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ABSTRACT

Author: Deepansha Singh, Advisor: Dr. Yuhua Zhu
Bachelor of Science in Mathematics-Computer Science

Title: Exploring Gradient-Free Optimization Methods through "Gradient-Free
Optimization With Constraint Algorithm" & "Federated Consensus Based
Optimization Algorithm"

With the ongoing machine learning/deep learning technology boom, there
have been many issues that are present with these gradient-based optimization
methods. The "vanishing gradient" and "exploding gradient" problems along with
the extreme complexity that comes with computing these gradients of high di-
mensional problems are just some of these issues. Thus, in my thesis, I explored
non-gradient optimization methods further. Specifically, this thesis consists of two
parts. The first component explores a "gradient-free optimization algorithm with
constraints" that was proposed by [Car+20]. The second component of the the-
sis includes further exploring an algorithm is also originally proposed by my advi-
sor and her research group called the "Federated Consensus-Based Optimization"
(Fed CBO) algorithm [Car+23] For both parts, it is discussed what my experi-

ments/methods/contributions are.
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CHAPTER 1
INTRODUCTION
1.1 Machine learning / deep learning introduction

With the advent of Al services such as ChatGPT and Google’s Gemini, the
machine learning/deep learning area has become even more in the limelight. There
are many buzzwords that people hear on a daily basis pertaining to this field. My
honors thesis, advised by Dr. Yuhua Zhu, is in this machine learning/optimization
space. Before delving deeper into the specifics of what I was working with for this
project, I believe it is crucial to first give a good overview /background of various
machine learning concepts at a high level.

As this field is very expansive and has countless sub-topics spanning from "natu-
ral language processing" to "reinforcement learning" I will only focus on the "deep
learning" subfield as this pertains to the second portion of my thesis. As outlined
in the abstract, this thesis consists of two research components - 1) a gradient-free
constraint optimization research problem and 2) a federated learning research prob-
lem. The second portion of my thesis involves advanced machine learning concepts,
so chapter 1 will cover these foundational concepts.

Of the machine learning problems that people explore, image classification is one
that I would like to focus on. Using classical machine learning techniques, often-
times people aim to classify images through a "supervised learning" approach where
a classifier model is initially trained on some "trainset" and then we test this clas-
sifier’s performance on a "testset" and see how well it truly performs. The original
dataset is split into these two sets - a trainset and a testset - where the testset is
data that the classifier can’t see from before so it’s a way of testing the classifier in
the real world. Many times, people will also have a validation set when training,
which sometimes helps with further improving the accuracy.

In classical machine learning problems, people need to go about feature extraction
manually. Given some input and targets (labels associated with each class of im-
ages), people manually specify features that might distinguish one class of images
from another class. For instance, if we are looking at some research problem of clas-
sifying fish from frogs, we might manually encode in our feature selection attributes
such as fins or legs to distinguish between these two classes.

However, a more powerful method would be if we don’t need to manually en-
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Figure 1.1. Cats vs. Dogs ML example, passing through neural network [Sha24|

code the features and instead the features are learned automatically. This is where
deep learning plays a role.

ChatGPT and Gemini - and many of these other machine learning technolo-
gies - are all powered by some type of deep learning neural network architecture.
"Large language models" (LLM’s) in particular has been a very popular buzzword
lately. Simply put, these LLM’s have a special deep learning neural network archi-
tecture pattern. I won’t be going in-depth regarding how large language models are
constructed as they don’t pertain to this thesis; however, there are many resources
available to get more insight on how these transformer architecture patterns are
built from concepts such as RNN’s.

The specific kind of neural network that is relevant for this second portion of my
thesis is "convolutional neural networks." However, before discussing this neural
network architecture, I will give a deeper mathematical overview on how exactly
neural networks work.

The goal of the machine learning/deep learning subspace is to mimic the way hu-
mans learn to learn new concepts naturally in our world given a set of observations
and patterns that can be deduced, instead of hard-coding a fixed if-else algorithm
to make conclusions. As the name suggests, neural networks are composed of neu-
rons. Just like the human brain, these neurons take in a set of inputs and then pro-
duce some output by taking a linear combination of the inputs. Each layer in the
neural network consists of different hidden layers, a given input layer, and also an
output layer. In terms of the connections between these neurons, we can assign
"weights" on each of these connections, where the weights are randomly initial-

ized in the beginning, and then finetuned as time progresses. These weights help
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Figure 1.2. Backpropagation [Sil20]

determine how important each input is towards determining the final output. How-
ever, if all we are doing is a linear combination between these weights and inputs
for each of these hidden layers, it is natural to wonder why instead can’t we just
have one larger layer consisting of the final weights to assign to each of the images.
This is because we assign an element of "non-linearity" to the neural network by
introducing an activation function. This non-linearity is what prevents us from hav-
ing just one layer that is accumulating all the weights for the inputs.

This process of starting from a given set of inputs and propagating towards
the final output in the output layer is called "forward propagation" in deep learn-
ing. Simply put, the neural network model is arriving at some output with some
weights and inputs and then we can compare its output with the actual true tar-
get /label output. From here, we can see the error that is present between the true
and the observed outputs and then go about a process called "backpropagation."
As the name suggests, backpropagation is the process of updating our weights ac-
cording to the error that we get. This is where the concept of partial derivatives
and computing gradients comes into the picture. Given some error "C" as denoted
in the figure, we can take the partial derivative with respect to each of the weights
for the different layers, essentially starting from the end and back-propagating our
way back to the very first layer.

Once these gradient terms are computed, we can then update the parameters
using an optimizer such as gradient descent. The "alpha" term specifically in "Fig-
ure 1.5" denotes a hyperparameter called "learning rate." Learning rate is what
enables us to update the parameters/weights of our neural network at some specific
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Figure 1.4. Backpropagation, Another Image Showing the Process [Wah24|

rate. We can either have a fixed rate that doesn’t change or keep it variable. There
are many interesting optimizers that have been develoepd through past extensive
research efforts such as "Adagrad" and "Adam" optimizers that adjust the learning
rate in very clever ways. PyTorch, specifically, is a popular machine learning/deep
learning library in which people write deep learning programs and use these dif-
ferent concepts such as optimizers; the documentation explains each of these al-
gorithms very well and also links previous research papers in which these findings
were made.

Regarding gradient descent (Figure 1.5), the concept is given some non-convex
function we can compute the gradient from backpropagation and then traverse in
the direction that is opposite of the gradient direction. Specifically, the concept
of learning rate discussed in the previous paragraph, connects with gradient de-
scent as we can decide how much in this negative gradient direction we would like
to traverse. A key thing to note is an issue that can rise with having both global

and local minimas for a non-convex function. Ideally, when given the optimization
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Gradient descent algorithm
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Figure 1.5. Gradient Descent [Sar22]

problem of minimizing a given function, we would like to output the global minima
point once the algorithm concludes. However, it is also possible for it to be stuck
in a local minima point if we choose the initial starting point to be closer to the
local minima instead of the global minima. This is a classic ML problem, which is
not too relevant for this thesis but is interesting to explore; there have been differ-
ent interesting strategies that people employ to ensure that we don’t get stuck with
this issue.

Reverting back to the activation functions for a quick moment, I just wanted
to quickly mention that ReLu is a very commonly used activation function in a
wide array of machine learning problems. Activation functions, as mentioned ear-
lier, serve a critical purpose after we get some weighted linear combination with
inputs and weights/parameters.

For this thesis (second portion), the specific type of neural network that is relevant
is called "CNN" or convolutional neural networks. These networks are known for
classifying images. To summarize, the convolution layers can just be thought of as
taking some kind of filter and sliding it across the input image as some sliding win-
dow to yield some intermediate output in our neural networks. Pooling layers, as
the name suggests, aggregate a given set of pixels and generally will look at either
the "max" or the "average" values over a specific subsection of the image. These
layers, along with some linear layer(s) at the very end form convolutional neural
networks.

In Figure 1.6, an example is shown with an MNIST image. MNIST, along with
CIFAR, are popular image datasets used in the Machine learning community to
run experiments and test hypotheses. MNIST, in particular, is a set composed of
handwritten images from 0-9 and CIFAR is a set of images also with 10 classes

nn

consisting of images with labels of common things such as "ship," "plane," etc.
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Figure 1.7. Convolution Layer in CNNs [Per24|

(https://www.cs.toronto.edu/ kriz/cifar.html).

The CNN that is used for the experiments in portion 2 of the thesis is not very
complex, as in it doesn’t have a lot of layers, but still is complex enough to help us
with CIFAR dataset classification.

1.2 Federated learning introduction

Now that an overview of important machine learning concepts has been cov-
ered, we can discuss the concept of "federated learning" in particular. Federated
learning was a concept initially proposed by Google Al. This is a privacy-preserving
machine learning approach which has a central server and different clients that
communicate and have different updates with this central server.

Oftentimes, certain applications of machine learning research problems involve

the need to preserve the client’s privacy. For example, dealing with sensitive pa-
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Figure 1.9. Federated Learning |Yan23]

alll

tient data in the healthcare system is an application where it’s highly critical to
preserve privacy. Simply put, the objective of federated learning is such that there
is some kind of collaboration between these different client clusters where they
train a common neural network, which is called a global model, but the local up-
dates are done locally for each client on their own respective datasets. There have
been many algorithms that are already present such as FedAvg that further illus-
trate this concept. However, the common theme of this overall thesis - for both
parts - is to have a focus on non-gradient based approaches as well. There are many
issues that arise from gradient-based methods and if we take inspiration from other
works we can focus on non-gradient based algorithmic methods to boost perfor-
mance and also not run into any issues that are generally present with gradient-

based approaches. More information on this is in the next section and next chapter
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as well.
1.3 Non-gradient based methods

In the previous section, the key topic of discussion was how neural networks
work mathematically and how it’s essential to do gradient computations by taking
partial derivatives with respect to each of the layer’s weights/parameters. However,
as the number of layers increase, there’s a chance for neural network model run-
ning into the "vanishing gradient" problem. This essentially just means that the
gradient value keeps on diminishing as we keep on taking partial derivatives when
the number of layers is a very huge number that the gradient somewhat loses its
meaning. On the other hand, there’s also the "exploding gradient" problem. These
are just two of the many problems that are present when it comes to dealing with
gradients and computing them for complex, high-dimensional machine learning
problems. Hence, this prompts for non-gradient based method exploration. My
advisor, Dr. Yuhua Zhu and her research group, had previously developed an al-
gorithm called "Gradient-free optimization with constraint" (built off of ideas from
[Car+20]) that demonstrates this idea of optimizing a certain function along a con-
straint without using any gradients. I discuss my experiments, contributions, and
results in the next section. For the second portion of the thesis, I worked with an-
other algorithm that is in the "federated learning" space also initially developed in
this paper [Car+23]. While this algorithm isn’t entirely gradient-free, a great bulk
of it is, and I discuss more in-depth about the algorithm and experiments, and my

contributions for this portion of the thesis as well.
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CHAPTER 2
METHODS/EXPERIMENTS

2.1 "Exploring Gradient-Free Optimization Methods Through Gradient-Free
Optimization with Constraint Algorithm"

The setup of the algorithm is like so: there are N agents where the goal is to
minimize a certain function L(x) and we are given a constraint g(x) = 0. The mo-
tivation behind this algorithm draws from particle physics and modeling this prob-
lem as a system of particles such that each one is updated accordingly based on
looking at values like the gradient, hessian, and function value, etc. During each
iteration of the algorithm there is a consensus point that is generated which is es-
sentially the point that yields in the minimum possible L(x) value. Then using this,
all the other agents are updated like so in figure 2.1.

My contributions for this portion of the thesis have been coding up the experi-
ment in PyTorch, verifying the results seem to be expected. I mainly coded up four
such experiments. For most of these experiments, I used the algorithm in Figure
2.1 with datasets from the following paper [For+21]. To give some additional con-
text, this paper is also a consensus-based optimization approach and the goal was
to see if we get some comparable results with this paper. Before going in this direc-

tion, I first ran a quick initial experiment, highlighted in the next section.
Small example

For this portion of the experiments/methods, L(x) = z% + 3.

g(z) = (x1 + 1)*/2 + ((w9)* — 1). The particles were initialized to be uniformly dis-
tributed in the beginning and then over time they converged towards the minimum.
Figures 2.2 and 2.3, in specific, show this overall convergence.

A key thing to note is that I also plotted the particles and how they progressed
over time. This visualization also helped with debugging. Figure 2.4 depicts this.
Furthermore, we can see how the particles are all forming this overall circular shape
that we’re given. Over time, the consensus point and the overall minimum are sup-
posed to converge (the green and red points).

I also tried running this experiment for more iterations, such as 20 iterations,

and got the following results, shown in figures 2.5 and 2.6.
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3 Algorithm
We use implicit numerical scheme to discretize the model (2.2).

Xhyy = X]=x(X]-2) -2 (XD VX + Ty — X)) +oya (XL -2)iéi(z,
i=1

where J(z) = V?(¢?) is the Hessian of g%, (2;)r ~ N(0,1). The reason why we use implicit
scheme is because we require € small in the model, implicit algorithm can guarantee the uncon-
ditional stable of the algorithm, while simple explicit algorithm is unstable for reasonable step
size when € is close to zero. Therefore the algorithm is the following.

Algorithm 3.1. Initialize N particles X7 following the same distribution.
Step 1 Calculate Z*,
Z* = argmin L(X7).
X7

Step 2 Update all {X? 3’-\’:1 according to Z*

X0 e x=[r+ Zeen] (M(Xj —2%) + 2 g(X9)Tg(X7) + oy (X7 - a:)) :

where z, ~ N(0,1).

Step 3 Check the stopping criteria,
[ Az"|I2 /d < estop,

where Az* is the difference between the most recent two z*. If the above condition is

satisfied, we stop the algorithm, otherwise, we go back to Step 1.
For multiple constrains optimization,
min L(x)
x
with g1(z)=0,--- ,gx(z) =0

Similar to Algorithm 3.1, one changes Step 2 to

k -1 3
i ¥ i P, Y j Py =
X e X |1+ 1S gy(xd My(Xi—z)+ 2 (X Vg (X) + o X -7 )& |,
€i§=1 ( )] (7( ) E1§=19( )Vgi(X7) ﬁzl( ) )

where J;(z) = V2g;(x) is the hessian of the i-th constrain.

Figure 2.1. Gradient-Free Constraint-Based Optimization Algorithm

Ackley function, small dimension example

Then, we took an example application from another paper and implemented
the algorithm for this application to see the results [For+21]. This paper was cen-
tered around optimizing functions with sphere constraint, as can be seen in figure
2.7, such that the L(x) was the ackley function and the g(x) is this sphere.

A key thing to note for both Ackley function experiments - this current subsec-
tion and the next one - is that when programming this upper hemisphere constraint
of radius 1, I ran into some issues. In particular, for the gradient computations, it

was sometimes an undefined or complex number value of the square room term in
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the denominator of the gradient, needing the number to be positive for that square
root. However, this wasn’t always the case, and after different attempts - such as
adding some epsilon noise value to offset these undefined values in the square root
term - I ended up keeping the constraint as a regular sphere. This would prevent
this issue, and then kept the particles to still be initialized as distributed across the
hypersphere of radius 1 and positive-z values. Thus, coding the constraint part isn’t
entirely accurate but still yielded some decent results

Something to note is that for a plot of theirs [For+21] they looked at the av-
erage norm value of the difference between the consensus value point and each of
the agents. As the iterations increased, we can see that the value decreased - and in
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Figure 2.4. Visualization of the particles for the "small experiment"
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Figure 2.7. Sphere constraint [For+21]

fact it seems like for their experiment it reaches a value of somewhere around .6 to

.7 but for us it reaches a value of around .4, seeming to reach convergence faster.
Ackley function, large dimension example

Similar to [For+21], I also tried with a larger dimension of dimension 6 and
tried obtaining results in this case as well, which seemed to be pretty similar to the
previous case as well; however, they worked with dimension 20 for the larger dimen-
sion case whereas I tried dimension 6.

I also tried getting results for the overall difference between the consensus value

and the actual minimum per iteration to see if it converged, but didn’t see the pat-
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Figure 2.8. Ackley function, smaller dimension case
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Figure 2.9. Average norm diff between consenus value point & each of the agents

tern that I was looking for exactly, and was close to constant value, so this seemed

to be some bug which was needed to be addressed.
2.2  Federated Constraint Based Optimization

Federated Constrained Based Optimization [Car+23] is a "federated learning"
algorithm which draws from ideas from particle physics. Specifically, the system is
modeled as a system of particles reaching some convergence point that is described
in more detail in the paper. Figures 2.11 and 2.12 give an outline of this FedCBO

algorithm and the steps that are present starting from the initialization phase to
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Figure 2.10. Ackley function, large dimension example

the local update and aggregation steps for each of these agents.

To give a concise picture of the algorithm, there are initially some agents/clients
initialized with some neural network model in the beginning and first enter the "lo-
cal update" phase. This step involves training the neural network for a few steps,
updating the parameters. Then, during the local aggregation phase, a certain sub-
set of agents is sampled from all of the agents and look at their respective losses by
taking each of these model’s computation output for the current inputted agent’s
dataset, and then use this with computing the consensus point. Using this consen-
sus point, then the agents are updated along with the sampling likelihood.

Just like the algorithm discussed in the first portion of this thesis, this algorithm’s
"local aggregation phase" is also based on this very similar idea of looking at a sys-
tem of points and updating them based on some central consensus point that is
calculated.

My contributions for this portion of the thesis mainly involved extending the
work to testing with the CIFAR dataset along with making code contributions to-
wards making the algorithm runtime faster. To make the algorithm runtime faster,
this involved making changes centered around the kernel /operating system level
such that different processes/threads could run concurrently. With regards to ex-
tending the current work to CIFAR, I needed to learn more deep learning concepts
- specifically related to dataset creation/loading concepts - and how to properly
code these techniques in PyTorch.

Regarding the experiment, a small convolutional neural network was used and I
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Algorithm 1 FedCBO

Input: Initialized model 96 e R%j e [N]; Number of iterations T; Number of local gradient steps T;
Number of models downloaded M; CBO system hyperparameters A1, s, c; Discretization step size -;
Initialized sampling likelihood Py € RY*(N-1),

1: forn=0,---,T—1do

2:  Gp « random subset of agents (participating devices);

3:  LocalUpdate(#, 7, \2,v) for j € Gy;

4: LocalAggregation(agent j) for j € Gp;

5: end for

Output: 6} for j € [N].

LocalUpdate(GAo,'r, Az,7) at j-th agent

6: forg=0,---,7—1do

7:  (stochastic) gradient descent §q+1 — §q - )\g’vaj(é\q);

8

9

: end for

: return 0,;

Figure 2.11. FedCBO Algorithm [Car+23|

Algorithm 2 LocalAggregation(agent 5)

Input: Agent j's model #), € R%; Participating devices at n iteration G,; Sampling likelihood PJ € RN ~1;
CBO system hyperparameters Aq, ; Discretization step size v; Random sample proportion £ € (0,1);
Number of models downloaded M;

1: A, ¢ e-greedySampling(P?, G,,, M);

2: Agent j downloads models 8%, for i € A,,;

3: Evaluate models 6, on agent j's data set respectively and denote the corresponding loss as L;;

4: Calculate consensus point m; by

1 » - i i
(19) mi& = Z 05, with uj = exp(—aLj)
ZieA“ "LJ i€A,

5: Update agent j’s model by
(20) 041 4 03— Aiy(85, —my),

6: Update sampling likelihood P by
(21) Pr, P34 (L; - L), for ie A,
Output: 0i+1,P7{+1
e-greedySampling(P?, G,,, M)
7: Randomly sample € * M number of agents from G,,, denoted as AL;

8: Select (1 — €) * M numbers of agents in G,,\ A% with top value P;’i,i € G, \AL, denoted as A2;
9: return A, = Al U A2

mn

Figure 2.12. FedCBO, Local Aggregation Portion [Car+23]
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Figure 2.13. FedCBO Experiment, with accuracy shown across the iterations of the
algorithm

tried to follow a similar setup to the following paper [Li+22| with some modifica-
tions, such as the number of iterations for the algorithm. Please find the results

that were obtained in figure 2.13.

22



CHAPTER 3
KEY LEARNINGS

I learned a lot during this project as there were many challenges and bugs I
had to fix along the way and many new concepts I had to ramp up on, which I
hadn’t worked with before - I am very grateful for all the support I received during
this thesis and learned a lot about the overall research process for running numer-
ical experiments and testing hypotheses and just writing good code to test these
mathematical claims. I plan on continuing some extension work of the project and
in the long term will be going to graduate school so have been very grateful for the
key learnings obtained throughout this project and during all the research work in

my undergradute career in general!
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