G(O) = G

G(n+1) = [G(n), G(n)].

If for some n, G(n) = {I} then G is a solvable group. If G is not solvable then it is

called nonsolvable. Examples of solvable groups include the symmetric groups Sn

for n 5 4. For n > 4, Sn is nonsolvable.

The lower central series is defined recursively by

Gt =G

G n+1 [G'hG]

If for some n, Gn = {I} then G is called nilpotent. Examples include all groups of

upper triangular matrices with 1 's along the diagonal. Since G(n) ~ Gn+1 for all n, it

is straightforward that if G is nilpotent then it is also solvable. (Note the somewhat

awkward circumstance that G is the zeroth term of the derived series but the first

term of the lower central series.)

A sequence of subgroups G = H t I> H2 1> •.. I> Hn = {I} is called a subnormal

series. By lemma 2.7(80) both of the above are examples. (Note: the Hi need not be

normal in G itself.) If G has a series such that for all i Hi/ Hi+1 is cyclic then G is

called polycyclic. The polycyclic groups lie intermediate between the nilpotent and

the solvable groups. In summary, we have the following relationships among classes

of finitely generated groups. (See the chapters devoted to the particular classes for

proofs.)

Abelian ~ Nilpotent ~ Polycyclic ~ Solvable

One way to specify a group is by a presentation in terms of generators and

relators. A relator is a string of generators that is equal to 1 in the group. The pre­

sentation G = (gl, g2, ... j R1, R2, ...) defines a group whose elements are equivalence

classes of strings in the alphabet {gI,g2)"'} U {gIl ,g;;l, .. . }. Two such strings are

equivalent if and only if one can be transformed into another by repeated insertion and

14

deletion of the relators Rb R2 , ••• and the trivial relators 91911, 91191, 929:;1,

If a is defined with a finite number of generators (relators) then it is called finitely

generated (related). If it is both finitely generated and finitely related then a is
finitely presented.

If a has a presentation with no relators then a is a free group. The number

of generators in the presentation does not depend on the choice of (free) generators

and is called the rank of the group, (see Rotman [29], p. 240). Some properties of

free groups are discussed in the following lemma. The symbol Z indicates the group

of integers under the operation of addition.

Lemma 2.8: (a) If a is free of rank 1 then a ~ Z.

(b) If a is free of rank ~ 2 then a is nonsolvable.

Proof: (a) (a;) = {a k : k E Z}

(b) It will be shown that for all i a(i) contains elements with reduced forms

aVlb, a-1v2b, aV3b-1 and a-1v4b-1. For i = 0 the strings ab, a-1b, ab-1 and a-1b-1

suffice. Now suppose that strings of the four forms above are in a(i). Then

o

(av3b- 1)(b-1v:;la)(bv31a-1)(a-1v2b)

(a-1v4b-1)(b-1vl1 a- l)(bv41 a)(av1b)

(avl b)(bv:;la)(b-Ivl1a-I)(a-1v4b- 1)

(a-lv2b)(bv31a-l)(b-1v;la)(aV3b-1)

E a(i+l)

Earlier it was shown that groups can be constructed from other groups via

the cartesian product. Another source of new groups is the free product. If a =
(Xl, x2,···; Rb R2, .. .), H = (Yb Y2,"'; Sb S2,''') and the two presentations have

no generators in common then the free product a 0 H has presentation

An example is the free group (x, Yi) = (Xj) 0 (y;).

15

If G is generated by a finite set S then we define the word problem for

G (with respect to S) as the subset of strings of elements of Sand! their inverses

that are equal to 1 in G. With regard to group presentations, it was shown in the

1950's that there exist finitely presented groups with undecidable word problems [7].

More recently it has been shown that there are finitely presented solvable groups with

undecidable word problem [18].

II.C Circuits for Word Problems

The subject of this thesis is the computational complexity of the word problems

of finitely generated infinite groups, particularly with regard to circuit models of

computation. The point of departure is Barrington's 1986 paper on finite group word

problems [3], which is discussed in the next chapter.

One way that circuit models differ from machine models of computation is that

the former technically can only recognize languages with alphabet {O, I}, whereas the

latter can work with arbitrary finite alphabets. Thus, when using circuits to recog­

nize word problems of groups with more than one generator it is necessary to encode

each generator as a string of bits. It will be assumed that in a given encoding each

generator's code will be of the same length. Another fact to consider is that different

sets of group elements can be chosen to be the generators. We will always assume

that the identity element is represented by one of the generators. When the choices of

generators or encodings are otherwise varied, the actual {O, 1 }-language of the word

problem changes, making references to "the word problem of group G" ambiguous.

The following lemma addresses this issue.

Lemma 2.9: Let G be a finitely generated group.

(a) if Ll and L2 are two {O, 1}-languages representing the word problem for

G using the same set of generators but different encodings of those generators then

Ll -hom L2.

16

(b) if Ll and L2 are two representations of the word problem for G using

different sets of generators then LI =hom L 2•

Proof: Part (a) is immediate. Given the assumption that the idtfntity element

is a generator in both languages, part (b) is also straightforward. 0 I

Thus, the choices of generators and encodings are irrelevant since all of the

complexity classes we are interested in are closed under homomorphic reductions.

Some final notational conventions will be needed. If 9 is a letter and v and

W = WIW2 ••. Wn-lWn are strings, then:

1) g-1 is to be regarded as a single letter (distinct from g),

2) g+1 is to be regarded as a single letter identical to g,

3) (g-I)-1 is identical to g,

4) w-1 is the string W.;lW';~l ... W21Wl1,

5) v = W means that v and W represent the same group element,

6) v = W means that v and ware identical strings.

7) The net occurence of 9 in W is defined to be the number of occurences of

gin W minus the number of occurences of g-1 in w.

Chapter III

Finite Groups

This chapter addresses the computational complexity of finite group word

problems. We begin with an unsurprising observation:

Theorem 3.1: If G is finite then G E Alogtime.

Proof: Assume the input alphabet consists of one symbol for each group ele-

ment. The following ATM algorithm recognizes the word problem for G.

(A) START UP

Al Put n in binary on a worktape as in lemma 2.2.

A2 Put 01'-11 on the index tape where p the length of n. Put the index tape

head on the first blank to the left of the string.

A3 Set result r to 1.

(B) VERIFY XiXi+l ••• Xq = r where

i = the number written on the index tape

q = the number that would be on the index tape if all O's to the right

of the head were changed to 1 's

Bl Move index tape head one square to the right

B2 If not yet reached a blank on the index tape

then

B2.1 Existentially guess a group element h

17

else

B2.2 Universally

B2.2.1 leave the index square 0, set r := h, go to (B)

B2.2.2 change the index square to 1, set r := h-1r, go to (B)

B2.3 Use the contents of the index tape to access input = Xi

Case 1: if Xi = r then accept.

Case 2: if Xi = blank and r = 1 then accept.

Case 3: otherwise, reject.

18

The algorithm is a straightforward divide and conquer strategy. A result for

the product of a string is guessed and then the string is split in half. A guess is made

for the product of each half such that the two guesses together equal the guess for

the full string. The two halves are then treated recursively. Clearly each stage takes

time 0(1) and there are log n stages, giving a total time of O(1og n).D

tions.

The next theorem shows the previous to be as good as can be hoped for.

Theorem 3.2: (Barrington 1986): Let G be a finite nonsolvable group. Then:

1) The word problem for G is complete for NG] with respect to AGo reduc-

2) The word problem for G is complete for Alogtime with respect to Dlogtime

reductions.

Proof: Barrington's proof of this involves the use of bounded-width branching

programs. Rather than develop the necessary background to do that, we will recreate

the part of the proof that pertains only to circuits and word problems. Only the

nonuniform version (part 1) will be addressed here; it is straightforward to modify

the proof for the uniform setting.

We can assume without loss of generality that G is its own commutator sub­

group. We can do this because we know that for any nonsolvable finite group G, there

19

is an n such that G(n) = G(n+I) =f {I}. It easily follows that if G(n) is hard for N CI

then so is G. Let G be non solvable and IGI = m. Most of the proof is contained in

the following lemma.

Lemma: Let L be a language and Ln be the members of L of length exactly

n. Suppose that Ln is recognized by a bounded fanin circuit C of depth d consisting

only of OR and NOT gates. Let (J' be an arbitrary nonidentity element of G. Then

there exists a depth 1 unbounded fanin circuit that takes n inputs and maps x to

w(x) such that w(x) is a string of generators of G and the group element represented

by w(x) is (J' if x E Ln and is the identity (denoted e here) if x ¢ Ln, and such that

Iw(x)1 ~ (4g)d.

Proof of lemma: by induction on d.

Base case: if d = 0 then Ln is either all of the length n strings, none of them, all of

those with Xi = 1 for some i, or all of those with Xi = 0 for some i. In all these cases

w can easily be computed using a depth 1 circuit with Iw(x)1 = l.
Induction step: Suppose the above holds for all languages whose restriction to

length n is recognized by depth d - 1 circuits.

Case 1: the output gate of C is an OR. Then let C1 and C2 denote the two

input circuits to C. They are then circuits with n inputs of depth d - 1, so the

induction hypothesis holds.

Since G is its own commutator subgroup, (J' is equal to a product of commu­

tators d1d2 ••• dk , with di = ailbilaibi. By the induction hypothesis (and since (J' is

arbitrary) there exist depth 1 circuits A!f l , A!:-I' A~fl' A~:-l such that on input X,
• • I ,

A~ outputs a string equivalent to e if Cj accepts x and, if Cj rejects x. Furthermore,

the strings these reductions create are bounded in length by (4g)d-l .

We create the reduction circuit for Ln by laying the above circuits side by side

in the following order in a sequence of commutators mirroring dl d2 • •• dk :

Case 1a: x E Ln (i.e., at least one of C I and C2 returns 1). Then each of

the commutators will be of the form eb-Ieb, a-Ieae, or eeee. All of these equal the

20

identity element and thus the resulting output string will equal the identity, reflecting

acceptance of Ii as desired.

Case 1 b: Ii fJ. Ln. Then the resulting string will equal d t d2 ••• dk - u as

desired.

As to the size of the resulting circuit, each subcircuit A~ is bounded by (4g)d-l .

It is easy to see that k is bounded by g, so we have ~ 4g sub circuits lnd thus total

size ~ (4g)d.

Case 2: The output gate of G is a NOT. We must then have a circuit of

depth d - 1 recognizing Ln. By induction hypothesis we have an appr~priately sized

reduction circuit that outputs e if Ii E Ln and u-1 if Ii E Ln. If we simply take that

circuit and append the constant output u to the end we have a reduction circuit that

outputs e . u = u if Ii E Ln and u-1
• u = e if Ii fJ. Ln. Since the size of the circuit

only increases by 1 it is clear that the size bound is maintained. q. e.d. lemma

Proof of theorem: If L is in NGl then it is easy to see from DeMorgan's

laws that L is recognized by a family of bounded fanin AND-NOT circuits of depth

O{1og n). Choose an arbitrary nonidentity u E G. The reduction in the lemma

produces a circuit of depth 1 and size bounded by (4g)dePth. = (49)O(logn) = (49n)O(t) =

polynomial in n. Thus we have an AGO circuit that maps inputs x to the identity of

G if Ii ELand to something else (u) if Ii fJ. L.

That the word problem is actually in NGt follows from the finiteness of G as

observed in the previous theorem. 0

In addressing the finite solvable groups, the following well known lemma will

be needed.

Lemma 3.3: If G is finite and solvable then G is polycyclic.

Proof: Use induction on the size of G. Let H = G(t) and let R = {r}, . .. ,rd
be a set of coset representatives for G / H. Since G is solvable, H is a proper subset

of G, (or else for all n G(n) = G). Since G / H is abelian (see lemma 2.7 (b» it is by

21

the fundamental theorem a cartesian product of cyclic groups. Let {sIH, ... ,smH}

be a minimal set of generators of G / H.

Claim: the subgroup K generated by {S2, •• • , sm} U H is normal in G. To see

this let 9 = si l sr ... s~mhg and k = S~2 ... Sr:.nmhk be arbitrary elements of G and K

t · I ·th h h H Th -I -PI -1'2 -Pmh f h H respec Ive y, WI g, k E . en 9 = Sl S2 ••• sm g-I or some g-I E .

It must be shown that gkg- I E K. Since G / H is abelian

Now since clearly slK generates G/ K we have K <J G with G/ K cyclic. Since

K is a proper subgroup of G it follows by induction that G is polycyclic. 0

Theorem 3.4 (Barrington 1986): If G is a finite solvable group then the word

problem for G is in ACCo. In particular, if IGI = m then the word problem for

G is decidable by constant depth circuits with gates of type AND, 0 R, NOT, and

MOD-m.

Proof: Following the lemma, let G = Ho t> HI t> ... t> Hk = {I}, with Hd Hi+1

cyclic. The proof will be by induction on k. If k = 0 then G is the trivial group and

the theorem obviously holds. Now suppose k > 0, IGI = m, aH generates G / HI, and

{gt, ... ,gp} is the set of generators given for G. For each gi there is an hi E HI and

an integer Zi such that gi = aZihi . (We have 0 ~ Z < m since am = 1.)

If the input is XIX2 • •• Xn = gi)gi2 ... gin then we can convert this to

and since am = 1 we can replace all of the exponent sums by their values mod m.

The final block after the last conjugate is then equal to aP for some 0 ~ p < m. This

number p can be tested to see if it is a multiple of the order of a in constant depth.

If it is not, then the input is rejected; if it is, then we continue:

Each of the products in parentheses is a conjugate of an element of H and thus

is in H. So after replacing the exponents by their values mod m we have just a finite

22

number of possible things in the parentheses, each of which can be translated into

a string in the generators of HI in constant depth. Thus we have reduced the word

problem for G to the word problem for HI using constant depth MOD-m circuits.

The final circuit is obtained by iterating this process k times. 0

This procedure of creating conjugates in the proof of theorem 2 is commonplace

and will appear again. This process of moving coset representatives step by step to

one end will be called "conjugate collection." This sort of algorithm is used by P. Hall

[16] in demonstrating that the word problems of finitely generated nilpotent groups

are decidable.

Lastly, the following theorem relates finite group word problems to classical

language theory. The proof here differs from the original, and from that appearing in

Muller and Schupp [28].

Theorem 3.5: (Anisimov [1]) The word problem for G is a regular language

if and only if G is finite.

Proof: Clearly if G is finite one can create a DFA to recognize its word problem.

For each group element 9 there will be one state Sg' The start state and only accepting

state will be SI' The transition function will be such that input symbol h will change

that state for Sg to Sgoh. The resulting machine will be in state Sg if and only if the

portion of the input string read up to that point is equivalent to 9 in the group G.

Now suppose G is an infinite group and we will see that the word problem is

not regular. Suppose for the sake of contradiction that there is a DFA recognizing the

word problem. Since G is infinite there must be two strings WI and W2 representing

different group elements that lead to the same state s. Since WI wI I = 1 it follows

that the string wI 1 must send the machine form s to an accepting state. This implies

that w2wI1 will also be accepted. However, since W2 f:. WI that string should not be

accepted, giving a contradiction. 0

Chapter IV

Uniform Circuits

This chapter addresses some technical issues regarding circuit uniformity that

will be needed in upcoming chapters. The goal is to develop a way of describing

uniform circuit algorithms that is easy to use and compatible with the Barrington,

Immerman and Straubing [5J approach.

IV.A Oracle Turing Machines

Alternating Turing machines are used to create uniform versions of AGo (in

the form of the Logtime hierarchy LH) and NGl (Alogtime). In order to extend this

to other circuit classes such as TGo and AGGo we introduce a type of oracle ATM.

The idea is for it to be a uniform version of constant depth reducibility.

Definition: A k-oracle ATM consists of a finite control and two types of tapes

and their associated finite alphabets. The two types of tapes are:

1) 1 input tape

2) j work tapes

All tapes are two-way infinite. Each work tape has an associated tape head which

scans one tape square. Each work tape will be associated with a variable, which will

have the worktape's contents as its value. To make possible sublinear runtimes the

23

24

input tape is accessed via indexing. Any work tape can be used as an index tape. If

work tape w has on it the binary number z then we consider the zth tape square of the

input tape as being scanned. Thus the finite control is considered to be scanning up

to j input squares and j worktape squares at any given time. Of course, work tapes

may be used for other purposes than indexing. Each tape has an alphabet which may

or may not intersect with other tapes' alphabets. Each alphabet includes the blank

symbol.

The finite control stores the state. There are a finite number of states. Each

state is one of k + 5 different types:

1) existential

2) universal

3) negation

4) deterministic

5) k oracle query state types labeled LIl L2 , •• • , Lk •

6) halting

Oracle query state type Lp is intended to allow access to oracle language Lp. One

state is designated as the initial state.

If the current state type is existential, universal or negation then in one move

the machine may depending on the current state and all the scanned worktape sym­

bols:

1) change state

2) print a symbol on each tape square scanned except the input

3) move each tape head right or left

If the current state type is deterministic then the machine can do all of the above and

additionally may base its move on the scanned input symbols as well. A configuration

reached in one move is called a successor to the current configuration. The machine

may indicate several successors to one configuration.

When an oracle state is entered the machine must designate one of the work

25

tapes as the first auxiliary. H the current state type is Lp with first auxiliary w

and the number z is written in binary on w then the current configuration has z

successors. Each successor is identical to the previous except that they all may have

the same new state and on some prearranged tape (ca.lled the second auxiliary) each

has a different binary number in the range 1 to z written on it. The shorthand "Invoke

Lp(i,j)" will mean move into an Lp-type state with i and j as the first and second

auxiliary tapes respectively.

For the sake of convenience, existential and universal oracles are always as­

sumed to be present. (E.g., the AND of k items can be computed by writing the

number k on a worktape and invoking the Universal oracle.)

There are exactly two halting states called "Accept" and "Reject" (also de­

noted by 1 and 0 resp.) When one of these states is entered the computation haIts.

The language accepted is a set of strings in the input alphabet. An input

string is accepted if the initial configuration (the state being the initial state, the

input string on the input tape and all other tapes blank) is accepting. In general,

whether a configuration is accepting or rejecting is defined recursively. A configuration

is accepting if:

1) the state is Accept;

2) the state type is existential and at least one of its successors is accepting;

3) the state type is universal and all of its successors are accepting;

4) the state type is negation and its only successor is rejecting;

5) the state type is deterministic and its only successor is accepting;

6) the state type is Lp and the string S}S2' •• Sm E Lp where Sq is the accep­

tance status (0 or 1) of the qth of m successor states.

A configuration is rejecting if this recursive procedure does not show it to be accept­

ing. (This necessarily includes the case when the state is Reject.)

That concludes the definition of the oracle ATM to be used here. The first goal

of defining the machine like this is that the uniform classes arrived at be equivalent

26

to those defined in [5]. If we designate the uniform version of class X by uX then

this will give us then:

LH ~ uACCo ~ uTCo ~ Alogtime

And of course the uniform classes will have the desired relationship to their corre­

sponding nonuniform class (i.e. containment).

The second goal is that it be easy to "program." This is the reason for various

unusual features of the model. For example, the reason more than one oracle language

is allowed is to let several equivalent languages serve as oracles.

Another peculiarity is the way the oracle steps work. Once an oracle state is

entered an unbounded number of successor configurations appear at once. This is

done to avoid having to program-in a step by step creation of each of the successors

needed each with their number. Also, this orders the inputs to the oracle, which

allows the use of nonsymmetric languages. Another feature that is different from

some models is that the input square corresponding to the number on an index tape

is automatically assumed to be "visible,"- no special query state need be entered,

(although the state must be of deterministic type). Also there is no preassigned

"query tape"; this eliminates the need of copying strings computed on worktapes

onto index tapes.

Now to define the uniform classes. In the following definition, with regard to

counting time used, one oracle invocation counts as one time step. Also, we count

as an alternation any time the state type changes or any time an oracle invocation is

made (even if the previous state was an oralcle invocation of the same type).

Definition: Lo ~ucd {L I , L2' ... ' Ld if Lo is recognizable by an oracle ATM

supplied with L}, L2, . .. , Lk oracle states that uses time O(1og n) and does 0(1) al­

ternations. (The label ucd stands for "uniform constant depth.")

Definition: a) ucd(L},L2, ... ,Lk) = {L: L ~ucd {L I ,L2, ... ,Ld};

b) uACCo = {L : L E ucd(Mod-p) for some p};

27

c) uTCo = ucd(Majority).

First we prove two general properties of this kind of reducibility.

Lemma 4.1: If Lo Sued {Ll, L2 , ... , Ld and Lk Sued LI then Lo Sued

{Lh L2 , .. • , Lk-d·

Proof: Let us assume that we have ucd programs Po computing Lo from

{Ll, L2 , ••• , Lk}, and PI computing Lk from L1 • We need to create a program P2

that computes Lo from {Ll, L2 , ••• , Lk-d. The basic idea is to simulate Po by sub­

stituting PI for each invocation of the Lk oracle in Po. Some difficulty arises when

Pt makes input queries since these must now receive what were inputs to the Lk

oracle rather than the actual inputs to the program. The most straightforward way

of getting an input existentially guessing it and universally verifying correctness of

the guess and subsequent acceptance assuming the correctness of the guess - is un­

acceptable because it introduces too many alternations, (since there may be O(log n)

many input queries on a path). So instead we simulate each deterministic segment

as a whole (recall that the inputs can only be queried in deterministic states) by

existentially guessing the entire sequence of bits received from input queries in the

segment and then universally verifying that 1) the guess was correct, and 2) given

that the guess was correct the original machine (Po) goes on to accept.

Assume that the Lk oracle was invoked in Po with q as the value on the first

auxiliary tape, that PI works in time CI log n + C2 for inputs of length n, and that PI

has z worktapes. Then the deterministic sequence jj in PI is replaced by:

1) Compute r := 2ZC2qZCl ; i.e., r = 2z(c1 logQ+C2) (the length of r is an

upper bound on the number of input queries on a path)

2) Existential(r, i) ; i then contains a sequence of < z(cilog q + C2) bits

3) Universally

3a) Simulate jj by taking the bits of i in place of the input query responses

3b) Universal(r,j) ; verify guesses are correct -(note that r is actually

; much bigger than necessary)

3b.1) Simulate jj using bits from i for j - 1 steps

3b.2) If the next (i.e., the jth) query looks at the eth input bit

then

Case 1: if the ph bit from i is a 1

then simulate the eth input to the Lk oracle in Po

Case 2: if the ph bit from i is a 0

then negate and then simulate as in case 1

28

Line 1 computes a number large enough that some i guessed in line 2 will

contain the sequence of input queries as a prefix. In line 3a the original computation

of PI is continued, with the deterministic segment jj simulated using the guessed

bits in place of the input queries. In line 3b the correctness of each guessed bit is

verified by checking that for all j if the first j - 1 guesses were correct then the j th

guess is correct. It is a simple matter to verify that this program segment has 0(1)

alternations and uses time O(1og n).

The new program P2 is still ucd. Since each oracle invocation counts as an

alternation any path in Po has only 0(1) invocations of Lk • As the modified PI pro­

gram inserted into Po has 0(1) alternations and uses time O(1og n), so does the thus

created program P2. So P2 is a ucd program. 0

Lemma 4.2: If LI ~ucd L2 and L2 ~ucd L3 then LI ~ucd L3.

Proof: If LI ~ucd L2 then trivially L1 ~ucd {L2' L3}. Theorem 4.1 then tells

us that L2 ~ucd L3 implies that L1 ~ucd L3. 0

Lemma 4.3: For any language L, ucd(L) is closed under Dlogtime reductions

(and therefore under ~hom as well).

Proof: Suppose L1 ~Dlogtime L2, and L2 E ucd(L), which is to say L2 ~ucd L. A

29

Dlogtime reduction translates straightforwardly into a ucd(L2) program: the polyno­

mial p of the definition (see Chapter 2) is computed deterministically, an invocation

L2(p, i) is made, and j(x, i) is computed giving the ith input to the oracle. Thus

Ll 5ucd L2. By transitivity of 5ucd (lemma 4.2) Ll 5ucd L, and thus Ll E ucd(L). 0

IV.B Functions in Uniform TCo

This section contains some examples of ucd programs. To begin, let Exactly­

Half be the set of binary strings consisting of an equal number of 1 's and D's.

Example 1: Exactly-Half E uTCO.

Proof: We describe an algorithm with Majority as the single oracle.

1) Get n = Ixl on a worktape using the Dlogtime algorithm of lemma 2.2.

2) Universally

2a) Invoke Majority(n, i)

If Xi = 1 then Accept else Reject

2b) Invoke Majority(n, i)

If Xi = 0 then Accept else Reject

The program checks that the majority of the inputs are D's and that the ma­

jority of the inputs are 1 'so It is clear that only a constant number of alternations

occur and that the time used is O(log n). 0

Example 2: a) Zk E uACCo

b) Z E uTCO

Proof: a) Suppose that Zk is generated by element 9 and that the input alpabet

is {g, 9-1}. The following program which uses M od-k as its oracle recognizes Zk. The

plan is to replace each occurence of 9 with a string of one 1 and k - 1 D's and each

30

occurence of g-1 by a string of one 0 and k - II's. (As a matter of fact, this idea
,

shows that Zk <hom M od-k and so by lemma 4.3 we need do no more.)

1) Compute n

2) Compute m := kn

3) Invoke M od-k(m, i)

4) Compute j := li/kj

5) Compute r := i - j

6) Case 1, Xj = g: then if r = 0 Accept else Reject

7) Case 2, Xj = g-l: then if r = 0 Reject else Accept

b) Suppose that Z is generated by element 9 and that the input alphabet is as

above. Then the input is equal to 1 if and only if exactly half of the input characters

are 9 which we saw could be done in Example 1. 0

We will also want to define something like subroutines or subcircuits. These

would be program fragments that perform some sort of transformation on the work­

tape contents. The transformation may be affected by the input but it cannot change

the input. The idea is that you be able to say "do transformation T" at any stage

in a computation. An example is the algorithm that puts the input length n onto a

worktape. This is a Dlogtime algorithm which we have already accommadated. But

if we want to compute some transformation that requires alternation then we have to

do more.

The basic idea is to existentially guess the new tape contents and state that

would result from the transformation and then for each guess universally verify that

the guess is correct and that given that it is correct the computation continues on to

accept. So we will write such transformations into our programs just as if they were

deterministic procedures.

A subroutine we will need frequently is Binary-Count.

31

Example 3: There is a uTCo suhroutine that puts the numher of ones in the

input onto a worktape.

Proof: Say we want the count to he put on worktape i. The algorithm uses

the ohservation that if there are exactly iI's in the string then if we append another

equal length string with exactly i O's then the new string will ha.ve exactly half of its

hits heing 1 'so

1) Compute n := the length of the input

2) Invoke Existential(n, i)

(To use this as a suhroutine in a program one would at this point universally verify

that i is correct -hy continuing the computation of this suhroutine- and that given

that it's correct, the rest of the computation of the calling program is accepting.)

3) Compute m = 2n.

4) Compute p = n + i.
5) Invoke Exactly-Half(m,k).

6) If k =:;; n ha.lt outputting Xk ; the first half of the oracle input is x

else if n < k =:;; p then halt outputting 0 i the second half consists of i O's

else haIt outputting 1 ; and n - i 1 '8

o

So given this we are ahle in a program to write simply:

Computei:= the numher of 1 's in the input in hinary.

Example 4: A Binary-Addition suhroutine is computahle in Dlogtime.

Proof: Since the worktape strings are all O(log n) in length, one can add two

such numhers deterministically in the usual way hy starting with the lowest order

hits and carrying to the next higher, etc. 0

32

In general we can have a subroutine if we can recognize graph of the trans­

an:Slonn,allI0n and universally formation. We existentially guess the result of the

verify that it is correct and that the computation goes on to

values. The point is that in describing subroutines we just

recognition.

Example 5: There is a Dlogtime subroutine that

of the difference of two numbers.

Proof: Have to confirm that Ii - j I = k

1) If i ~ j then confinn that i = j + k.

2) If i < j then confirm that j = i + k.

with these new

to describe graph

the absolute value

The previous example showed we can recognize the graph of "+." 0

Example 6: There are subroutines in ucd(<fJ) for

a) Multiplication, (b 1 • b2)j

b) Division, (lb1/b2J)j and

c) Remainder, (b 1 mod b2).

Proof: a) In Lipton [24] it is shown that multiplication of two n bit numbers

is in the linear time hierarchy. It follows immediately that there is an O(1og n) time

constant alternation ATM that computes the product of two O(log n) bit numbers.

b) It is sufficient to show that the graph of division can be recognized. The

following program accepts if and only if d = lbdb2J. It makes use of the multiplica­

tion algorithm of part a).

1) Existential(b2 , i) j guess remainder of bdb2

2) If d . b2 + i = b1 then Accept else Reject

c) The remainder r of bdb2 is computed by r = b1 - lbd~J. 0

33

Using the addition, subtraction and multiplication subroutines one can com­

pute any polynomial in Dlogtime.

IV.C Equivalence to Previous Unifor ity Defini­

tions

The last goal of this chapter is to show that the precedi coincides with the

many equivalent uniformity definitions in Barrington, Immerm and Straubing [5J.

Definition: Given a circuit family C = {Cn}n;::b its direct connection lan­

guage (DCL) is the set of tuples of the form (n,g, 0, t) or (n,g, 1, h) such that in Cn

gate 9 is of type t and gate 9 has gate h as an input. The set of gate types includes

output which distinguishes the output gate and the set of inputs {x}, X2, • •• , x n }, as

well as the usual {AND,OR,NOT, .. . }.

Definition: A circuit family is Dlogtime-uniform if its DCL is recognizable

by a DTM using time O(log n).

This definition is equivalent (in spirit at least) to the version used in [5].

Lemma 4.4: Let L2 be a symmetric language. If Ll :::;ucd L2 then there exists

a Dlogtime-uniform family of constant depth, polynomial size {AND, 0 R, NOT, L 2 }­

circuits that recognizes L1 •

Proof: Suppose the ucd(L 2) program computing Ll works in time bounded by

cllog n + C2. First, the program is restructured to disallow moving into a nondeter­

ministic state after the input has been queried (with the exception of determining n

in the beginning). Let n, m, and i be variables not used in the original program.

1) The program begins by computing

n := the length of the input in binary, and

• _ 2C1 log n+c2 , -
2) Every (maximal length) deterministic sequence jj is replaced by:

34

Existential(m, i) ; i is a guess of the sequence of input bits accessed in jj

Universally

UI: deterministically confirm that the sequence of input bits accessed

in jj is a prefix of i, and

U2: simulate jj using i for the results of the input queries, continuing

according to the original program into the next nondeterministic state. The states of

the simulation are ~rbitrarily chosen to be existential.

To create an L2-circuit computing L 1 , begin by associating a tree with the

behavior of the modified program on inputs of length n. The root node of the tree

is labeled by the configuration of the modified program that immediately follows the

computation of m. The rest of the tree is created recursively by adding as a child a

node for each successor configuration that has a node in the tree, with the exception

of the deterministic portions described in the line marked UI above. Each of these

deterministic portions is represented by a single node. Note that if one follows a path

from the root to a leaf in this tree only a constant number of alternations will be

encountered.

Next a constant depth circuit is built as follows:

The root of the tree is the output gate and its type matches the state type

t of the configuration. The rest of the circuit is constructed recursively: if N is a

node of the tree represented by a gate 9 of type t in the circuit then every node of

type other than t (except the remaining Deterministic) that is reachable from N via

a path of configurations of type t is represented by a gate whose type is the state type

of the configuration (or an AND gate in the case of Deterministic) and which inputs

to 9 in the circuit. An exception to this is if t is an oracle invocation: then all of its

successors have corresponding gates. It now just remains to deal with the inputs to

35

the AND gates that came from the deterministic portions.

After the program is modified as described above, the only deterministic con­

figurations left are the ones that confirm that the sequence of guessed input query

responses is in fact the sequence one would get in the deterministic computation.

When one of these nodes is reached in the circuit building process we need the cor­

responding gate to output true in exactly the case that the guessed sequence i is a

prefix to the sequence of input query responses one would get in the deterministic

computation. Thus the guess is correct if some number ~ Iii of ' the input bits have

some specified {O, I} value. So to the AND gate corresponding to a deterministic

node we have as input Xi for each Xi accessed and specified to have value 1, and 'Xi

for each Xi accessed and specified to have value o. For each input there will be one

NOT gate attached to it which will input to multiple other gates.

Claim: The circuit as just constructed computes L I •

pi: This follows very straightforwardly by induction on the depth of the circuit.

What needs to be proved is that for a given X each node of the circuit evaluates to 1

if and only if the configuration that it is labeled with is accepting.

As the base case we use the AND gates that correspond to the deterministic

sequences. These deterministic sequences query a subset of the inputs and accept

only if the results of the queries exactly match a predetermined sequence held on a

worktape. The sequence is programmed to look at the same set of inputs regardless

of the results. Such a deterministic sequence is accepting exactly when the set of

inputs queried have the predetermined value and the corresponding AND gate in the

circuit evaluates to 1 in just the same circumstance.

As for the induction step, it is clear that the circuit duplicates the computation.

Now we give names to the gates. The output gate is given the sequence (O)

as its name. Input Xi is given the sequence (j) as its name. The NOT gate attached

to Xi is given the sequence (n + j) as its name. To define the names of the rest of

36

the gates we number the descendants of each node in the computation tree. When

the node represents an oracle invocation (including the existential and universal

oracles) then each descendant has the value returned to the second auxiliary as its

number. Otherwise the node has a constant number of descendants depending only

on the state of the associated configuration. These can be numbered in an arbitrary

fashion. The names of the rest of the gates (those that are neither the output, an

input or the negation of an input) are given by the sequence (d1 , d2 , ••• , dz } of de­

scendant numbers followed to reach the corresponding node in the computation tree

starting from the root.

Claim: Given these gate names, the DeL for the circuit is recognizable in time

O(1ogn).

proof: The DeL can be recognized in a very straightforward manner by sim­

ulating the Turing machine along the paths described by the gate names. This can

easily be done in time linear in the length of the DeL tuples. Since each computation

path has O(1) many oracle invocations and takes time O(log n), it happens that the

gate names are O(log n) in length. Thus the DeL can be recognized in time O(log n).

o

Since the definition of DeL used by Barrington, Immerman and Straubing

[5] does not allow nonsymmetric functions as gate types it is necessary to limit the

statement of the converse.

Lemma 4.5: Let L2 be Majority or Mod-k. If Ll is recognized by a

Dlogtime-uniform polynomial size constant depth family of {AND, 0 R, NOT, L 2 }­

circuits then Ll :'5ucd L2 •

Proof: It is a necessary consequence of the definition of Dlogtime-uniformity

that the values of the gate names must be bounded by some polynomial function of n.

Let q(n) be a polynomial that for technical reasons is at least two times this bound.

37

Let d be the depth of the circuit family in question. The idea will be to create an ora­

cle ATM program with L2 as the oracle language that performs within the constraints

described in the definition of ~ucd. The general idea is to have each gate simulated by

an auxiliary type invocation with q(n) successors, regardless of the actual fan in of the

gate. The number returned on the second auxiliary is interpreted as a gate number

and if that numbered gate is in fact an input to the simulated gate then we want it to

return its usual value. However, a problem arises because we are allowing as inputs

gates that were not inputs in the circuit. This presents no particular problem in the

case when the gate type is Existential or M od-k: the extra inputs can be made to

return a value of 0 thereby leaving the result unchanged. Similarly if the gate type is

universal then the extra inputs can be given the value 1 without changing the result.

However, if L2 = Majority then neither of these solutions works. To fix this we have

for each gate number two input bits; if the gate is an actual input then it returns two

copies of its value, and if it is not an actual input it returns a 1 and a o. Thus the

gates that are not actual inputs to the Majority gate do not affect the outcome. We

now give a ucd program that simulates a M od-k or Majority circuit whose DCL is

in Dlogtime.

Work tapes:

1) Set c:= 0

n: the length of the input.

g: the name of the gate currently being simulated.

t: the type of gate g.

q: the upper bound on the length of possible gate names q(n).

i: to be used as a second auxiliary- the ith input to gate g.

w: a particular prefix of i.

c: holds the depth of 9 in the circuit.

; initialize depth c

2) Compute q := q(n) ; q is the largest possible value of the gate names

38

3) Invoke Existential(q,g) ; existentially guess a gate name

4) Universally verify ; find the output gate

a) (n,g,O,output) E DCL

b) continue

5) Determine gate type t of g.

6) If t = Xj then access input bit j, return its value and halt.

7) Invoke a type t state with q and i as the first and second auxiliaries. (See the

discussion that follows for the case of t = NOT.)

8) Set w := i with its last bit removed and y := that last bit.

; Lines 9 and 10 verify that gate w is in fact an input to gate 9 in the circuit.

; They differ in how they treat the case when it is not.

i Line 9 causes gates that are not actual inputs to be treated as D's.

9) If t = Existential, Mod-k, or y = 0 and t = Majority then universally

9a) verify {n,g, 1,w} E DCL

9b) go to line 11

; Line 10 causes gates that are not actual inputs to be treated as 1 'so

10) If t = Universal, or y = 1 and t = Majority then existentially

a) verify {n, g, 1, w} t/. DC L

b) go to line 11

11) Set g:= w.

12) Set c:= c+ 1.

13) If c = d then Reject.

14) Go to line 5.

The program simply simulates the circuit by guessing all possible gates as

successors to the currently simulated gate and verifying that they are actual inputs.

Lines 9 and 10 deal with the tricky point mentioned earlier regarding how to handle

the gates that are not actual inputs.

The program contains a loop (line 14). However, line 13 assures that the loop

39

will be traversed only d = 0(1) times. Since only 0(1) program steps are performed,

there are 0(1) alternations. Thus, the program is ucd.

The situation regarding the simulation of NOT gates mentioned in line 6

can be handled by creating a new oracle language LNOT = {X1X2 ..• Xn : 3i s.t.

X2i-1 = 1 and X2i = o}. The oracle input bits would be treated as pairs: the first

(odd numbered) one would test a gate name to see if it is an actual successor, and

the second (even numbered) one tests whether that gate is accepting. Since only one

gate is a successor to a NOT gate, the simulation accepts if and only if that successor

is rejecting. 0

These last two lemmas combine to make the following theorem which asserts

the equivalence of the uniform circuit classes defined here and the one defined in

terms of the DCL.

Theorem 4.6: Let L2 be Majority or M od-k. A language L1 is recognized by

a Dlogtime-uniform polynomial size constant depth circuit family of {AND, OR, NOT, L 2}­

circuits if and only if L1 :::;1Jcd L2•

Proof: By lemmas 4.4 and 4.5. 0

Chapter V

Group Extensions

This chapter discusses the relationship between the computational complexity

of the word problems of a group and an extension of that group. In the following we

assume that G = (gb'" ,gm), H <l G, H = (hb"" ht) and Q '" Gj H. Also assume

that the identity element is always included in any set of generators.

Lemma 5.1: H ~hom G. (Recall that the word problem for a group IS

notationally identified with the group.)

Proof: Each generator hi of H has a representation as a finite string of the gj.

These can be made to be equal length by padding with appropriate numbers of the

identity element providing a natural homomorphism. 0

Theorem 5.2: If Q is finite then G < ucd {H, Q}.

Proof: The algorithm uses the conjugate collection process (see the proof of

theorem 3.4). The basis of the algorithm is the following observation. In the following

string let the qi be from a set R of representatives for G j H and the hi be in H.

where ai - the representative of ql q2 ... qi in R

40

41

(Let ao = 1, making WI = qla.l = 1.)

Clearly for each i Wi = 1 mod H, so Wi E H. Furthermore, by the normality of

H in G each of the conjugates aihia;l is in H. Thus the quantity in square brackets

is in H. Then since an is in R, the entire string is in H if and only if an 1. Thus

the entire string is equal to 1 if and only if the quantity in square brackets is equal

to 1 and an = 1.

To apply this to the problem at hand, let us assume that the set of gener­

ators for G consists of the set of representatives R and some finite subset of H.

(By lemma 2.9 we can make such an assumption.) Let the input be denoted by

i = XIX2 ••• X n • By padding as needed with the identity element, x can be put into

the form q1h1q2h2 ... qnhn as previously discussed. Thus, it will be sufficient to create

a ued program recognizing G using oracles for Hand Q. The program consists of two

parts: verification that an = 1 and that the quantity in square brackets is equal to 1.

Only sketches of the two algorithms are given. To write programs is straightforward

but requires a lot of tedious bit manipulation.

Program 1: verify an = 1. To solve this problem we simply translate each

input generator into the corresponding G / H "'" Q generator and solve the Q word

problem. This describes a homomorphic reduction and thus the problem is solvable

by a ued(Q) program.

Program 2: verify the square-bracketed quantity is equal to 1. Such a program

would begin with an H -oracle invocation. A fixed amount of space in the oracle's

input string would be reserved for each (ajhia;l) and each Wi. The at's are computed

using the Q oracle, (since Q is finite this is straightforward), and the conjugates and

the Wi are then computed via a finite table look-up. 0

Corollary 5.3: If G is finite and solvable then G E uACCO.

Proof: Recall that lemma 3.3 stated that a finite solvable group is polycyclic.

42

The proof will be by induction on the polycyclic chain length.

Base case: if G = {I} then G E uACCo trivially.

Induction step: suppose that G is an extension of polycyclic finite group H

by Zk. Then by theorem 5.2 G ~ucd {H,Zk}. By induction hypothesis H <ucd Zp for

some p and it is straightforward that Zp ~ucd Zp.k and Zk <ucd Zp.k. Application of

lemma 4.1 completes the proof. 0

Lastly, we address the situation of Q :: Z. It will later be shown that groups

built up from the trivial group using extensions by finite and infinite cyclic groups

(the polycyclic groups) are in TCo. One might wonder whether if Q '" Z then

G ~ucd {H,Z}, since this would be analogous to the finite extension case and would

have the polycyclic result as a corollary. This question remains unanswered. Theo­

rem 7.9 will show that a straightforward conjugate collection approach cannot lead

to an NC algorithm because exponential length intermediate strings may have to be

generated. The best we can show is a corollary to the following.

Definition: A group G is a semidirect product of H by Q if G contains

subgroups Hand Q with the properties:

i) H <1 G

ii) QH = G

iii) QnH = {I}.

Note that this makes G an extension of H by Q.

Theorem 5.4: If Hand Q are finitely generated and G is a semidirect product

of H by Q then G ~P8pace H x Q.

Proof: Since the output of the reduction may be exponentially long, the Turing

machine we use is equiped with a write-only output tape that is not subject to the

polynomial space bound. The input tape will be assumed to be two-way infinite and

it will be allowable to write on it. For both G and H x Q we can assume that all

43

generators are in either H or Q (and except for 1, not both).

The plan is to use the use the usual conjugate collection process. In order to

not use exponential space, the algorithm starts at the left end of the input and starts

to push a Q generator to the right. Whenever an H-generator is at the far left it is

deleted and copied onto the output tape. When there are only Q-generators left they

are all copied onto the output tape.

Let Q be generated by {q., q2, .. . , qs} and H be generated by {hI, h2, .. . , hd.

Then for each i and j we have a substitution rule of the form qihj = hk,hk2 ... hkrqi.

The algorithm is:

1) Move the tape head to the far left of the string on the input tape.

2) If the character scanned is

hi: delete it and copy it onto the output tape;

blank: halt;

qi: continue on to line 3

3) Move the tape head rightward until an H -generator hi is reached. Let qi be the

last Q-generator scanned. Replace qihi by hkl hk2 ... hkrqi, shuffling the rest of the

string to make enough space for it to fit.

4) If no such hi is found in step 3 then copy the input tape contents onto the output

tape and halt.

5) Go to 1

The algorithm converts the input to an equivalent string of the form hq, with

h E Hand q E Q. If x is the input string, then xH = qH (since x = hq = qh' for

some hi E H). Since Q is a set of representatives for G/H, xH = IH if and only if

q = 1. Thus x = hq = 1 if and only if hq = 1 in the group H x Q.

It only remains to be shown that the amount of space used is polynomial. The

first thing to observe is that the number of Q-generators on the tape always remains

fixed until step 4, at which point it decreases. Now suppose that the number r is the

maximum number of H-generators appearing on the righthand side of a substitution

44

rule. Let m be the maximum of r and the input length n. Then 't is easy to see that

at no point do more than m H -generators appear consecutively. ince the number of

Q-generators is less than or equal to n, there can be at most m = O(n2) characters

on the tape at once. (Actually linear space is sufficient.) 0

Corollary 5.5: If Q ~ iZ then G =P"pace H.

Proof: Suppose G / H is generated by aH. Then {ak : k E iZ} is a subgroup

that plays the role of Q in the definition of semidirect product. 1'hus by theorem 5.4

G =Papace H x iZ and since clearly H =P"pace H x iZ it follows th,t G =P"'{Jllce H. 0

Chapter VI

Free Groups

As stated in the preliminaries, free groups are defined by presentations with no

relators. In this case a word is equivalent to 1 if and only if by repeatedly cancelling

adjacent inverse pairs one arrives at the empty string, which we identify with 1. For

example:

These languages have also been called the two-sided Dyck languages. Observe that

they are context free languages. If G is generated by {XI," . ,xm } then the following

is a context-free grammar for G:

S ----. SS

S ----. 9iS9il I 9il S9i for i = 1,2, ... m

S----.e

This property of free groups and some others are proved in the following lemma.

But first a definition is needed.

Definition: A word is called freely reduced if it has no trivial relator as a

subword.

Lemma 6.1:

45

46

(a) If G is freely generated by {9h92,'" ,9n} then the word problem for G is

given by the above defined two-sided Dyck language.

(b) Every element of a free group has a unique freely reduced representation.

(c) (Nielsen-Schreier Theorem) Every subgroup of a free group is free.

(d) If G is freely generated by two elements then for all m G has a free subgroup

Hm on m generators.

Proof: (a) By the definition of group presentation w = WtW2 ••• Wn = 1 if and

only if by repeatedly inserting and deleting trivial relators to and from W one can

arrive at the empty string. The proposition then is that the same language is defined

if only insertions are allowed and deletions are not.

It will be shown that any derivation of a string by insertions and deletions of

trivial relators from the empty string can be converted to a derivation containing no

deletions. Suppose the fact that w = 1 is demonstrated by the derivation 1 = Vo =>

VI => V2 => ... => Vq = w where Vi+l is obtained from Vi by insertion or deletion of

a trivial relator. Let Vi => Vi+l be the leftmost step that is a deletion. If cannot be

that i = 0 since there is nothing to delete at that point, so it must be that Vi-l => Vi

is an insertion.

Case 1: the deletion step removes the same two letters that the insertion just

inserted. Then both steps can be omitted and we still have a derivation of w from 1.

Case 2: the deletion step removes one letter that was already there. Then

both steps can be omitted because the deleted letter that had previously been there

is necessarily the same as the newly introduced letter that is not deleted.

Case 3: the deletion step removes neither of the two letters just inserted. Then

the order of the two operations can be reversed while still leaving a valid derivation

of w from 1.

Using these three cases we can convert any derivation from 1 to one that has

no deletion preceded by an insertion. But since there cannot be any deletions before

the first insertion this process must result in a derivation consisting only of insertions.

47

(b) From part (a) it is clear that the identity element 1 has such a unique

representation (namely the empty string). Now suppose som other element has

two distinct freely reduced representations v and w. We can sume that the last

characters of v and w differ (or else just consider prefixes). Th n vw-1 = 1 and is

freely reduced, but as was just observed this requires that v a.J?-d w-1 each be the

empty word.

(c) The proof of this theorem is fairly involved. It can be und in most group

theory texts (e.g. Rotman [29], pp. 242-245).

(d) Let Ci = aibi and Hm = {ell C2,···, cm}. From part (If we 1now that Hm

is free. It remains to show that {Cl' C2, ••• , cm } is a set of free generators.

Let Ec = {crl, 41 , ... , C~I} and Eab = {a±l, b±l}. Suppose there is a freely

reduced Ec·word equal to 1. Let f : E~ ~ E:b map Ee·strings to their Eab reduced

form. The conclusion follows immediately from the following.

Then

lemma: Let k ;::: 1, w = di1 di2 ••• di ,. with dij E Ee, and w be freely reduced.

i) if dik = c;t then f(w) ends in a±lb+i

ii) if di,. = cjl then f(w) ends in b±la-i .

proof of lemma: Use induction on k.

Base case: then w :;:: cr l for some i and thus f(w) is either aibi or b-ia-i .

Induction step: suppose the proposition holds for the string di1 di2 ••• dik_ 1

Wi, dik _ 1 == cj:, and dik == cj;. Since w is freely reduced it cannot simultaneously hold

that it = hand el == -e2'

If el == + 1 then by the induction hypothesis f(w') ends in a±l b±l. By the

uniqueness of reduced forms

{

the reduced form of f(w') . a12 bh
f(w) = . .

the reduced form of f(w') . b-.J2a-J2

if e2 = +1

if e2 == -1

In the first case the string is already reduced. In the second case since it f j2

the reduced form will end in b±la-i2 as claimed.

48

The case of el = -1 is similar. 0

The two-sided Dyck languages are of course similar to the IOne-SlQ€~Q Dyck lan-

guages which are defined by grammars of the form

S --+ SS

S --+ giSg:;1 for i = 1,2, ... , m

S--+e

Usually in the one-sided case the "positive" letters are by open parenthe-

ses such as (, [, { and the "negative" letters by the close parentheses

),], }. The languages are then the sets of balanced parentheses. In [23] it is proved

that the one-sided Dyck languages are in Alogtime. This was later improved to:

Theorem 6.2 (Barrington and Corbett 1989 [4]): The one-sided Dyck lan­

guages are in uTCo.

The proof is based on a generalization of the well known counting procedure

used for the one-sided Dyck language on one letter. The next theorem shows that

the two-sided Dyck languages are apparently more difficult.

Theorem 6.3: If G is a nonabelian free group then the word problem for G

is hard for Alogtime with respect to Dlogtime reductions.

Proof: The reduction will have to code accepting computations of an Alogtime

machine as identity strings and nonaccepting computations as nonidentity strings.

The basic idea is contained in the following lemma, which shows how to simulate

AND and OR.

Lemma: Let E = {a±l, b±l}, w, x E E"'j further suppose Iwl = Ixl = k and

that the net occurence of b in both wand x is O. If wand x are interpreted as

elements of the free group generated by a and b then:

i) (w = 1) V (x = 1) {::=:} b-3kwb3kxb-3kw-Ib3kx-1 = 1

49

ii) (w = 1) A (x = 1) {:::::::} b-3kwb3kxb-3kWb3kx-l = 1

Pf: Call the strings on the right hand side above fv and /". In both cases the

forward direction of implication (:::}) is apparent. As for the reverse direction:

Claim: if w =1= 1 then the reduced form of b-kwbk begins with b-1 and ends

with b+I.

Pf of claim: Since the net occurence of b in w is 0, and w t 1, w must contain

some occurences of a±l in its reduced form. This implies that in 0 taining the reduced

form of b-kwbk none of the left block of b-1 will be able to cancel ith any of the right

block of b+I. Since w has < k occurences of b-1 or b+I, cancell ion tnnot remove

the entirety of either the b-k block or the b+k block.

Similar reasoning shows:

1) if x =1= 1 the reduced form of bkxb-k begins with b+l and ends with b-1;

2) if w =1= 1 the reduced form of b-kw-1bk begins with b-1 and ends with b+I;

3) if x =1= 1 the reduced forms of bkx and bkx-1 begin with b+I.

Case i, (OR): Rewrite fv(x, w) as b-2k(b-kwbk)bk(bkxb-k)b-k(b-kw-1 bk)bk(bkx).

The preceding claims show that if x =1= 1 and w =1= 1 then the reduced form of f v(x, w)

will be other than the empty string. (If one reduces the blocks in parentheses then

the entire string will be in reduced form.)

Case ii, (AND): Reasoning similar to the OR case shows that if x =1= 1 and

w =1= 1 then the reduced form of f /\(x, w) is not the empty string. Now suppose x = 1

and w =1= 1. Then f/\ (x, w) = b-3kwwb3k. Since no nonidentity string is its own

inverse (see lemma 6.1(c)), ww is not the identity. Since the identity is conjugate to

no nonidentity string it follows that b-3kwwb3k =1= 1.

Similarly, if x =1= 1 and w = 1 then f/\(x,w) xx =1= 1.

q.e.d. lemma

Now suppose L is recognized by an ATM M using time O(log n). The following

can be assumed about M without loss of generality:

i) All computation trees are completely balanced. (I.e., for a given n all com­

putation paths have the same length.)

50

ii) Each nonhalting state has exactly two successors which are distinguished

as left and right.

To define the reduction f(i) we start by associating a E-string fN(i) with

each node N of M's computation tree on input i. If N is a leaf node then:

i) If N is accepting, then fN(X) = a8a-8 •

ii) If N is nonaccepting, then fN(i) = a16•

If N is an internal node with left successor N/ and right successor Nr, and IJNI(i)1 =

IfNr(i)1 = k, then:

i) If N is existential f N(i) = b-3k[fN,(X)]b3k[fNr(i)]b-3k[JNI(i)]-lb3k[JNr(X)]-1

ii) If N is universal fN(X) = b-3k[fNI(X)]b3k[fNr(X)]b-3k[fNI(i)]b3k[fNr(X)]

Note: because the computation tree is completely balanced it will necessarily

occur that IfN,(x)1 = IfNr(x)I.

The reduction function can now be defined as f(i) = fR(i) where R is the

root node of M's computation tree on input i. It is clear from use of induction on

the above lemma that f(i) = 1 if and only if M accepts i.

It only remains to show that f is a Dlogtime reduction. Let n = Iii. First we

confirm that If(i)1 :5 p(n) for some polynomial p. Suppose M uses time Ctlogn+c2.

Then since if n = 1 we have If(i)1 = 16 and increasing the depth by 1 increases If(i)1

by a factor of 16 we have:

which is a polynomial function of n.

Next we show that the itk bit of f(x) can be computed in time O(log n). The

basic idea is that by viewing i as a base 16 number we can easily follow a path through

the computation tree of M to the single leaf that j(x, i) depends on, or determine

that j(x, i) = b±l. For example, the first four bits of i tell which sixteenth of the

output string i is in, (assume all i are padded with leading zeroes to make them of

equal length). So i might occur in a block of b or b-t, or it might occur in a substring

51

corresponding to the left of right subtree of the computation. In the latter case we

simulate the computation one step and repeat the process with the next four bits.

In the following description of the Dlogtime algorithm, assume for technical

reasons that the outputs are numbered 0 to pen) - 1 instead of 1 to pen).

(A) START UP

Al We have M in its initial configuration

state := the type (existential, universal or halting) of the current

configuration of the ATM simulation. This variable is assumed to be updated auto­

matically as the simulation proceeds.

A2 Get n in binary

A3 Compute z = p{ n) - 1 -the length of the output string

A4 If Iii 5 Izl- 4 output b-I -because then i is in the initial sixteenth

A5 If Iii < Izl then output blank -because then i is too big

A6 If Izl- 4 < Iii < Izi then pad i with leading O's to make Iii = Izi
A 7 Put the index tape head on the leftmost square

A8 Set sign := + 1

(B) LOOP

B 1 code := binary number encoded by the next 4 bits of i

B2 If state = halting

Case 1: configuration is accepting

If code < 8 output a else output a-I

Case 2: configuration is rejecting

If sign = +1 output a else output a-I

B3 Case 1: sign = + 1 -must be in a nonhalting configuration here

If code :::::

0,1,2,8,9,10: output b- I

4,5,6,12,13,14: output b+1

3: simulate M one step taking the left branch; go to (B)

branch

7: simulate M one step taking the right branch; go to (B)

11: if state is existential then set sign := -sign

52

Regardless of state simulate M one step taking the left branch
I

15: if state is existential then set sign := -sign t
Regardless of state simulate M one step taking th right branch

B4 Case 2: sign = -1

If code =

1,2,3,9,10,11: output b-1

5,6,7,13,14,15: output b+I

0: if state is universal then set sign := -sign

Regardless of the state simulate M one step taking the right

4: if state is universal then set sign := -sign

Regardless of the state simulate M one step taking the left branch

8: simulate M one step taking the right branch; go to (B)

12: simulate M one step taking the left branch; go to (B)

The program looks at string i in four-bit blocks. P art A just makes sure that

i is the right length: if it is too long, the program halts; if it is much too short, the

program outputs b-1 since i is then in the initial sixteenth; and otherwise i is padded

with an appropriate number of O's.

Part B takes four bits of i and simulates the left or right bra:p.ch of the ATM

as appropriate. Some care is needed regarding the case when the subtree simulated

is within the scope of an odd number of negative exponents. In that case the corre­

sponding substring that is generated is the inverse of what would have been (i.e., the

string is reversed and all exponents negated).

That the program runs in time O(1og n) is clear: a constant amount of process­

ing is done for each bit of i, and the i we are concerned with are O(log n) in length. 0

53

As to the question of what complexity class the free group word problems are

in, we have the following:

Theorem 6.4 (Lipton and Zalcstein, 1977 [25]): For any k, the problem of

determining whether a product of m k X k integer matrices is equal to the identity is

decidable in Dlogspace.

Proof: Given input A = AI, A2, ... , Am, k X k integer fatrices we want to

determine if their product is I. Let d = the maximum absolute lue of any entry in

any of the input matrices. Let n = the overall length of the inp. I

The proof is based on the Chinese remainder theorem, which states that if

PI, P2, ... ,Pk are distinct primes and Inl < IIpi then n = 0 if and only if n Pi 0

for all i.

Let p{ n) = the product of all primes ~ n. We need the following fact from

number theory:

Lemma 1: For some constant c> 0, p{n) > 2cn •

The proof can be found in [17].

We define a norm on matrices: if A = (ai;) then IAI = Ef,j=I lai;l.
Lemma 2: IA· BI ~ PIAIIBI.
Proof: Each entry of A· B has absolute value ~ IAIIBI, and there are P entries.

q.e.d. lemma 2

Lemma 3: IAI · A2· ... · Ami ~ p(m-I)IAII···· -IAml.

Proof: Use induction on m and Lemma 2. q.e.d, lemma 3

We are going to check whether AI ,A2, .. "Am -I =mod P 0 for p = 2,3,4, ... , z.

The question is, how large does z need to be as a function of n in order to assure that

Al - A2 Am is in fact equal to the identity.

The Chinese remainder theorem says that z must be such that p{z) ~ IAI -
A2· .. -' Ami·

< k4n-2(2n)n since 2n ~ d, n > m

_ 2n2 +(4n-2)logk

< 2q(n) for some polynomial q

< 2CZ for z = q(n)jc

< p(z) by lemma 1

54

So a polynomially large z will suffice. Now it is a simple matter to test the

matrix product in space O(log z) = O(log n}. 0

~::O;l: :::r:: nrd
rr:~ !r ti ;:::ea~ f:::r:~: i(~2:J~:::

100-101). By lemma 6.1(d), for any k the free group on k generators is a subgroup

of the free group on 2 generators, so the result follows from lemma 5.1. 0

All attempts to improve this to NCI have failed so far. The best we have

attained is:

Theorem 6.6: The word problem for any finitely generated integer ma­

trix group is decidable by polynomial size, bounded fanin circuit families of depth

O(log n loglogn }.
log log logn

Proof: Recall that there exist polynomial size, O(log n) depth circuits for iter-

ated addition, iterated multiplication and x mod m, (theorems 2.4 and 2.5).

Let the input be of length n and consist of the k x k matrices AI, ... , Am.

The basic idea is as in the proof of theorem 6.4. The circuit will compute the

AND of Al . A2 Am =modp I for p = 2,3,4, ... , z. As seen in theorem 6.4, a

polynomial size z will suffice. Note that since the Ai are chosen from a finite set the

length of the input n is O(m).

55

The general approach is to break the input into blocks and "hardwire in" the

pattern of additions and multiplications, and reduce mod-p afterwards. For example,

if we choose a block size of k we get:

[
XI,1 XI,2] [X2'1 X2,2] ••. [Xk'l Xk'2] = [it h]
XI,3 Xl,4 X2,3 X2,4 Xk,3 Xk,4 fa 14

where Ii = E;:l nj=l Yz,j with each Yz,j being one of the input entries Xc,d.

Now let k = log log n, and consider how to compute Ii mod p. Each entry is

O(p) in value and thus O(log n) in size. Using the vector multiplication subcircuit

each product in the sum can be computed by a log log n depth, polylog size circuit.

The resulting product is of size O(log n log log n) bits, which can then be reduced

mod-p to size O(log n) by a polylog size, depth O(log log n) subcircuit. The sum then

consists of 210g10gn = log n of these products which can be computed in polylog size

and depth log log n, and then reduced mod-p in polylog size and depth O(log log n).

The total subcircuit is then O(1og log n) in depth and polylog in size.

The subcircuit that computes the entire matrix product mod-p consists of a

balanced tree of the above subcircuit. The size of this tree is easily O(n) and its depth

d is such that (loglogn)d = n, which means that d = I :Og~ . The total depth of og og ogn

the mod-p circuit is this d times the depth of a subcircuit, log log n. The total size is

the product of the size of the tree and the size of the subcircuit, which is polynomial

In n.

For each p the result must be tested for equality to [~ ~]. There are

z = poly(n) of these mod-p circuits (one for each integer p :$ z), and they are con­

nected by a polynomial size O(log n) depth AND tree. The result is a circuit of the

stated size and depth. 0

As stated earlier, the word problem for free groups is a context free language.

The following theorem discusses groups whose word problem is context free.

56

Theorem 6.7: (Muller and Schupp, 1983 [28]) Let G be a finitely generated

group. G has a free subgroup of finite index if and only if G is context free.

Actually, Muller and Schupp proved that G has a free subgroup of finite index

if and only if G is context and accessible (a term that need not be defined here). It

was later pproved by Dunwoody [12] that all finitely presented groups ~re accessible.

Since a context free group clearly must be finitely presented we can omit mention of

accessibility in the theorem.

This allows us to state the following:

Theorem 6.8: If G is context free and F is a nonabelian free group, then

G <ucd F.

Proof: By theorem 6.7, G has a free subgroup H of finite index. By lemma

2.6, H has a finitely generated subgroup N such that N <l G and N is of finite index

in G. Let Q ~ G / N. Then by theorem 5.2 G ~ucd {N, Q}. Since any subgroup of

a free group is also free (lemma 6.1(b)) we have that N is free. By lemma 6.1(d) N

is isomorphic to a subgroup of F, so N ~ucd F. On the other hand the fact that F

is hard for Alogtime with respect to Dlogtime reductions shows Q ~ucd F. Since

trivially G ~ucd {N, Q, F}, we have G ~ucd F by lemma 4.1. 0

The free group (a, b;) is identical to the free product (a;) ® (b;). We now

address the more general problem of relating the complexity of a free product to the

complexity of its free factors. First we show how free products relate to other classes

of groups discussed in this dissertation.

Lemma 6.9: Let G = H 0 f{ with neither H nor K the trivial group.

(a) If H '" K ~ IZ2 then H is solvable but not nilpotent.

(b) If H '1- IZ2 or K '1- IZ2 then G has a nonabelian free subgroup and thus is

non solvable.

, 57

Proof: (a) If He! K C::! Z2 then G has presentation (a,b;a2,b2). Since a-I =
a, b-1 = b, and a2 = b2 = 1 every word is equivalent to one with no negative

exponents and no consecutive occurences of a or b. So

To determine G(I) first observe that

G(I) = G2 = {(ab)2k : k ~ O} U {(ba)2k : k ~ O} = {(ab)2k : k E Z}

Containment is shown by the fact that every product of commutators 'ill have counts

of a and b that are both multiples of 2. To see the reverse containment observe that

[a] [(ba)k] [a]-l [(ba)k]-1 a[(ba)k]a(ab)k

_ a[b(ab)k-Ia]a(ab)k

_ (ab)(ab)k-l(ab)k

_ (ab?k

Since G(I) is abelian G(2) = {I} and thus G is solvable. To see that it is not

nilpotent observe that if (ab)P E Gi then Gi+I contains

[(ab)P][a][(ba)P][a]-l = (ab)pa · b(ab)p-Ia· a

(ab)p(ab)(ab)1'-1

(ab)2p

(b) Suppose K '1- Z2. Then K has nonidentity elements kl and k2 such that

kl # k;l. (Note: it may be that kl = k2') Let hE H, h # 1. The elements x = kIhk2

and y = hkI hk2h generate a free group of rank 2.

To see this, suppose w is a freely reduced word on {x±l, y±I }. Let w' denote

the freely reduced word representing w in the alphabet {h ±t, ktI , k~1 }. It can readily

be seen by induction on the length of w that if wends in

x: then w' ends in k2

X-I: then w' ends in kIl

,
58

y: then w' ends in k2h

y-l: then w' ends in k-l h-1

Thus no nonempty freely reduced string is equal to 1 so (x,y) is free. 0

Theorem 6.10: If G = H ® K then the word problem for G is ecidable by a

family of polynomial size O(log n) depth unbounded fanin {AND, OR, NOT, H, K}­

circuits.

Proof: Assume without loss of generality that n is a power of 2. The circuit will

have log(n) layers. Each layer will be a sequence of n blocks of characters. Every block

will contain either all H-generators, all K-generators, or only the identity element.

(The identity element is included among the H - and K -generators.) A block filled

completely with the identity element is denoted by I.

In the Oth layer (the layer nearest the input) each block will consist of one

character; the ith block will contain the ith input Xi. In general, the blocks on the ph

layer will be 2j characters long. The product of the sequence of blocks will always be

equal to the input X = XIX2 ... x n •

The sequence of blocks in each layer will be divided into subsequences. In the

ph layer the blocks will be grouped into subsequences of size 2;. We now create a

binary tree with the set of subsequences as nodes. The root of the tree is labeled by

the one subsequence of the top layer (layer number = log(n)), which is of length n. It

has two children. The left child is the subsequence consisting of the first n/2 blocks

of the (log n) -1 layer, and its right child consists of the remaining n /2 blocks on that

layer. In this manner the tree extends down to the O-layer at which each subsequence

consists of one block.

Each block will have these properties:

1) A block is equal to the identity if and only if it is I.

2) Adjacent blocks within a subsequence do not contain the same type (H or K) of

generator.

3) If the subsequence is a left child in the tree then no I block occurs to the right of

59

a non-I block.

4) If the subsequence is a right child in the tree then no I block occurs to the left of

a non-I block.

Generally, circuit works by putting each subsequence into a reduced form -

one in which blocks of nonidentity Hand K blocks alternate, and these nonidentity

blocks are pushed all the way to one end of the subsequence. Since there are log(n)

layers it will be sufficient to show that the computation between two layers can be

done in constant depth. In fact, since the computation of each subsequence in a layer

can be done independently of the other subsequences on that layer we need only look ..
at one such portion of a layer.

Let a, and aT be the left and right subsequences respectively that feed into

subsequence a on the next higher level. Let a, = h1h2 ••• hm and aT :::: CIC2 ... em

where the hi and Cj are blocks. Further, we are given that the nonidentity blocks of

a, are pushed to the right and those of aT are pushed to the left. Assume for the

sake of definiteness that we need the nonidentity blocks of a pushed to the right. The

resulting sequence of blocks, called d l d2 ••• d2m will have to be in reduced form and

equal to the product (hI h2 ... hm)(cI c2 .•• cm). The plan is simply to cancel as many

Irc pairs as possible and push the remaining blocks to the left.

Define a set of propositions:

Pi ~ (hm-i+lCj = 1)

Qk ~ (PI A P2 A ... A Pk) A ",Pk+l

R ~ "hm and Cl come from different free factors"

S; ~ (hi = I) A (hi+! f. I)

Then if R A Si holds we have

{
h"+"

d " _ t J
J -

Ci+j-71l

ifj~m-i

ifj>m-i

60

If ..,R" Si " Qk holds then

bi+i if j < m - k - i

bHj 0 CHI if j = m - k - i

Ci-m+2k+HI if j > m - k - i

1 if j ~ 2m - 2k - i

Using these relations, we can determine in constant depth which b- or c-block

should fill a given d-block. It is a simple matter then to transfer the appropriate set

of bits and fill in the back half with I. The one exception is when the d-block is filled

with the concatenation bi+i 0 Ck+I' In that case bi +i is placed in the front half and

Ck+l in the back half.

In the end the top layer will either contain a sequence of n I-blocks or it will

contain some non-I block. The circuit will test for the former condition and return

the result as the output. 0

Chapter VII

Nilpotent Groups and Extensions

This chapter addresses the class of (finitely generated) nilpotent groups and

their finite extensions. In section 7.1 it is shown that the word problems of nilpotent

groups are in uTCo. The algorithm is based entirely on the commutator collection

process. In section 7.2 the results of Chapter 5 are applied giving classifications to the

groups that are extensions of nilpotent groups by finite solvable and finite nonsolvable

groups. Both of these classes turn out to have interesting alternative characterizations

based on the "growth function" of the group, which are discussed. Lastly, it is shown

that straightforward application of conjugate collection cannot give NC circuits for

any other groups than these.

VII.A Nilpotent Groups

We begin by repeating the definition of nilpotent given in Chapter 2. The

lower central series is defined recursively by

G1 - G

Gi+l - [Gi , G]

G is nilpotent if there exists an a such that G Of. = {1}.

The following lemma expresses the critical property of nilpotent groups upon

61

62

which the algorithm is based. As before, for any m Em = {gfl, gfl , ... , g!:/ }.

Lemma 7.1: It is possible to choose a sequence of generators gl,g2, ... ,gm

of G such that for every x E G there exist integers PI, ... , Pm such that x =

g~mg~":ll ... gi l
, and further such that for all e,s E {±l} and all i,j with i > j

we have gjeg!gjg't' E 1:1_1'

Proof. Suppose G (Y. = {I}. It is a well known fact about finitely generated

nilpotent groups that for all j the quotient group Gj /Gj+l is finitely generated abelian.

It is straightforward to prove the lemma by induction on i, but a less formal presen­

tation is a bit easier to follow.

Suppose for example that the set {h1G2, h2G2, ... , hkG2} generates Gt/G2.

Since Gt/ G2 is abelian it follows that each element is equal to h ~l h~2 ... h:" 12 for some

sequence of exponents e and some 12 E G2. Similarly we can write g2 in the form

qt1 q:2 ... q;z'3 for some set {qb q2, . .. , qz} of coset representatives of GdG31 some

sequence of exponents I and some 13 E G3 • We can continue in this fashion until we

reach G(y', the trivial group. The sequence (in reverse order) is then gm, gm-},' .. ,gl =

hI, h2' ... , hk, q}, q2, ... qZl ' ...

To see that i > j implies gjegigjg't' E 1:i-l simply observe that if gj E

GI3 - GI3-1 then any commutator involving gj is in GI3+1 and thus can be represented

by generators all with indices lower than j. 0

The important thing to notice is that the commutator is shown to be in Ei-ll

not just in 1:;_1'

The general idea is to use commutator collection to eliminate all occurences of

the symbol gm' For readability let z = gm' For each y = g;-1 with i < m and s = ±1
we have "replacement rules" of the form

where iii is a string in the alphabet 1:m - 1 U {I}. Since each string can be padded

with the character 1 without changing its value, we can assume that for all y and s,

63

Iwl = p for the same integer p.

We need to convert zky z-k to a string in the alphabet bm-l U {I}, and it

has to be done in such a way that the length of the new string is bounded by a

polynomial in k. It turns out that the most straightforward approach of simply

applying the replacement rules repeatedly works. For example, if we have the rule

zyz-l = YWIW2 ••• W p , then (assuming for this example that k > 0)

Thus the exponent k is reduced by one and this process can be continued until the

exponents reach zero.

Now we want to formalize this by defining the function R(i,e,s, k) = the

transformation of zBkgiz-B\ where e,s E {±1} and k ~ O. For each e,s E {±1} and

1 S; i < m we have a replacement rule

zSgiz-B = gfw(i,e,s)

where w(i,e,s) is a string of length p in the alphabet bm-l U {I}. To these we add

for s E {±1}. Note that the right hand side of this rule is not of length p. For the

sake of exposition let go = 1.

Now we can formally define the function R recursively by

R(O,e,s,l) - 1 (. ale -a 1) - - I.e., z z =
R(i,e,s,O) g;

R(i,e,s,k+ 1) - [R(i,e,s,k)] 0 ([R(it,el,s,k)] 0 .•• 0 [R(jp,ep,s,k)])

h -+(.) - el e2 ep were W ~,e,s - gitgi2 .. ·gip •

As stated before, it is a necessary condition to do this reduction that the

length of the string produced from a conjugate of the form zakgf z-ak be bounded by

64

a polynomial in the variable n. (Note that k will always be ~ n.) The following

function defined for 0 ~ i < m and k ~ 0 will serve as that bound.

f(O,k) - 1

f(i, k) - C ~ l)P;-t + (i ~ 2)P;-' + ... + (~)po for i ?: 1

Note that for fixed i and p, f is a polynomial in the variable k.

Lemma 7.2: The function f has the following properties:

1. 'IO~i<m f(i,O) 1

2. 'Ii'lk~I f(i+l,k+I)=f(i+I,k)+pf(i,k)

Proof. Property 1 follows from the fact that (~) is 0 if a =F 0 and 1 if a = O. As

to property 2 we show that for all j ~ 0 the coefficient of pi on the left side is equal to

the corresponding coefficient on the right side. The coefficient of pO is 1 on both sides.

For j > 0 the coefficient of pi on the right side is e) + G:l) while the coefficient on

the right side is er). Since e) + C:l) = er) is a binomial coefficient identity,

both sides are equaLD

Lemma 7.3: The length of the string R(i,e,s,k) is bounded by f(i,k).

Proof Induction on k.

If k = 0 then IRI = 1 and f = 1, so the bound holds.

For the induction step, observe that if i =F 0 then R(i, e, s, k + 1) is a con­

catenation of p + 1 strings. The induction hypothesis states that the length of first

string is bounded by f(i, k) and that the others are bounded by functions bounded

by f(i -I,k). Thus the total length is bounded by f(i,k) +pf(i -I,k) = f(i,k + 1).

For the special case of i = 0 we have R(O, e, s, k + 1) = 1, and the bound holds. 0

So the conversion of zsk 9f Z-sk will have length :5 f(i, k) :5 f(i, n) since we will

always have k :5 n. The function f is the length of the string that would be obtained

65

if all of the replacement rules were of the form zBgfz-B = gf(gi-d:!:P: that is, if the

indices of the elements of w(i, e, s) were always the largest possible (i - 1).

We are now ready to state and prove the main theorem:

Theorem 7.4: If G is nilpotent then the word problem for G is in uTCo.

Proof: The proof will be by induction on the m of lemma 7.1. The subgroup

H = (gI, ... , gm-I) of G is nilpotent and the elements {gil"" gm-d form a set of

m - 1 generators of H with the properties described in lemma 7.1. Thus, after the

base case is proved it will be sufficient to show that G $ucd {H, ~}. To be more

explicit: we need to show that G $ucd {H,~} :::::} G $ucd Majority and this can be

done with the following chain of implications:

G $ucd {H,~} :::::} G $ucd {H,~,Majority}

:::::} G $ucd {H,Majority} since ~ $ucd Majority

:::::} G $ucd Majority by induction hypothesis

First the base case:

Claim 1: If m = 1 then G E uTCO.

proof: If m = 1 then G is a cyclic group and by example 2 of Chapter 4

G E uTCo. q.e.d. claim 1.

Next the induction step.

Claim 2: G $ucd {H,~}.

proof: If the index of H is finite (i.e., G is a finite extension of H) then Q ~ ~P

for some p. By theorem 5.2 G $ucd {H,~p}. Thus G $ucd {H,~p,~} and since

~P $ucd ~ we have G $ucd {H,~} (lemma 4.1). The rest of the proof deals with the

case of G / H being infinite; i.e., G / H ~ ~.

The algorithm uses the conjugate collection process, which is based on the fact

that the input x = XIX2 ••• Xn can be rewritten in the form

where

{

Xi if Xi =I Z±I

Yi =
1 if Xi = Z±I

ki - the absolute value of the net count of z in XIX2 ••• Xi,

Si the sign of the net count of z in XIX2 ••• Xi.

66

Each of the conjugates is in H so X E H if and only if z"nkn E H, which is to say, if

and only if kn = o.
The oracle Turing machine that computes G from oracles for Hand IZ is

outlined as follows:

1. Universally verify

1a) that kn = 0, and

1 b) the conjugate string = 1 in H.

These two parts will be treated separately. As for part 1a let IZ be represented

by the alphabet {a, a -I, I}. Then if S = the set of inputs that make kn = 0 then

S ~hom IZ via the mapping

Xi 1---+ 1 for Xi =I z

So by lemma 4.3 there is a ucd(lZ) program for part 1a.

The problem of verifying that the conjugate string = 1 in H requires more

explanation. Generally, what needs to be done is quite simple. The conjugate string

is equivalent to a string in Em - I U {1} of length polynomial in n and thus so is

the product of all the conjugate strings. The Turing machine will simply make a

polynomial size invocation using oracle H and present that polynomial length string

to the oracle. The only question is whether we can determine easily enough what the

ith input to the oracle should be.

Earlier we defined a mapping zSkgfz-sk 1---+ R(i, e, s, k) taking conjugates to

strings in Em - I (in fact for a given i the mapping is to strings in Ei). Then the

67

function f(i,k) was defined as an upper bound on the length of R(i,e,s,k). In the

algorithm the exact string R(i, e, s, k) will not be used but rather a string of length

exactly f(i, k) that is R(i, e, s, k) with l's inserted in various places. Recall that

R(i,e,s,k) = [R(i,e,s,k -1)] 0 ([R(jI,el,S,k -1)] 0 ... 0 [R(jp,ep,s,k -1)])

a concatenation of p + 1 blocks. The first f(i, k - 1) bits are reserved for the first

block, the next f(i-I, k - 1) bits are reserved for the second block, and for each of

the remaining blocks f(i-I, k - 1) bits are reserved as well.

The most straightforward way to determine the tth character of the conversion

of zsk gf z-sk would be to 1) determine which block t should fall into, 2) reset t to the

relative position of the character within the block, and 3) reset s, e, i, and k to the

values corresponding to the particular block and loop. In particular k would be reset

to k - 1. Since k can be as large as n this is a problem: this process would take linear

time. Our salvation lies in the observation that for all 0 ~ v ~ k the conversion of

zS1lgfz-S1l is a prefix of the conversion of zskgfz-sk. The algorithm we will use begins

by finding v such that t is in the space allocated for zS1Igfz-S1I but not in that for

Z8(1I-1)gfz-S(1I-1). So the character we are looking for is the tth in the conversion of

and it must be in a block other than the first. The happy fact is that all of the other

blocks are conjugates of generators with indices strictly less than i. So if we apply

this process iteratively we will reach a point in which we are taking conjugates of

go = 1 and we can fill that whole block with the character 1, and this point will be

reached in ~ m = O(1) steps.

We now present the algorithm formally. It is split into two parts: subroutine
;

Ib performs the conjugate conversion and the main program Ie does the computation

needed before 1 b is called.

Subroutine 1 b: determine the tth character of the conversion of zsk g; z-sk

Input: s,e E {±1}, 0 ~ i ~ m, 0 ~ k ~ n

Output: h E Em - 1 U {I} ; that is, in the end the correct tth character will

; be on worktape h

68

1) If t > f(i, k) output h = 1 j the space beyond the end of the conversion is filled

with l's

2) If k = 0 or t = 1 then output h = 9f j the "base cases" are handled

j The next two lines determine the smallest prefix of the form zStl9fz-Stl that t

; 18 m.

3) Invoke Existential(k, v)

4) If f(i,v -1) < t::; f(i,v) then continue else Reject

5) t := t - f (i, v-I) ; t is reset to its relative position after the first block

6) 6:= rt/f(i -1,v -1)1 ; t is in the 6th block

7) t := t - (6 - 1)f(i-I, v-I) ; t is reset to relative position within the 6th block

. N (.) - el e2 ep , ow suppose w t, e, S - 9i1 9i2 ... 9ip

; Then the character we are seeking is the tth character of the conversion

. of z8(tI-l)9~"Z-8(tI-l)
, .11> •

; Now reset variables and loop

8) k := v-I

9) e := eb

10) i := jb

11) go to line 1

To see that this is a ucd program first observe that most of the steps are basic

arithmetic operations on O(log n)-bit numbers. The determination of w(i, e, s) is just

a finite table look-up. As for the loop, on each pass the value of i is decreased, so

there can be at most m passes.

We now give program Ie, which basically just invokes the H oracle and then

for each oracle input bit determines the proper values of i, e, s, and k for the call

to subroutine lb. There is a slight complication in that the input to the oracle is

69

a string of generators encoded in binary, so after the subroutine call it is necessary

to make that transformation. Let c be the length of the binary codes of the generators.

Program Ic: determine whether the conjugate string = 1 in H.

1) Compute n in binary

2) Compute f:= cnf(m, n) ; space for n conjugates with generators coded by c

; bits each

3) Invoke H(J, q)

4) Compute r:= rq/cf(m,n)1 ; oracle input q comes from the rth conjugate

5) Compute s := q - (r -l)cf(m, n) ; oracle input q is the 8 th bit of the conversion

; of the rth conjugate

6) Compute t := rs/cl ; input q belongs to the tth character of the conversion of

; the rth conjugate

7) Compute u := s - c(t - 1) ; it is the u th bit of the character code

8) Compute k := the absolute value of the net occurence of z in XIX2." Xr ; see

; examples 3 and 5 of Chapter 4

9) Compute s := the sign of the net occurence of z in XIX2'" Xr

10) Find i and e such that Xr = 9[

; Thus the relevant conjugate is zsk9f z-sk

11) Run subroutine 1 b ; output h = tth character of the conversion

12) Accept of Reject according to whether the u th bit of the binary code of h is 1

or 0 resp.

As in program 1 b most steps here are O(1og n)~ bit arithmetic operations. Lines

8 and 9 can be performed easily using the counting subroutine of chapter 4. There

are no loops in the program, so the number of alternations is bounded. Each step is

ued, so the program is ued.

That completes the proof of claim 2, and thus the proof of the theorem. 0

70

VII.B Groups of Polynomial Growth Rate

For G = (g1,"" gm) let a(n) = the number of elements of G definable by

strings of length less than or equal to n in the alphabet {9f1, ... , g!1 }. This function

a is called the growth function of G (with respect to the given set of generators). In

[34] and [27] it is proved that for finitely generated solvable groups a grows either

polynomially or exponentially, and that which of these two categories a group's word

proble~ falls into is not affected by the choice of generators. Thus the finitely gener­

ated solvable groups can be divided into two classes: the polynomial growth and the

exponential growth. The following result of Wolf allows us to classify the complexity

of the polynomial growth solvable groups.

Theorem 7.5 (Wolf, 1968 [34]): A solvable group G has a polynomial growth

function if and only if G is an extension of a finitely generated nilpotent group by a

finite solvable group.

This leads to an easy extension of Theorem 7.4.

Theorem 7.6: If G is a solvable group of polynomial growth rate, then the

word problem for G in in uTCO.

Proof: By theorem 7.5 G has a nilpotent subgroup H of finite index. Lemma

2.6 tells us that there exists a subgroup N of H such that N <I G and N is of finite

index in G. Since N is a subgroup of a nilpotent group it is nilpotent as well, so by

theorem 7.4 N E uTCo. Thus, by 5.2 G ~ucd {N,Q} and since both Nand Q are

ucd-reducible to Majority it follows that G E uTCo. 0

A result of Gromov which generalizes the Wolf-Milnor theorem allows us to

classify the nonsolvable polynomial growth rate groups.

71

Theorem 7.7 (Gromov, 1981 [14]): If G has a polynomial growth function

then G has a nilpotent subgroup of finite index.

Theorem 7.8: If G is a group with polynomial growth function then G E

Alogtime.

Proof: By reasoning similar to that of the proof of theorem 7.6 G is an exten­

sion of a nilpotent group by a finite (nonsolvable) group. Thus by theorem 7.4 and

theorem 5.2 its word problem is in Alogtime. 0

The next theorem shows roughly that the sort of algorithm used in the proof

of Theorem 7.4 will only work for polynomial growth groups.

Theorem 7.9: Let G be a finitely generated group. Suppose there exist

generators {gI,'" ,gm} and a polynomial F(k) such that for all i < j and all k there

exists a word v in the alphabet Ei of length ~ F(k) such that g1gigi k = v. Then G

is of polynomial growth rate.

Proof: By manipulating conjugates as in the proof of theorem 7.4, any word

of length n can be shown equal to gil g~2 ... g~7n for some PI, P2, ... Pm such that

IPII + Ip21 + ... + IPml ~ q(n) for a polynomial q. On the other hand the number

of elements of the form gilg~2 ... g~m with IPII + Ip21 + ... + IPml ~ n is bounded by

a polynomial in n, (call it r(n)). Thus every w of length n is equivalent to one of

r(q(n)) elements, giving a polynomial bound on the growth rate of G.O

Theorem 7.9 shows that if G is not of polynomial growth rate, then trying

to eliminate one variable at a time using conjugate collection will inevitably cause

an exponential blow-up in the size of the intermediately produced strings on some

inputs.

The last theorem of this chapter addresses lower bounds for polynomial growth

groups. A language L is defined to be ucd-hard for a class X if for all L' EX,

72

L' 5ucd L. This is not the same as hard with respect to some many-one reduction

but it has most of the same interesting properties: e.g., if Majority is ucd-hard for

Alogtime then uTCo = Alogtime.

Theorem 7.10: If Gis nonsolvable and of polynomial growth then the word

problem for G is ucd-complete for Alogtime.

Proof: Let G I H '" Q with Q finite and non solvable and H nilpotent. If

L E Alogtime we need to find a ucd{ G) program that accepts x = Xl X2 ••• Xn if and

only if X E L.

Since L E Alogtime and Q is nonsolvable we know that L 5D1ogtime Q, (by

theorem 3.2). Let f(x) be the Dlogtime function that maps strings to strings with

the property that f(x) = 1 in Q if and only if x E L. Now let R be a set of coset

representatives for G/H. If we define f'{x) to be the same as f(x) except with the

corresponding elements of R in place of those of Q then we have f'(x) E H if and

only if x E L. The basic idea is to guess all the possible H -elements that f'(x) could

be, multiply f'(x) by the inverse of that, and present this concatenation of strings

to the oracle. There exists some such guess that causes the oracle to output 1 if and

only if x E L.

The main task then is to produce these strings of H-elements. The first thing

to notice is that the number of strings needed is polynomially bounded. The reduction

f(x) produces a string of length PI{n) for some polynomial Pl. Should one perform

conjugate collection on f(x) the resulting string is increased in size by another poly­

nomial P2. SO if x E L then f'(x) is equal to an H-string of length P2(Pl(n». Since

H is nilpotent it has a growth function P3 that is polynomial. Thus f'(x) could have

at most P4. = P3(P2(Pl(n») values. This is sufficient to show that L 5cd G because

the inverses of these P4. (n) strings could all be separately appended to f' (x) and the

resulting string tested for membership in G. To see that this can be done uniformly,

recall lemma 7.1 which shows that the elements of H can be put into a nice normal

form hq1 hq2 ••• hqrn • For the H -elements we are interested in, the sum of the lengths

73

of the qi will be O(log n). The ucd algorithm would existentially guess sequences

(ql, q2,·· ., qm) in binary and then make a G-oracle invocation. The input to the

oracle would be f'(x) followed by ql copies of hI, q2 copies of h2' etc. To determine

exactly what the iell input to the oracle should be is a matter of binary arithmetic,

details of which are omitted.O

Chapter VIII

Polycyclic Groups

In this chapter it will be shown that the polycyclic groups, a class that con­

tains all of the finitely generated nilpotent groups, have their word problem in Teo.

In contrast to the theorem for nilpotent groups, the circuits given here are not shown

to be uniform. We begin by recalling the definition of the polycyclic groups.

Definition: A group G is polycyclic if it has a subnormal series G = HI t>

H2 l>... t> Hn = {I} such that for all i Htl Hi+! is cyclic.

That the finitely generated nilpotent groups are contained in the class of poly­

cyclic groups is shown by lemma 7.1. The group (a, bj a2, b2) discussed in lemma

6.9 gives an example of a non nilpotent solvable group with polynomial growth func­

tion. In order to assure the reader that the polycyclic groups are in fact a new class of

groups we give an example of a polycyclic group with an exponential growth function.

Lemma 8.1: The group with presentation

is polycyclic and has exponential growth function.

Proof: It will be convenient to write the element bPcq in the form [: 1 because

conjugating by a

74

75

has the same effect as the following matrix multiplication.

[
2 1 1 [p 1 [2P+ q 1
3 2 q = 3p+2q

A theorem of Higman, Neumann and Neumann [20] tells us that when the

element a is adjoined in this manner to a previous group (the free abelian group

(b, C; bc = cb) in this case) the subgroup corresponding to the previous group is un­

changed. Specifically, in the case of this group it says that band c are free generators

of a free abelian subgroup, and thus for all p and q, the vectors [: 1 are distinct.

Claim: Let e = ele2 ... en E {O,l}n. (Call e a length n exponent vector.) For

distinct e the elements We = (bela-l)(be2a-l) ... (bena-l)bcan are distinct.

Pf: Note that w, = [: 1 forsome P and q. Let [::] < [:] mean PI < p,

and ql < q2. Since all the components of the matrix [: : 1 are positive, it is evident

that a maximum vector derived from a length n exponent vector is obtained by setting

e = 11 ... 1. Call this maximum vector m n •

subclaim: if e is any exponent vector of length n + 1 then mn < We'

pf of subclaim: By induction on n.

Base case: rno = be = [:]. On the other hand if lei = 1 then either

w, = a-lbaa = [: :] [:] = [:] if el = 0

or w, = ba-Ibca = [~l + [: :][: 1 [:] if el 1

Induction step: suppose the subclaim holds for lei = n. It needs to be shown

that if We is obtained from any exponent vector e of length n then bOa-1wea and

ba-1wea are both greater than m n. (That they are distinct from each other is obvious.)

By induction hypothesis Wn > m n-}, so a-1wna exceeds a-1mn_la by at least

2 in each component. (This is easily seen from inspection of the matrix.) Thus

bOa-1wna and ba-1wna exceed ba-1mn_la = mn by at least 1 in each component.

q.e.d. subclaim/claim

76

Thus there are at least 2n distinct elements representable by strings of length

~ 3n+2. 0

Several interesting characterizations of the polycyclic groups exist, (see [34] for

a concise summary). One that will be of use is given in the following theorems.

Theorem 8.2 (Auslander, 1967 [2]): A solvable group G is polycyclic if and

only if it is isomorphic to an integer matrix group.

The Auslander characterization of polycyclic groups allows us to conclude the

following immediately from the Lipton-Zalcstein theorem (6.4).

Theorem 8.3: If G is polycyclic then G E Dlogspace.

Lemma 8.4: If G is polycyclic with chain length m and H <I G then G / H is

polycyclic with chain length ~ m.

Proof: This follows straightforwardly from the third isomorphism theorem,

(see Rotman [29] pp. 24-27). To give a more combinatorial proof, we can view the

statement that G is polycyclic with chain length ~ n as equivalent to saying that G

has a presentation with certain sorts of relations. For example, if HI! H2 is gener­

ated by element a then relations such as a-1ya = R(x) should hold, where y is any

string, and R(x) is a string representing an element of H 2• On the other hand we

can consider G/ H to be G with more relators added to its presentation (namely the

infinite set of strings {w : W E H}). Thus the same set of relations that show G to

be polycyclic with chain length ~ m show the same for G / H. 0

Theorem 8.5: If G is a finitely generated polycyclic group then the word

problem for G is in Teo.

Proof: Assume G and the Hi are as given in the definition of polycyclic group.

17

It will be convenient to use the characterization from theorem 8.2 and assume that

the generators are given as k x k integer matrices.

Let the input be a string of G-generator matrices A1A2 ••• An and let A be

their product. From the proof of theorem 6.4 we know that A = 1 (the identity

matrix) if and only if A :: 1 mod p for p = 2,3, ... ,J(n) for some polynomial J.

The circuit consists of the conjunction of these predicates. For a fixed p the usual

collection process will be used. Note that by lemma 8.4 G mod p (or more precisely

GIGp where Gp is the elements of G equal to 1 mod p) is polycyclic of chain length

m. Thus for each i we can translate a string of Hi mod p matrices into an equivalent

string of Hi+! mod p matrices (if such a string exists; if not, then set a "reject" flag).

It will be sufficient to show that a string of HI mod p matrices (not necessarily

from a restricted set of generators) can be transformed into an equivalent sequence

of H2 mod p matrices (or a reject flag is set) in constant depth and polynomial size.

(This is sufficient because the process of converting from H2 to H3 , H3 to H4 , etc. is

the same.) It is important to note that we need the same constant depth to work for

all p simultaneously.

Given: n k x k integer matrices A 1A2 ••• An with entries in the range [O,p) and

all in the group HI mod p. Let A denote their product mod p.

Let a represent a generator of (HI mod p)/(H2 mod p).

Step 1: translate each Ai into aqj Bi for some integer qi encoded in binary and

some Bi E H2 mod p.

Step 2: for j = 1,2, ... , n + 1 compute Tj = E1=1 qi.

Step 3: if arn+1 ¢ H2 mod p then set the reject flag.

Step 4: Replace the conjugates and the leftover portion (a rn+1) with equivalent

matrices C1 C2 ••• Cn +! with entries in the appropriate range. Each C j is in H2 mod

p as desired (assuming the reject flag did not have to be set, in which case it doesn't

matter).

Before analyzing this for size and depth we need to observe that the size of

the largest finite group dealt with is polynomially bounded. A group of k x k (mod

78

p)-matrices can have at most pk
2

elements. Since p is bounded by a polynomial in

n and since k is fixed the group is polynomially bounded. We have then that each

matrix encountered here will be represented by O(log n) bits, and that the length of

the qi found are likewise bounded. Now to analyze the algorithm:

Step 1 just transforms O(log n) bit blocks into O(log n) bit blocks. This can

be done with a depth 3 DNF circuit of polynomial size.

Step 2 is n+ 1 iterated addition circuits set up in parallel. Since each addend is

O(n) in size, (in fact O(log n)), corollary 2.4 says this can be computed with constant

depth polynomial size threshhold circuits.

Steps 3 and 4 both deal with only O(log n) bits at a time and so can be done

by depth 3 DNF circuits.

Putting all this together, each mod-p subcircuit is polynomial size and constant

depth. By stacking m such circuits on top of each other the input can step by step

be translated into the empty string. The reject flags of each level are linked by an

unbounded fanin OR. This is then negated giving us an output of 1 if and only if the

input is equal to 1 mod p. There are polynomially many of these mod subcircuits

and thus they can be linked by one unbounded fanin AND, adding 1 to the depth.

An additional bit of preprocessing is needed: the input matrices have to be

reduced mod p before this process can start. This is a matter of transforming 0(1)

length strings to 0(1) length strings (in almost all cases this will be the identity

transformation) and does not present a problem. 0

. A class of groups similar in definition to the polycyclic are the M-groups.

Definition: A group is an M-group if it has a subnormal series G = HI t>

H2 t> ... t> Hm = {I} such that for all i Hd Hi+} is either infinite cyclic or finite.

Lemma 8.6: If G is an M-group then G is an extension of a polycyclic group

by a finite group.

79

Proof: See Scott [32], p. 153. 0

Theorem 8.7: If G is an M-group then G ENCl.

Proof: By theorem 5.2 and lemma 8.6 G <ucd {H, Q} for some polycyclic

group H and some finite group Q. We can simply view the ucd-reduction as a regular

constant depth reduction, and then the fact that the word problems for Hand Q are

in NCI gives the theorem.D

Chapter IX

Other Groups

The previous two chapters constitute the main part of the thesis. This chapter

contains miscellaneous results that point in the direction of extending the main results,

and provide a starting point for continued research.

The first theorem shows that the polycyclic groups are not the only groups in

Teo. The proof will make use of a classic theorem due to Dehn, the proof of which

is quite long and can be found in [26].

Definition: If a word is freely reduced and its first and last characters are not

inverses of each other, then the word is called cyclically reduced.

Theorem 9.1 (The Freiheitsatz): Let R(aI, a2, ... , an) be a cyclically reduced

word in all a2, ... , an which involves an. Then the subgroup of

generated by aI, a2, ... ,an-l is freely generated by them; in other words, every non­

trivial relator of G must involve an.

Also, a characterization of the polycyclic groups due to Hirsch will be needed.

81

Definition: A group G satisfies the maximal condition if it has no infinite

ascending chain of subgroups HI C H2 C '" .

Theorem 9.2 (Hirsch, 1938 [21.]): If G is solvable then G is polycyclic if and

only if it satisfies the maximal condition.

Theorem 9.3: The group with presentation G = (a, b : b-Iab = a2) is solv­

able, but not polycyclic, and its word problem is in TCO.

Proof: We first establish that G is solvable.

Claim 1: G(1) ~ {bnakb-n : n 2: 0, k E ~}.

Pf: Every element of G(1) is a product of commutators and thus has a representation

in which the net number of occurences of b, (b counting positively and b- l counting

negatively), is O. The relation b-Iab = a2 implies the relations ab = ba 2, a-Ib =
ba-2, b-Ia = a2b-t, and b-Ia- l = a-2b- l . Using these and the trivial relation b-Ib =

bb- l we can push all occurences of b to the left and all occurences of b- l to the right

without changing the net occurences of b.

Claim 2: G(2) = {I}.

Pf: It will be shown that two arbitrary elements of G(l) commute. Let n 2: O.

Then

bn1 (ak1 bn2)(b-n1 ak2)b-n2

bn1 (bn2akl·2n2)(ak2·2nl b-n1)b-n2

The result here is clearly the same as if the two factors were reversed.

Thus G is solvable. The next claim establishes that G is not polycyclic.

Claim 3: Let Hi = {bnakb-n : 0 ~ n ~ i, k E ~}. Then for all i 2: 0:

(a) Hi is a subgroup of G,

(b) Hi CHi+!.

Pf: (a) The identity element is in Hi: bOaob-o = 1. To establish that each

82

element has an inverse: (bnakb-n)(bna-kb-n) = 1. Lastly, to show that Hi is closed

under multiplication, let bnlaklb-nl and lI'2ak2b-n2 be arbitrary elements of Hi, (so

o ~ nl, n2 ~ i).

Case 1: nl ~ n2. Then

Case 2: nl > n2. Then

bn1 (ak1 bn2-n1)ak2 b-n2

_ bn1 (bn2-n1 akl·2n2-nl)ak2 b-n2

bn2ak2+kl·2n2-nl b-n2

bn1ak1 (ak2·2nl-n2 bn2-n1)b-n2

bn1 ak1 +k2 ·2n l-n 2 b-n1

Since both nl and n2 are less than i, in either case the result is in Hi.

(b) It will be shown that bi+lab-(i+l) is not in Hi. If it were then it would have

to have an inverse bnakb-n E Hi. But as in claim 2:

Making use of claim 6 ahead, the latter is the identity if and only if 2n + k· 2i+1 = O.

But since n < i + 1 this equation has no solution for k an integer.

Thus G does not have the maximal condition and by theorem 9.2 is not poly-

cyclic.

Next we show that G E TCo. Let wE {a±l,b±l}"'.

Claim 4: if w = 1 then the number of occurences of b is O.

Pf: Going back to the definition of a group presentation we have that w = 1

if and only if we can obtain the empty string by insertion and deletion of b-1aba-2

and the trivial relators aa-1, bb-1 , etc. None of these operations change the net

occurences of b so if we are to possibly transform w into the empty string (which has

no occurences of b, of course), w must start with a net of 0 b's.

Claim 5: H w has 0 net occurences of b then w = bnaicb-n for some n ;::: O.

Pf: as explained in claim 1.

Claim 6: bnaicb-n = 1 if and only if k = O.

Pf:

bnaicb-n = 1 => b-n(bnaicb-n)bn = b-n(l)bn = 1

=> aic = 1

=> k = 0 by the Freiheitsatz

83

The algorithm to decide the word problem for G will 1) check that the net

occurences of b is 0, and 2) if so, put the string into the form bnaicb-n, n ;::: 0 and test

for k = O.

Claim 7: Let g = glg2 ... gn E {a±l, b±l }*. Then g = broaicb-so where

ri = the total # of occurences of b+I to the right of gi.

Si = the total # of occurences of b-1 to the left of gi.

{ 2'; if gi = a±l
Pi =

if gi = b±l 0

qi = {
2Si if gi = a±I

0 if gi = b±1

ei = {
+1 if gi = a+1

-1 if gi = a-I

Proof' As in claim 1, all occurences of b+I will be pushed to the left and all

occurences of b-1 will be pushed to the right.

We first deal with the b+I. Whenever b+I is pushed past an a±l, the a±l

doubles. (I.e., ab is replaced by ha 2 and a-1b is replaced by ba-2.) Thus after all

the b+I are pushed, we have bro on the far left, each gi = a ei is replaced by aeiPi ,

and the b- l are still in place. Similarly, when b-1 is pushed to the right past an a±\

84

the a:l:1 doubles. Since b-1ae;p; is equal to a2e;P;b-I, ultimately a eiPi is replaced by

aeip;2"j = aejp;I];, and we have b-so at the far right.

Claim 8: G E Teo.

PI: We only need to be able to compute the above k. The ri and 8i are obtained

by counting. Since these will be O(log n) in length, the Pi and qi can be obtained via

a look-up table. Finally, as Pi and qi are O(n) in length, k can be computed using

multiplication and vector addition circuits. As stated previously, 9 E G if and only if

k=O.O

Lastly, we mention some recent results on hyperbolic groups, (see [15] or [13]

for a general exposition on the topic).

Hyperbolic groups are defined by viewing a group as a metric space. Let G be

a group generated by a finite set E, and assume that for all 8 in E, 8-1 is also in E.

For 9 E G define

IIgll = the length of the shortest word over E that defines 9

Then we define the distance between two elements 9 and h by

d(g,h) = IIg-lhll

A path between two elements 9 and h is a sequence of group elements go, gl, ... gm

such that go = g, gm = h and for all i, gi+l = gi8 for some 8 E E. A path is a geodesic

between 9 and h if there exists no shorter path linking these two points. The length

of such a geodesic is necessarily d(g, h).

For Ii ;::: 0, a Ii-neighborhood of a path is the set of all group elements within

distance Ii of some point on the path.

Definition: A group G is hyperbolic if there exists a Ii > 0 such that for

any three group elements gl, g2 and g3 and any three geodesics PI2, P13 and P23 link­

ing them, each path is contained in the union of the Ii-neighborhoods of the other two.

85

Examples include free groups, context free groups and the small cancellation

groups (see [13], Appendix). Examples of nonhyperbolic groups include any group

with a free abelian subgroup of rank 2, (i.e., Z X Z).

Theorem 9.4 (Cai, 1992 [9]): The word problem for any finitely generated

hyperbolic group is in NC2.

In looking to extend Cai's result, a natural next class to examine would be the

Markov groups. That class contains the hyperbolic groups and the polycyclic groups

(and thus Z x Z) and is closed under extensions and free products ([13], Ch. 9). The

Markov groups are also interesting because their definition relates to formal language

theory.

Definition: A Markov grammar r is a Deterministic Finite Automaton (see

[22]) with the restriction that no arrow points from a nonaccepting state to an ac­

cepting state. The language accepted by r in denoted by L(r).

Definition: A group G is a Markov group if there exists a set of generators

E for G and a Markov grammar r with alphabet E such that the natural map from

L(r) to G is a bijection.

Thus L(r) is a set of unique normal forms for G with respect to E. It is not

hard to see that a free group is Markov: using a set of free generators and their

inverses as the alphabet, the DFA needs only to assure that no symbol is followed

immediately by its inverse. It is equally easy to see that polycyclic groups are Markov

by using the fact that each element can be written uniquely in the form X~l X~2 ••• x~

for some set of generators {Xl, X2, ••• , X m}.

The Markov groups then provide a candidate for a larger class to show to be

in NC.

Chapter X

Conclusion

Many interesting open problems remain to be looked at in this area. Some,

such as determining exactly which groups have their word problem in TCo, entail

solving major open questions in circuit theory. In the case of that example, just

determining which finite groups are in TCo would answer the question of whether

TCo NCl since the finite nonsolvable groups are complete for NCI. But many

good problems without such large-scale implications exist as well.

Many of the results of this dissertation leave room for improvement. Some

feasible-looking questions are:

1) Are the free group word problems in Alogtime/NCl?

2) Are the polycyclic word problems in uTCO?

3) Are the polynomial growth nonsolvable groups complete for Alogtime with

respect to Dlogtime reductions?

4) Is the word problem for an extension of a group H by an infinite cyclic

group uTCo-reducible to the word problem for H?

5) Can the free products theorem be improved? A possible conjecture is that

G ® H :::;'ucd {G, H, F} for F a nonabelian free group.

6) Can the Markov groups be shown to be in N C or hard for P?

Another general question that could be explored is which groups' word prob­

lems are hard for NCI. One might suspect that all nonsolvable groups word problems

86

87

would be hard for NCI since they seem "harder" than the finite nonsolvable group

word problems. Of course, it is possible that a group's word problem could be neither

in N Cl nor hard for N Cl. A theorem of J. Tits [33] may be helpful here; it states

that a nonsolvable linear group over a field of characteristic 0 either has a nonabelian

free subgroup or is an extension of a solvable group by a finite nonsolvable group.

Most of the groups looked at here have been such that they can be built up

from less complex groups by extensions, and the algorithms have been based on this

structure. In [19] and [31] examples of an infinite simple groups are given, (groups with

no nontrivial normal subgroup). Approaching such groups would require techniques

different from any employed here.

•

1

Bibliography

[1] A. V. Anisimov. On group languages. Cybernetics, 7:594-601, 1971.

[2] Louis Auslander. On a problem of Philip Hall. Annals of Math, 86:112-116,
1967.

[3] David A. Barrington. Bounded-width polynomial-size branching programs recog­
nize exactly those languages in NCt. Journal of Computer and System Sciences,
38:150-164, 1986.

[4] David A. Mix Barrington and James Corbett. On the relative complexity of
some languages in NCt. Information Processing Letters, 32:251-256, 1989.

[5] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On unifor­
mity within NCt. Journal of Computer and System Sciences, 41:274-306, 1990.

[6] Paul W. Beame, Stephen A. Cook, and H. James Hoover. Log depth circuits for
division and related problems. SIAM Journal on Computing, 15:994-1003, 1986.

[7] W. W. Boone. Certain simple unsolvable problems of group theory. Indig. Math.)
16,17 and 19, 1955.

[8] Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. 19th
ACM STOC Symp., pages 123-131, 1987.

[9] Jin-yi Cai. Parallel computation over hyperbolic groups. 24th Annual ACM
Symposium on the Theory of Computing, pages 106-115, 1992.

[10] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation.
Journal of the ACM, pages 114-133, 1981.

[11] Ashok K. Chandra, Larry Stockmeyer, and Uzi Vishkin. Constant depth re­
ducibility. SIAM Journal on Computing, 13:423-439, 1984.

[12] M.J. Dunwoody. The accessibility of finitely presented groups. Inventiones Math­
ematicae, 81:449-457, 1985.

[13] E. Ghys and P. de la Harpe, editors. Sur les Groupes Hyperboliques d'apres
Mikhael Gromov. Birkhauser, 1990.

2

[14] M. Gromov. Groups of polynomial growth and expanding maps. Pub!. Math.
I.H.E.S., 53:53-73, 1981.

[15] M. Gromov. Hyperbolic groups. In S.M. Gersten, editor, Essays in Group The­
ory. Springer-Verlag, 1987.

[16] Philip Hall. Some word problems. J. London Math. Society, 33:482-496, 1958.

[17] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, London, 4th edition, 1959.

[18] O. G. Harlampovic. A finitely presented solvable group with unsolvable word
problem. Math. USSR Izvestija, 19:151-169, 1982.

[19] Graham Higman. A finitely generated infinite simple group. Journal of the
London Mathematical Society, 26:61-64, 1951.

[20] Graham Higman, B. H. Neumann, and Hanna Neumann. Embedding theorems
for groups. J. London Math. Society, 24:247-254, 1949.

[21] K. A. Hirsch. On infinite soluble groups, I. Proc. London Math. Soc., 44:53-60,
1938.

[22] John E. Hopcroft and Jeffery D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley Publishing Company, Inc., 1979.

[23] Oscar H. Ibarra, Tao Jiang, and Bala Ravikumar. Some subclasses of context-free
languages in NCI. Information Processing Letters, 29:111-117,1988.

[24] Richard J. Lipton. Model theoretic aspects of computational complexity. IEEE
19th Annual Symposium on Foundations of Computer Science, pages 193-200,
1978.

[25] Richard J. Lipton and Yechezkel Zalcstein. Word problems solvable in logspace.
Journal of the ACM, 24:522-526, 1977.

[26] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial Group
Theory: presentations of groups in terms of generators and relations. Dover
Publications, Inc., 1976.

[27] John Milnor. Growth of finitely generated solvable groups. Journal of Differential
Geometry, 2:447-449, 1968.

[28] David E. Muller and Paul E. Schupp. Groups, the theory of ends, and context­
free languages. Journal of Computer and System Sciences, 26:295-310, 1983.

[29] Joseph Rotman. Theory of Groups. Allyn and Bacon, Inc., 1965.

•

•

•

3

[30] Walter L. Ruzzo. On uniform circuit complexity. Journal of Computer and
System Sciences, 22:365-383, 1981.

[31] E. A. Scott. A tour around finitely presented infinite simple groups. In G. Baum­
slag and C. F. Miller III, editors, Essays in Group Theory. Springer-Verlag, 1987.

[32] W. E. Scott. Group Theory. Prentice-Hall, Inc., 1964.

[33] Jacques Tits. Free subgroups in linear groups. Journal of Algebra, 20:250-270,
1972.

[34] Joseph A. 'Wolf. Growth of finitely generated solvable groups and curvature of
riemannian manifolds. Journal of Differential Geometry, 2:421-446, 1968 .

