Algebraic Stack and its Connections with Markoff Triples

Siyuan Zheng

Advisor: Professor Alireza Salehi Golsefidy

Department of Mathematics

University of California San Diego

In partial fulfillment of the requirements
for the Mathematics Honors Program
June 2024

Acknowledgements

In the past few years, I discovered my passion lie in mathematics. I would like to express my deepest gratitude to my advisor, Professor Alireza Golsefidy, for his invaluable time, guidance, support, and patience, throughout his class and this project. I am also immensely thankful to my friends for our enriching conversations and their willingness to discuss ideas, which have made this journey more enjoyable. Lastly, I thank my family for their unconditional love and support.

Abstract

We introduce the Markoff equation and a group action that acts on the set of solution of the Markoff equation. We state the conjecture of Bourgain, Gamburd, and Sarnak regarding the $\mathbb{Z} / p \mathbb{Z}$ solution of Markoff equation, their progress, and the recent result by Chen that reduce the conjecture to a finite computation. Then we explain the connection of Markoff equation with character variety. Finally, we develop some algebraic geometry machinery necessary to understand Chen's work.

Contents

1 Introduction 1
1.1 Markoff Equation and Markoff Triples 1
1.2 Representation Variety and Character Variety 2
1.3 Orientable Surface and Mapping Class Group 3
1.4 Connections with Markoff Triples 6
2 Stack and Stack in Groupoids 7
2.1 Fibered Category 7
2.2 Stack 9
2.3 Stack in Groupoids 13
3 Smooth and Étale Maps 17
3.1 Homological Algebra 17
3.2 Differential and Naive Cotangent Complex 21
3.3 Smooth and Étale Maps 24
4 Algebraic Space and Algebraic Stack 31
4.1 Yoneda Lemma and Representability 31
4.2 fppf Topology 35
4.3 Algebraic Space 36
4.4 Algebraic Stack 37
Reference 40
Index 42

1 Introduction

1.1 Markoff Equation and Markoff Triples

Definition 1.1.1. The Markoff equation is the equation

$$
x^{2}+y^{2}+z^{2}-3 x y z=0
$$

A positive integer solution of the Markoff equation is called a Markoff triple.
Remark 1.1.2. The Markoff equation is symmetric in variable x, y and z, so permuting a Markoff triple gives another Markoff triple. Also, given a Markoff triple $\left(x_{0}, y_{0}, z_{0}\right)$, viewing the Markoff equation as a degree 2 polynomial in variable z

$$
z^{2}-(3 x y) z+x^{2}+y^{2}=0
$$

we see that $\left(x_{0}, y_{0}, 3 x_{0} y_{0}-z_{0}\right)$ is another Markoff triple because the solution of a quadratic equation sum to the coefficients of the linear term up to a minus sign. Let $\Gamma \subseteq \operatorname{Aut}\left(\mathbb{A}^{3}\right)$ be the subgroup of automorphisms of affine 3 -space generated by permuting x, y, and z, and the $(x, y, z) \mapsto(x, y, 3 x y-z)$. The move $(x, y, z) \mapsto(x, y, 3 x y-z)$ is called the Vieta involution.

Then the group Γ acts on the set of Markoff triples and Markoff showed, in his 1879 paper [Mar79], that the action of Γ on the set of Markoff triple is transitive.

Instead of integer solution, we can also consider the solution of the Markoff equation in the field $\mathbb{Z} / p \mathbb{Z}$. In 2015, Bourgain, Gamburd, and Sarnak studied this question and conjectured that the action of Γ on the nontrivial $\mathbb{Z} / p \mathbb{Z}$-solution (solutions that are not $\left.(0,0,0) \in \mathbb{A}_{\mathbb{Z} / p \mathbb{Z}}^{3}\right)$ is also transitive. To support their claim, Bourgain, Gamburd, and Sarnak established their conjecture for all but a sparse, but infinite, set of primes. Moreover, for sufficiently large prime, there always exist a large orbit.

Definition 1.1.3. Let p be a prime and $\Gamma \subseteq \operatorname{Aut}\left(\mathbb{A}_{\mathbb{Z} / p \mathbb{Z}}^{3}\right)=\operatorname{Aut}((\mathbb{Z} / p \mathbb{Z})[x, y, z])$ be the subgroup generated by permuting x, y, z and $(x, y, z) \mapsto(x, y, 3 x y-z)$. Let

$$
X(p)=\left\{(x, y, z) \in \mathbb{A}_{\mathbb{Z} / p \mathbb{Z}}^{3} \mid x^{2}+y^{2}+z^{2}-3 x y z=0\right\}
$$

and $X^{*}(p)=X(p) \backslash\{(0,0,0)\}$. Let $\mathbb{E}_{\mathrm{bgs}}=\left\{p\right.$ prime $\mid \Gamma \curvearrowright X^{*}(p)$ is not transitive $\}$ be the set of exceptional prime.

Conjecture 1.1.4. [BGS15] For a prime p, Γ acts on $X(p)$ with two orbits: $(0,0,0)$ and $X^{*}(p)$.

Theorem 1.1.5. [BGS15] For all $\varepsilon>0,\left|\left\{p \in \mathbb{E}_{\mathrm{bgs}} \mid p \leq x\right\}\right|=O\left(x^{\varepsilon}\right)$.

Theorem 1.1.6. [BGS15] For all $\varepsilon>0$ and there exist sufficiently large $N \in \mathbb{N}$ such that $p \geq N$ implies, there exist an orbit $C(p)$ of $\Gamma \curvearrowright X^{*}(p)$ such that

$$
\left|X^{*}(p) \backslash C(p)\right| \leq p^{\varepsilon}
$$

Remark 1.1.7. In 2020, Chen proved a divisibility theorem on the cardinalities of Nielsen equivalence classes of generating pairs of finite groups. As a corollary, p divides the size of every Γ-orbit in $X^{*}(p)$. Combined with the result of Bourgain, Gamburd, and Sarnak, this establishes conjecture 1.1.4 for all but finitely many primes, reducing the conjecture to a finite computation.

Theorem 1.1.8. [Che21] For all prime p, p divided every Γ-orbit of $X^{*}(p)$.

1.2 Representation Variety and Character Variety

Definition 1.2.1. Let Γ be a group. Define $A\left(\Gamma, \mathrm{SL}_{2}\right)$, called the universal representation algebra, by

$$
A\left(\Gamma, \mathrm{SL}_{2}\right)=\mathbb{Z}\left[a_{i j}(\gamma) \text { for } \gamma \in \Gamma \text { and } i, j \in\{1,2\}\right] / I
$$

where I is the ideal

$$
I=\left\langle\begin{array}{c}
a_{i j}(e)-\delta_{i j}, a_{i j}(\gamma \delta)-\sum_{k} a_{i k}(\gamma) a_{k j}(\delta), \\
\operatorname{det}(\sigma(\gamma))-1 \text { for } \gamma \in \Gamma \text { and } i, j \in\{1,2\} \text { and } \gamma, \delta \in \Gamma
\end{array}\right\rangle
$$

The map $\sigma: \Gamma \rightarrow \mathrm{SL}_{2}\left(A\left(\Gamma, \mathrm{SL}_{2}\right)\right)$ defined by $\gamma \mapsto \sigma(\gamma)$ is a representation of Γ is called the universal representation of Γ in SL_{2}. The SL_{2}-representation variety of Γ is the affine scheme $\operatorname{Spec}\left(A\left(\Gamma, \mathrm{SL}_{2}\right)\right)$.

Definition 1.2.2. Let Γ be a group. Define $R\left(\Gamma, \mathrm{SL}_{2}\right)$, called the universal character ring, by

$$
R\left(\Gamma, \mathrm{SL}_{2}\right)=\frac{\mathbb{Z}\left[t_{\gamma}, \gamma \in \Gamma\right]}{\left\langle t_{e}-2, t_{\gamma} t_{\delta}-t_{\gamma \delta}-t_{\gamma^{-1} \delta}\right\rangle}
$$

The SL_{2}-character variety of Γ is the affine scheme $\operatorname{Spec}\left(R\left(\Gamma, \mathrm{SL}_{2}\right)\right)$.
Remark 1.2.3. Since the representation variety and character variety are affine schemes, we can view them as functors from the category of schemes to the category of sets, or functor from the category of rings to the category of sets.

Remark 1.2.4. The relation $s(\gamma) s(\delta)-s(\gamma \delta)-s\left(\gamma^{-1} \delta\right)$ in the denominator of the definition of $R\left(\Gamma, \mathrm{SL}_{2}\right)$ (definition 1.2.2) is known as the Fricke identity which is satisfied by the trace of two matrices in SL_{2}. Suppose $M, N \in \mathrm{SL}_{2}(R)$ for some ring R, by Cayley

Hamilton

$$
\begin{aligned}
M^{2}-\operatorname{tr}(M) M+\operatorname{det}(M) I_{2} & =0 \\
M N+\operatorname{det}(M) M^{-1} N & =\operatorname{tr}(M) N \\
\operatorname{tr}(M N)+\operatorname{det}(M) \operatorname{tr}\left(M^{-1} N\right) & =\operatorname{tr}(M) \operatorname{tr}(N) \\
\operatorname{tr}(M) \operatorname{tr}(N)-\operatorname{tr}(M N)-\operatorname{tr}\left(M^{-1} N\right) & =0
\end{aligned}
$$

Theorem 1.2.5. (Fricke) Let $\Pi=\langle a, b\rangle$ be a free group generated by two elements. Then

$$
\frac{\mathbb{Z}\left[t_{\gamma}, \gamma \in \Pi\right]}{t_{e}-2, t_{\gamma} t_{\delta}-t_{\gamma \delta}-t_{\gamma^{-1} \delta}} \simeq \mathbb{Z}\left[t_{a}, t_{b}, t_{a b}\right]
$$

This result is due to Fricke [Fri96], a proof can be found in [Gol05] and [Che21, Section 6.2]. In particular, it shows $\operatorname{Ch}\left(\Pi, \mathrm{SL}_{2}\right) \simeq \operatorname{Spec}\left(\mathbb{Z}\left[t_{a}, t_{b}, t_{a b}\right]\right) \simeq \mathbb{A}^{3}$.

1.3 Orientable Surface and Mapping Class Group

Definition 1.3.1. A surface is a 2 -dimensional manifold. A closed surface is a compact surface with no boundary.

Theorem 1.3.2. (Classification of closed surfaces) Any connected closed surface is homeomorphic to a surface in one of the following 3 families:
(1) the 2 -sphere S^{2},
(2) the orientable surface of genus g, for some $g \geq 1$, denoted Σ_{g},
(3) the non-orientable surface of genus h, for some $h \geq 1$, denoted N_{h}.

Remark 1.3.3. From the classification of closed surfaces, we can obtain a classification of orientable compact surfaces with boundary. Given an orientable closed surface, removing finitely many open discs will give an orientable compact surface with boundary. Conversely, given an orientable compact surface with boundary, the boundary is a 1-dimensional manifold, which must be a disjoint union of circles, implying it comes from an orientable closed surface, with some open discs removed. Moreover, the precise location of the removed disc does not matter because the classification is up to homeomorphism.

Therefore, an orientable compact surface with boundary is determined, up to homeomorphism, by two invariants, the number of genus, and the number of discs removed. We call surface with n discs removed n-puntured. We denote the n-punctured orientable surface of genus g by $\Sigma_{g, n}$

Here, we are interested in the one-punctured torus $\Sigma_{1,1}$. $\Sigma_{1,1}$ can be visualized as follows

Figure 1.

Figure 2.

Denote the fundamental group of $\Sigma_{1,1}$ by $\Pi_{1,1}$. We see that $\Pi_{1,1}$ is isomorphic to the free group generated by a, b by deformation retracting Figure 2 to the four edges of the square, and applying van Kampen's theorem. The class of the boundary curve in $\Pi_{1,1}$ is the commutator $[a, b]=a b a^{-1} b^{-1}$. By theorem 1.2.5, we see that $\mathrm{Ch}\left(\Pi_{1,1}, \mathrm{SL}_{2}\right) \simeq$ $\operatorname{Spec}\left(\mathbb{Z}\left[t_{a}, t_{b}, t_{a b}\right]\right) \simeq \mathbb{A}^{3}$.

From now on, we write $\mathrm{Ch}_{1,1}$ for $\mathrm{Ch}\left(\Pi_{1,1}, \mathrm{SL}_{2}\right)$.
Remark 1.3.4. Let $\Pi=\langle a, b\rangle$ be a free group generated by two elements and R be a ring. Suppose $\varphi: \Pi \rightarrow \mathrm{SL}_{2}(R)$ be a group homomorphism. Write

$$
\begin{aligned}
x & =\operatorname{tr} \varphi(a) \\
y & =\operatorname{tr} \varphi(b) \\
z & =\operatorname{tr} \varphi(a b)
\end{aligned}
$$

By Cayley Hamilton, for $M \in \mathrm{GL}_{2}(R)$

$$
\begin{aligned}
M^{2}-\operatorname{tr}(M) M+\operatorname{det}(M) I_{2} & =0 \\
M+\operatorname{det}(M) M^{-1} & =\operatorname{tr}(M) I_{2} \\
\operatorname{tr}(M)+\operatorname{det}(M) \operatorname{tr}\left(M^{-1}\right) & =2 \operatorname{tr}(M) \\
\operatorname{tr}(M) & =\operatorname{det}(M) \operatorname{tr}\left(M^{-1}\right)
\end{aligned}
$$

$\varphi(a), \varphi(b), \varphi(a b) \in \mathrm{SL}_{2}(R)$ implies $\operatorname{det} \varphi(a)=\operatorname{det} \varphi(b)=\operatorname{det} \varphi(a b)=1$ which implies

$$
\begin{aligned}
& x=\operatorname{tr} \varphi(a)=\operatorname{tr} \varphi\left(a^{-1}\right) \\
& y=\operatorname{tr} \varphi(b)=\operatorname{tr} \varphi\left(b^{-1}\right) \\
& z=\operatorname{tr} \varphi(a b)=\operatorname{tr} \varphi\left(b^{-1} a^{-1}\right)
\end{aligned}
$$

By Cayley Hamilton again, for $M, N \in \mathrm{GL}_{2}(R)$

$$
\begin{aligned}
M^{2}-\operatorname{tr}(M) M+\operatorname{det}(M) I_{2} & =0 \\
M N+\operatorname{det}(M) N^{-1} M & =\operatorname{tr}(M) N \\
\operatorname{tr}(M N)+\operatorname{det}(M) \operatorname{tr}\left(N^{-1} N\right) & =\operatorname{tr}(M) \operatorname{tr}(N)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\operatorname{tr} \varphi\left(a^{2}\right)+2 & =\operatorname{tr} \varphi(a)^{2}=x^{2} \\
\operatorname{tr} \varphi\left(b^{2}\right)+2 & =\operatorname{tr} \varphi(b)^{2}=y^{2} \\
\operatorname{tr} \varphi\left(a^{-1} b\right) & =\operatorname{tr} \varphi\left(a^{-1}\right) \operatorname{tr} \varphi(b)-\operatorname{tr} \varphi(a b)=x y-z \\
\operatorname{tr} \varphi\left(a b a^{-1} b\right) & =\operatorname{tr} \varphi(a b) \operatorname{tr} \varphi\left(a^{-1} b\right)-\operatorname{tr}\left(a b b^{-1} a\right) \\
& =z(x y-z)-x^{2}+2=x y z-z^{2}-x^{2}+2 \\
\operatorname{tr} \varphi\left(a b a^{-1} b^{-1}\right) & =\operatorname{tr} \varphi\left(a b a^{-1}\right) \operatorname{tr} \varphi\left(b^{-1}\right)-\operatorname{tr}\left(a b a^{-1} b\right) \\
& =y^{2}-\left(x y z-z^{2}-x^{2}+2\right)=x^{2}+y^{2}+z^{2}-x y z-2
\end{aligned}
$$

So in $\mathrm{Ch}_{1,1}, t_{[a, b]}=t_{a b a^{-1} b^{-1}}=t_{a}^{2}+t_{b}^{2}+t_{a b}^{2}-t_{a} t_{b} t_{a b}-2$.
Definition 1.3.5. Let S be an orientable surface with boundary ∂S. The mapping class group of S, denoted by $\operatorname{MCG}(S)$ is the group of orientation preserving automorphism of S fixing ∂S, modulo the equivalence relation given by homotopy.

Remark 1.3.6. Let (S, x) be an orientable surface with boundary. An element of the mapping class group $\operatorname{MCG}(S)$ is an equivalence class of orientation preserving automorphism that fixes the boundary. Each automorphism $\varphi \in \operatorname{Aut}(S)$ induces an automorphism of the fundamental group $\pi_{1}(S, x)$ after fixing a path from x to $\varphi(x)$ Homotopic automorphism of the surface induces the same automorphism on the fundamental group. Therefore, an element $\operatorname{MCG}(S)$ induces an automorphism of the fundamental group since every representative induce the same automorphism of the fundamental group. Thus, we get an action of the mapping class group on the fundamental group $\operatorname{MCG}(S) \curvearrowright \pi_{1}(S, x)$. Then the mapping class group act on the character variety $\operatorname{MCG}(S) \curvearrowright \operatorname{Ch}\left(\pi_{1}(S, x), \mathrm{SL}_{2}\right)$ by permuting the variable.

Remark 1.3.7. Let S be an orientable surface with boundary. Examples of automorphism of S that fix the boundary of S are Dehn twists. Let γ be a simple closed curve in S. A Dehn twist around γ is defined to be removing a small tabular neighborhood of γ, viewing it as an annulus, twisting one end by 2π radian and fixing the other end glue back to S.

Theorem 1.3.8. ([FM12, Theorem 4.9, Theorem 4.13, Theorem 4.14]) $\operatorname{MCG}\left(\Sigma_{g, n}\right)$ is generated by Dehn twists.

Remark 1.3.9. By considering explicit generator of $\operatorname{MCG}\left(\Sigma_{1,1}\right)$ and consider its action on $\mathrm{Ch}_{1,1}(\mathbb{Z} / p \mathbb{Z}) \simeq(\mathbb{Z} / p \mathbb{Z})^{3}$ are composition of permuting the variables and Vieta involution. Therefore, $\operatorname{MCG}\left(\Sigma_{1,1}\right)$ can be viewed as a subgroup of Γ as in remark 1.1.2. Moreover, the class of the boundary curve in the fundamental group is conjugated after applying an automorphism of the surface that fix the boundary. So $t_{[a, b]}=t_{a}^{2}+t_{b}^{2}+t_{a b}^{2}-t_{a} t_{b} t_{a b}-2$ in $\mathrm{Ch}_{1,1}$ is invariant under the action of $\operatorname{MCG}\left(\Sigma_{1,1}\right)$.

1.4 Connections with Markoff Triples

Definition 1.4.1. Define the modified character variety, denoted by $\mathrm{Ch}_{1,1 ; k}$, by defining $\mathrm{Ch}_{1,1 ;-2}(R) \subseteq \mathrm{Ch}_{1,1}(R) \simeq \mathbb{A}_{R}^{3}$ to be the set of points $(x, y, z) \in \mathbb{A}_{R}^{3}$ such that $x^{2}+y^{2}+z^{2}-x y z-2=k$. Define the relative modified character variety, denoted by $\mathrm{Ch}_{1,1 ;-2}^{\bullet}(R)$, by $\mathrm{Ch}_{1,1 ;-2} \backslash\{(0,0)\}$.

Remark 1.4.2. Then $\mathrm{Ch}_{1,1 ;-2}(\mathbb{Z} / p \mathbb{Z})$ is the set of points $(x, y, z) \in(\mathbb{Z} / p \mathbb{Z})^{3}$ such that $x^{2}+y^{2}+z^{2}-x y z=0$. Then the action of $\operatorname{MCG}\left(\Sigma_{1,1}\right)$ on $\mathrm{Ch}_{1,1}(\mathbb{Z} / p \mathbb{Z})$ factors through to an action of $\mathrm{Ch}_{1,1 ;-2}(\mathbb{Z} / p \mathbb{Z})$ because $t_{[a, b]}$ is invariant under the action of $\operatorname{MCG}\left(\Sigma_{1,1}\right)$. We also get an action $\operatorname{MCG}\left(\Sigma_{1,1}\right) \curvearrowright \mathrm{Ch}_{1,1 ;-2}^{\bullet}(\mathbb{Z} / p \mathbb{Z})$.

Remark 1.4.3. There exists a bijection between the integer solution of

$$
x^{2}+y^{2}+z^{2}-3 x y z=0 \quad \text { and } \quad x^{2}+y^{2}+z^{2}-x y z=0
$$

given by $\left(x_{0}, y_{0}, z_{0}\right) \mapsto\left(3 x_{0}, 3 y_{0}, 3 z_{0}\right)$. This bijection continue to hold in $\mathbb{Z} / p \mathbb{Z}$ for $p \neq 3$. Under this bijection, we get an isomorphism $\mathrm{Ch}_{1,1 ;-2}^{\bullet}(\mathbb{Z} / p \mathbb{Z}) \simeq X^{*}(p)$. So to show the action of Γ on $X^{*}(p)$ is transitive (definition 1.1.3), it suffices to show $\operatorname{MCG}\left(\Sigma_{1,1}\right)$ $\mathrm{Ch}_{1,1 ;-2}^{\bullet}(\mathbb{Z} / p \mathbb{Z})$ is transitive.

$\operatorname{MCG}\left(\Sigma_{1,1}\right)$	$\curvearrowright \mathrm{Ch}_{1,1 ;-2}^{\bullet}(\mathbb{Z} / p \mathbb{Z})$	
\downarrow		12
Γ	\curvearrowright	$X^{*}(p)$

Theorem 1.4.4. [Che21] For all prime p, p divided every Γ-orbit of $X^{*}(p)$.
Remark 1.4.5. Chen's method involves heavy algebraic geometry machinery like algebraic space and algebraic stack. Motivated by the above, I use the Stacks Project as the main reference to study algebraic space and algebraic stack in the rest of this exposition.

2 Stack and Stack in Groupoids

2.1 Fibered Category

Definition 2.1.1. [Sta24, 00 VH$]$ A site is a category \mathcal{C} with a set $\operatorname{Cov}(\mathcal{C})$, where an element of $\operatorname{Cov}(\mathcal{C})$ is a family of morphisms in \mathcal{C} with fixed target $\left\{U_{i} \rightarrow U\right\}_{i \in I}$, called coverings of C, satisfying the following conditions
(1) If $V \rightarrow U$ is an isomorphism, then $\{V \rightarrow U\} \in \operatorname{Cov}(\mathcal{C})$.
(2) If $\left\{U_{i} \rightarrow U\right\}_{i \in I} \in \operatorname{Cov}(\mathcal{C})$ and for each $i \in I$ we have $\left\{V_{i j} \rightarrow U_{i}\right\}_{j \in J_{i}} \in \operatorname{Cov}(\mathcal{C})$, then $\left\{V_{i j} \rightarrow U\right\}_{i \in I, j \in J_{i}} \in \operatorname{Cov}(\mathcal{C})$.
(3) If $\left\{U_{i} \rightarrow U\right\}_{i \in I} \in \operatorname{Cov}(\mathcal{C})$ and $V \rightarrow U$ is a morphism of \mathcal{C}, then $U_{i} \times_{U} V$ exists for all i and $\left\{U_{i} \times_{U} V \rightarrow V\right\}_{i \in I} \in \operatorname{Cov}(\mathcal{C})$.

Definition 2.1.2. Let \mathcal{C} be a category, $p: \mathcal{S} \rightarrow \mathcal{C}$ be a functor (We say \mathcal{S} is a category over \mathcal{C}), and $U \in \mathrm{Ob}(\mathcal{C})$ be an object in \mathcal{C}.
(1) $[\mathrm{Sta} 24,02 \mathrm{XH}]$ The fiber category over U, denoted by \mathcal{S}_{U}, is the category with objects

$$
\mathrm{Ob}\left(\mathcal{S}_{U}\right)=\{x \in \mathrm{Ob}(\mathcal{S}) \mid p(x)=U\}
$$

and morphisms

$$
\operatorname{Mor}_{s_{U}}(x, y)=\left\{\varphi \in \operatorname{Mor}_{s}(x, y) \mid p(\varphi)=\operatorname{id}_{U}\right\}
$$

(2) [Sta24, 001G] The category of object over U, denoted by \mathcal{C} / U, is the category with objects

$$
\mathrm{Ob}(\mathbb{C} / U)=\{V \rightarrow U \text { morphism in } \mathcal{C} \text { with target } U\}
$$

and morphisms

$$
\operatorname{Mor}_{e / U}(V \xrightarrow{\varphi} U, W \xrightarrow{\psi} U)=\left\{\chi \in \operatorname{Mor}_{e}(V, W) \mid \psi \circ \chi=\varphi\right\}
$$

(3) [Sta24, 00Z0] Assume that \mathcal{C} is also a site. The localization of the site \mathcal{C} at the object U is the site \mathcal{C} / U where a family of morphism $\left\{V_{i} \rightarrow V\right\}_{i \in I}$ of objects over U is a covering of \mathcal{C} / U if and only if it is a covering in \mathcal{C}.

Definition 2.1.3. [Sta24, 02XM] Let $p: \mathcal{S} \rightarrow \mathcal{C}$ be a functor. \mathcal{S} is a fibered category over \mathcal{C} if for every $U \in \operatorname{Ob}(\mathcal{C})$, every $x \in \operatorname{Ob}\left(\mathcal{S}_{U}\right)$, and every $f: V \rightarrow U$ morphism in \mathcal{C} with target U, there exist lift $f^{*} x \rightarrow x$ of f satisfying the following universal property: for every $z \in \operatorname{Ob}(\mathcal{S})$ with morphisms $\varphi: z \rightarrow x$ and $g: p(z) \rightarrow V$ such that $p(\varphi)=f \circ g$,
there exist a unique lift $z \rightarrow f^{*} x$ of $p(z) \rightarrow V$ such that the following diagram commute

Remark 2.1.4. $f^{*} x$ in definition 2.1 .3 can be thought of as the "fiber product of V and x over U " or "base change of x via $V \rightarrow U$ ". By a standard argument $f^{*} x$ is unique up to unique isomorphism: suppose y, z both satisfy the universal property defining $f * x$, then the unique lifts $y \rightarrow z$ and $z \rightarrow y$ of $^{i d_{V}}$ are inverses of each other

Example 2.1.5. [Sta24, 02XV] Let \mathcal{C} be a category, and $F: \mathcal{C}^{\text {opp }} \rightarrow$ Categories be a contravariant functor. For a morphism $f: U \rightarrow V$, we write f^{*} for the morphism (covariant functor) $F(f): F(V) \rightarrow F(U)$. We construct a fibered category \mathcal{S}_{F} over \mathcal{C} as follows.

$$
\mathrm{Ob}\left(\mathcal{S}_{F}\right)=\{(U, x) \mid U \in \mathrm{Ob}(\mathcal{C}), x \in \operatorname{Ob}(F(U))\}
$$

and for $(U, x),(V, y) \in \operatorname{Ob}\left(\mathcal{S}_{F}\right)$

$$
\begin{aligned}
\operatorname{Mor}_{S_{F}}((V, y),(U, x)) & =\left\{(f, \varphi) \mid f \in \operatorname{Mor}_{\mathcal{C}}(V, U), \varphi \in \operatorname{Mor}_{F(V)}\left(y, f^{*} x\right)\right\} \\
& =\bigsqcup_{f \in \operatorname{More}_{e}(U, V)} \operatorname{Mor}_{F(V)}\left(y, f^{*} x\right)
\end{aligned}
$$

which is well-defined because $F(f): F(U) \rightarrow F(V)$ and $f^{*} x=F(f)(x) \in F(V)$. Suppose $(U, x),(V, y),(W, z) \in \mathrm{Ob}\left(\mathcal{S}_{F}\right)$ with morphisms $(f, \varphi):(V, y) \rightarrow(U, x)$ and $(g, \psi):(W, z) \rightarrow(V, y)$, define the composition by $(f, \varphi) \circ(g, \psi)=\left(f \circ g, g^{*} \varphi \circ \psi\right)$

which is well-defined because $\psi: z \rightarrow g^{*} y, \varphi: y \rightarrow f^{*} x$, and $g^{*} \varphi: g^{*} y \rightarrow g^{*} f^{*} x=(f \circ g)^{*} x$ $\left(g^{*}: F(V) \rightarrow F(W)\right.$ is a covariant functor). The identity morphism for an object $(U, x) \in \mathrm{Ob}\left(\mathcal{S}_{F}\right)$ is $\left(\mathrm{id}_{U}, \mathrm{id}_{x}\right)$ and associativity of composition holds. So \mathcal{S}_{F} is a category.

Define covariant functor $p_{F}: \mathcal{S}_{F} \rightarrow \mathcal{C}$ by $p_{F}(U, x)=U$ and $p_{F}(f, \varphi)=f$. To verify \mathcal{S}_{F} is a fibered category over \mathcal{C}, it suffices to show given $f: U \rightarrow V$, and $(U, x) \in \mathrm{Ob}\left(\mathcal{S}_{F}\right)$,
there exist an object in $\left(\mathcal{S}_{F}\right)_{V}$ satisfying the universal property in definition 2.1.3.
We show that $\left(V, f^{*} x\right) \in \operatorname{Ob}\left(\mathcal{S}_{F}\right)$ together with the map $\left(f, \mathrm{id}_{f^{*} x}\right):\left(V, f^{*} x\right) \rightarrow(U, x)$ satisfies the universal property. Let $(W, z) \in \operatorname{Ob}\left(\mathcal{S}_{F}\right)$ be an object with morphisms $g: W \rightarrow V$ and $(h, \psi):(W, z) \rightarrow(U, x)$ such that $p_{F}(h, \psi)=f \circ g$

Then $h=p_{F}(h, \psi)=f \circ g .(g, \psi):(W, z) \rightarrow\left(V, f^{*} x\right)$ make the diagram commute because $p_{F}(g, \psi)=g$ and by definition of composition

$$
\left(f, \operatorname{id}_{f^{*} x}\right) \circ(g, \psi)=\left(f \circ g, g^{*} \operatorname{id}_{f^{*} x} \circ \psi\right)=\left(f \circ g, \operatorname{id}_{g^{*} f^{*} x} \circ \psi\right)=(f \circ g, \psi)
$$

where the second equality hold because g^{*} is a functor

Suppose $\left(g^{\prime}, \psi^{\prime}\right):(W, z) \rightarrow\left(V, f^{*} x\right)$ also make the diagram commute, then $p_{F}\left(g^{\prime}, \psi\right)=g$ implies $g=g^{\prime}$. By definition of composition in \mathcal{S}_{F}, the diagram commute implies $\psi=\psi^{\prime}$ because

$$
(f \circ g, \psi)=\left(f, \operatorname{id}_{f^{*} x}\right) \circ\left(g^{\prime}, \psi^{\prime}\right)=\left(f, \operatorname{id}_{f^{*} x}\right) \circ\left(g, \psi^{\prime}\right)=\left(f \circ g, g^{*} \operatorname{id}_{f^{*} x} \circ \psi^{\prime}\right)=\left(f \circ g, \psi^{\prime}\right)
$$

So \mathcal{S}_{F} is a fibered category over \mathcal{C}.

2.2 Stack

The goal of this section is to define a stack over a site.
Definition 2.2.1. [Sta24, 02XN] Assume $p: \mathcal{S} \rightarrow \mathcal{C}$ is a fibered category. A choice of pullbacks for $p: \mathcal{S} \rightarrow \mathcal{C}$ is given by a choice of morphism $f^{*} x \rightarrow x$ lying over f satisfying the universal property in definition 2.1.3 for any morphism $f: V \rightarrow U$ of \mathcal{C} and any $x \in \operatorname{Ob}\left(\mathcal{S}_{U}\right)$.

Definition 2.2.2. Let \mathcal{C} be a category.
(1) [Sta24, 02X6] A presheaf on \mathcal{C} is a contravariant functor F from \mathcal{C} to Sets, the
category of sets. A morphism of presheaves is a natural transformation. Denote the category of presheaves on \mathcal{C} by $\operatorname{PSh}(\mathcal{C})$.
(2) [Sta24, 00V8] A presheaf F is said to be a subpresheaf of another presheaf G if for every $U \in \mathrm{Ob}(\mathcal{C}), F(U) \subseteq G(U)$ and for every morphism $\varphi: V \rightarrow U$ in \mathcal{C}, $F(\varphi)=\left.G(\varphi)\right|_{F(U)}$.

Definition 2.2.3. [Sta24, 00 VM] Let \mathcal{C} be a site, and let F be a presheaf on \mathcal{C}. Let $\left\{U_{i} \rightarrow U\right\}_{i \in I}$ be an element of $\operatorname{Cov}(\mathcal{C})$. By condition (3) in definition 2.1.1, all fiber product $U_{i} \times_{U} U_{j}$ exist in \mathcal{C}. Then we have the following maps

For each $i \in I$, define the following two functions

$$
\begin{array}{rlrl}
\operatorname{pr}_{0}^{*}: \prod_{i \in I} F\left(U_{i}\right) & \rightarrow \prod_{(j, k) \in I^{2}} F\left(U_{j} \times_{U} U_{k}\right) \quad \operatorname{pr}_{1}^{*}: \prod_{i \in I} F\left(U_{i}\right) & \rightarrow \prod_{(j, k) \in I^{2}} F\left(U_{j} \times_{U} U_{k}\right) \\
\left(s_{i}\right)_{i \in I} & \mapsto\left(F\left(\operatorname{pr}_{j}^{(j, k)}\right)\left(s_{j}\right)\right)_{(j, k) \in I^{2}} & \left(s_{i}\right)_{i \in I} & \mapsto\left(F\left(\operatorname{pr}_{k}^{(j, k)}\right)\left(s_{k}\right)\right)_{(j, k) \in I^{2}}
\end{array}
$$

F is a sheaf if for every covering $\left\{U_{i} \rightarrow U\right\}_{i \in I} \in \operatorname{Cov}(\mathcal{C})$, the diagram

$$
F(U) \longrightarrow \prod_{i \in I} F\left(U_{i}\right) \stackrel{\mathrm{pr}_{0}^{*}}{\stackrel{\mathrm{pr}_{1}^{*}}{\longrightarrow}} \prod_{(j, k) \in I^{2}} F\left(U_{j} \times_{U} U_{k}\right)
$$

represents the first arrow as the equalizer of pr_{0}^{*} and pr_{1}^{*}. Or equivalently, the image of $F(U)$ in $\prod_{i \in I} F\left(U_{i}\right)$ is equal to

$$
\left\{\left(s_{i}\right)_{i \in I} \in \prod_{i \in I} F\left(U_{i}\right) \mid \operatorname{pr}_{0}^{*}\left(\left(s_{i}\right)_{i \in I}\right)=\operatorname{pr}_{1}^{*}\left(\left(s_{i}\right)_{i \in I}\right)\right\}
$$

Definition 2.2.4. [Sta24, 02ZB] Let $p: \mathcal{S} \rightarrow \mathcal{C}$ be a fibered category over a category \mathcal{C}. Given $U \in \mathrm{ObC}$ and $x, y \in \mathrm{Ob}\left(\mathcal{S}_{U}\right)$, the presheaf of morphisms from x to y is the presheaf $\operatorname{Mor}(x, y)$ on \mathcal{C} / U defined by

$$
(f: V \rightarrow U) \longmapsto \operatorname{Mor}_{S_{V}}\left(f^{*} x, f^{*} y\right)
$$

(The lemma below shows this is in fact a presheaf) The presheaf of isomorphisms from x to y is the subpresheaf $\operatorname{Isom}(x, y)$ of the presheaf $\operatorname{Mor}(x, y)$ on \mathcal{C} / U defined by

$$
(f: V \rightarrow U) \longmapsto \operatorname{Isom}_{s_{V}}\left(f^{*} x, f^{*} y\right)
$$

Lemma 2.2.5. [Sta24, 026A] Let $p: \mathcal{S} \rightarrow \mathcal{C}$ be a fibered category over a category \mathcal{C}. Given $U \in \mathrm{Ob} \mathcal{C}$ and $x, y \in \operatorname{Ob}\left(\mathcal{S}_{U}\right)$, then $\operatorname{Mor}(x, y)$ is a presheaf on \mathcal{C} / U

Proof. To simplify notation, denote $\operatorname{Mor}(x, y)$ by $M_{x, y}$. It suffices to show $M_{x, y}$ is a contravariant functor from \mathcal{C} / U to Sets. Given a morphism $g: V_{1} \rightarrow V_{2}$ in \mathcal{C} / U where $f_{1}: V_{1} \rightarrow U$ and $f_{2}: V_{2} \rightarrow U$, define $M_{x, y}(g): \operatorname{Mor}_{S_{V_{2}}}\left(f_{2}^{*} x, f_{2}^{*} y\right) \rightarrow \operatorname{Mor}_{S_{V_{1}}}\left(f_{1}^{*} x, f_{1}^{*} y\right)$ as follows: given $\varphi \in \operatorname{Mor}_{\delta_{v_{2}}\left(f_{2}^{*} x, f_{2}^{*} y\right)}$ let $M_{x, y}(g)(\varphi): f_{1}^{*} x \rightarrow f_{1}^{*} y$ be the unique morphism induced by the universal property of $f_{1}^{*} y$ and the morphisms id $V_{V_{1}}$ and $f_{1}^{*} x \xrightarrow{f^{*} g} f_{2}^{*} x \xrightarrow{\varphi}$ $f_{2}^{*} y \longrightarrow y$

$$
\begin{aligned}
& \begin{aligned}
& f_{1}^{*} x \\
& \vdots \\
& \downarrow \\
& f_{1}^{*} y \stackrel{f_{2}^{*} g}{\longrightarrow} f_{2}^{*} x \longrightarrow f_{2}^{*} y \longrightarrow
\end{aligned} \longrightarrow \\
& V_{1} \xlongequal[f_{1}]{g} V_{2} \xrightarrow{f_{2}} U
\end{aligned}
$$

Applying in universal properties, we see if $(f: V \rightarrow U) \in \mathrm{Ob}(\mathcal{C} / U)$, then $M_{x, y}\left(\mathrm{id}_{V}\right)=$ $\mathrm{id}_{M_{x, y}(V)}$, and if $g_{1}: V_{1} \rightarrow V_{2}$ and $g_{2}: V_{2} \rightarrow V_{3}$ are morphisms in \mathcal{C} / U where $f_{i}: V_{i} \rightarrow U$ for $i=1,2,3$, then $M_{x, y}\left(g_{2} \circ g_{1}\right)=M_{x, y}\left(g_{2}\right) \circ M_{x, y}\left(g_{1}\right)$.

Definition 2.2.6. [Sta24, 026B] Let $p: \mathcal{S} \rightarrow \mathcal{C}$ be a fibered category over a category \mathcal{C}. Make a choice of pullbacks. Let $\mathcal{U}=\left\{f_{i}: U_{i} \rightarrow U\right\}_{i \in I}$ be a family of morphisms of \mathcal{C}. Assume all fiber products $U_{i} \times_{U} U_{j}$ and $U_{i} \times_{U} U_{j} \times_{U} U_{k}$ exists.
(1) A descent datum $\left(X_{i}, \varphi_{i j}\right)$ in \mathcal{S} relative to the family $\mathcal{U}=\left\{f_{i}: U_{i} \rightarrow U\right\}_{i \in I}$ is given by an object X_{i} of $\mathcal{S}_{U_{i}}$ for each $i \in I$, an isomorphism $\varphi_{i j}: \operatorname{pr}_{0}^{*} X_{i} \rightarrow \operatorname{pr}_{1}^{*} X_{j}$ in $\mathcal{S}_{U_{i} \times_{U} U_{j}}$ in for each pair $(i, j) \in I^{2}$ such that for every triple $(i, j, k) \in I^{3}$, the following diagram in the category $\mathcal{S}_{U_{i} \times U_{U} X_{j} \times_{U} U_{k}}$ commutes

(2) A morphism of descent datum $\psi:\left(X_{i}, \varphi_{i j}\right) \rightarrow\left(X_{i}^{\prime}, \varphi_{i j}^{\prime}\right)$ is given by a family $\psi=\left(\psi_{i}\right)_{i \in I}$ of morphism $\psi_{i}: X_{i} \rightarrow X_{i}^{\prime}$ in $\mathcal{S}_{U_{i}}$ such that for every pair $(i, j) \in I^{2}$, the following diagram in the category $\mathcal{S}_{U_{i} \times{ }_{U} U_{j}}$ commutes

(3) The category of descent data relative to \mathcal{U} is denoted by $\operatorname{DD}(\mathcal{U})$.

Lemma 2.2.7. Let $p: \mathcal{S} \rightarrow \mathcal{C}$ be a fibered category and $\left\{f_{i}: U_{i} \rightarrow U\right\}_{i \in I}$ a family of morphisms. Assume all fiber products $U_{i} \times_{U} U_{j}$ and $U_{i} \times_{U} U_{j} \times_{U} U_{k}$ exists. Let
$X \in \operatorname{Ob}\left(\mathcal{S}_{U}\right)$. Then $\left(f_{i}^{*} X,\left(f_{i} \times f_{j}\right)^{*} \operatorname{id}_{X}\right)$ is a descent datum in \mathcal{S} relative to the family $\left\{f_{i}: U_{i} \rightarrow U\right\}_{i \in I}$.

Proof. By definition of fibered category, $f_{i}^{*} X \in \operatorname{Ob}\left(\mathcal{S}_{U}\right)$. For each pair $(i, j) \in I^{2}$, the following diagram commute

So $\operatorname{pr}_{0}^{*} f_{i}^{*} X \simeq\left(f_{i} \circ \operatorname{pr}_{0}\right)^{*} X \simeq\left(f_{i} \times f_{j}\right)^{*} X \simeq\left(f_{j} \circ \operatorname{pr}_{1}\right)^{*} X \simeq \operatorname{pr}_{1}^{*} f_{j}^{*} X$ where isomorphisms here are unique in the sense of remark 2.1.4. Then $\left(f_{i} \times f_{j}\right)^{*} \mathrm{id}_{X}$ defines an isomorphism $\operatorname{pr}_{0}^{*} f_{i}^{*} X \rightarrow \operatorname{pr}_{1}^{*} f_{j}^{*} X$. For each triple $(i, j, k) \in I^{3}$, the following diagram commute

because each object is isomorphic to $\left(f_{i} \times f_{j} \times f_{k}\right)^{*} X$. So $\left(f_{i}^{*} X,\left(f_{i} \times f_{j}\right)^{*} \mathrm{id}_{X}\right)$ is a descent datum relative to the family $\left\{f_{i}: U_{i} \rightarrow U\right\}_{i \in I}$.

Definition 2.2.8. [Sta24, 026E] Let $p: \mathcal{S} \rightarrow \mathcal{C}$ be a fibered category over a category \mathscr{C}. Make a choice of pullbacks. Let $\mathcal{U}=\left\{f_{i}: U_{i} \rightarrow U\right\}_{i \in I}$ be a family of morphisms of \mathcal{C}. Assume all fiber products $U_{i} \times_{U} U_{j}$ and $U_{i} \times_{U} U_{j} \times_{U} U_{k}$ exists.
(1) Given an object X of \mathcal{S}_{U}, the trivial descent datum is the descent datum $\left(X, \mathrm{id}_{X}\right)$ relative to the family $\left\{\operatorname{id}_{U}: U \rightarrow U\right\}$.
(2) Given an object X of \mathcal{S}_{U}, the canonical descent datum relative to $\left\{f_{i}: U_{i} \rightarrow\right.$ $U\}_{i \in I}$ is the $\left(f_{i}^{*} X,\left(f_{i} \times f_{j}\right)^{*} \mathrm{id}_{X}\right)$. This descent datum is denoted by $\left(f_{i}^{*} X\right.$, can $)$.
(3) A descent datum ($X_{i}, \varphi_{i j}$) relative to $\left\{f_{i}: U_{i} \rightarrow U\right\}_{i \in I}$ is effective if there exist $X \in \mathrm{Ob}\left(\mathcal{S}_{U}\right)$ such that $\left(X_{i}, \varphi_{i j}\right)$ is isomorphic to $\left(f_{i}^{*} X\right.$, can) in the category $\operatorname{DD}(\mathcal{U})$ of descent datum.

Definition 2.2.9. [Sta24, 026F] Let \mathcal{C} be a site. A stack over \mathcal{C} is a category $p: \mathcal{S} \rightarrow \mathcal{C}$ over \mathcal{C} satisfying the following conditions
(1) $p: \mathcal{S} \rightarrow \mathcal{C}$ is a fibered category,
(2) for any $U \in \operatorname{Ob}(\mathcal{C})$ and for any $x, y \in \mathcal{S}_{U}$, the presheaf $\operatorname{Mor}(x, y)$ is a sheaf on the site \mathcal{C} / U, and
(3) for any covering $\mathcal{U}=\left\{U_{i} \rightarrow U\right\}$ in \mathcal{C}, all descent datum in \mathcal{S} relative to \mathcal{U} is effective.

2.3 Stack in Groupoids

The goal of this section is to define a stack in groupoids over a site.
Definition 2.3.1. [Sta24, 0018] A groupoid is a category where every morphism is an isomorphism.

Definition 2.3.2. [Sta24, 003S] Let $p: \mathcal{S} \rightarrow \mathcal{C}$ be a functor. \mathcal{S} is fibered in groupoids over \mathcal{C} if
(1) For every morphism $f: V \rightarrow U$ in \mathcal{C} and every $x \in \mathcal{S}_{U}$, there exist a lift $\varphi: y \rightarrow x$ of f :

(2) For every pair of morphism $\varphi: y \rightarrow x, \psi: z \rightarrow x$ and every morphism $f: p(z) \rightarrow$ $p(y)$ such that $p(\varphi) \circ f=p(\psi)$, there exist a unique lift $\chi: z \rightarrow y$ of f such that $\varphi \circ \chi=\psi$:

Lemma 2.3.3. [Sta24, 003V] Let $p: \mathcal{S} \rightarrow \mathcal{C}$ be a functor. The following are equivalent
(1) \mathcal{S} is fibered in groupoids over \mathcal{C}.
(2) \mathcal{S} is a fibered category over \mathcal{C} and for each $U \in \mathrm{Ob}(\mathcal{C})$, the fiber category \mathcal{S}_{U} is a groupoid.

Proof. (1) $\Longrightarrow(2)$ Suppose \mathcal{S} is fibered in groupoids over \mathcal{C}.
(\mathcal{S} is a fibered category over \mathcal{C}): Let $U \in \operatorname{Ob}(\mathcal{C}), x \in \mathcal{S}_{U}$, and $f: V \rightarrow U$ be a morphism in \mathcal{C}. Then the map $\varphi: y \rightarrow x$ given by condition (1) in definition 2.3.2 is the desired morphism in definition 2.1.3 because given $z \in \mathrm{Ob}(\mathcal{S})$ with morphism $z \rightarrow x$ and $g: p(z) \rightarrow V$, the unique lift of g given by condition (2) in definition 2.3.2 in groupoids
is a morphism $z \rightarrow y$ making the following diagram commute

(Each fiber category is a groupoid): Let $U \in \operatorname{Ob}(\mathcal{C}), x, y \in \operatorname{Ob}\left(\mathcal{S}_{U}\right)$, and $f \in$ $\operatorname{Mor}_{S_{U}}(x, y)$. It suffices to show f is an isomorphism, i.e., f have a two-sided inverse. Condition (2) in definition 2.3.2 induces unique morphisms $g \in \operatorname{Mor}_{s_{U}}(y, x)$ and $h \in$ $\operatorname{Mor}_{s_{U}}(x, y)$ as follows

Then $f \circ g=\operatorname{id}_{y}$ and $g \circ h=\operatorname{id}_{x} . g$ is in fact a two-sided inverse of f because $f=h$:

$$
f=f \circ \operatorname{id}_{x}=f \circ(g \circ h)=(f \circ g) \circ h=\operatorname{id}_{y} \circ h=h
$$

$(2) \Longrightarrow(1)$ Suppose \mathcal{S} is a fibered category over \mathcal{C} and each fiber category is a groupoid. Condition 1 in the definition of fibered in groupoids is automatically satisfied by \mathcal{S} being a fibered category over \mathcal{C}. To verify condition 2 in definition 2.3.2, suppose the following commutative diagram is given

it suffices to show $\exists!z \rightarrow y$ making the entire diagram commute. Since \mathcal{S} is a fibered category over \mathcal{C}, there exists $p(\varphi)^{*} y \in \mathcal{S}_{p(y)}$ with a lift of $p(\varphi)$, unique lift $i: y \rightarrow p(\varphi)^{*} y$
of $\operatorname{id}_{p(y)}$ and unique lift $j: z \rightarrow p(\varphi)^{*} y$ of f such that the following diagram commute

i is a morphism in $\mathcal{S}_{p(y)}$ which is a groupoid by assumption. Then i^{-1} exist and $i^{-1} \circ j$: $z \rightarrow y$ is a lift of f. Uniqueness of $i^{-1} \circ j$ follows from remark 2.1.4.

Example 2.3.4. [Sta24, 0049] Let \mathcal{C} be a category, and $F: \mathcal{C}^{\text {opp }} \rightarrow$ Groupoids be a contravariant functor. For a morphism $f: U \rightarrow V$, we write f^{*} for the morphism (covariant functor) $F(f): F(V) \rightarrow F(U)$. We construct a category \mathfrak{S}_{F} fibered in groupoids over \mathcal{C} as follows.

$$
\mathrm{Ob}\left(\mathcal{S}_{F}\right)=\{(U, x) \mid U \in \mathrm{Ob}(\mathcal{C}), x \in \mathrm{Ob}(F(U))\}
$$

and for $(U, x),(V, y) \in \operatorname{Ob}\left(\mathcal{S}_{F}\right)$

$$
\begin{aligned}
\operatorname{Mor}_{S_{F}}((V, y),(U, x)) & =\left\{(f, \varphi) \mid f \in \operatorname{Mor}_{\mathcal{C}}(V, U), \varphi \in \operatorname{Mor}_{F(V)}\left(y, f^{*} x\right)\right\} \\
& =\bigsqcup_{f \in \operatorname{Mor}_{\mathcal{C}}(U, V)} \operatorname{Mor}_{F(V)}\left(y, f^{*} x\right)
\end{aligned}
$$

which is well-defined because $F(f): F(U) \rightarrow F(V)$ and $f^{*} x=F(f)(x) \in F(V)$. Suppose $(U, x),(V, y),(W, z) \in \operatorname{Ob}\left(\mathcal{S}_{F}\right)$ with morphisms $(f, \varphi):(V, y) \rightarrow(U, x)$ and $(g, \psi):(W, z) \rightarrow(V, y)$, define the composition by $(f, \varphi) \circ(g, \psi)=\left(f \circ g, g^{*} \varphi \circ \psi\right)$

which is well-defined because $\psi: z \rightarrow g^{*} y, \varphi: y \rightarrow f^{*} x$, and $g^{*} \varphi: g^{*} y \rightarrow g^{*} f^{*} x=(f \circ g)^{*} x$ $\left(g^{*}: F(V) \rightarrow F(W)\right.$ is a covariant functor). The identity morphism for an object $(U, x) \in \mathrm{Ob}\left(\mathcal{S}_{F}\right)$ is $\left(\mathrm{id}_{U}, \mathrm{id}_{x}\right)$ and associativity of composition holds. So \mathcal{S}_{F} is a category.

Define covariant functor $p_{F}: \mathcal{S}_{F} \rightarrow \mathcal{C}$ by $p_{F}(U, x)=U$ and $p_{F}(f, \varphi)=f$. To verify \mathcal{S}_{F} is a category fibered in groupoids over \mathcal{C}, it suffices to show it is a fibered category over \mathcal{C} and each fiber category is a groupoid by lemma 2.3.3. By example 2.1.5, \mathcal{S}_{F} is a fibered category over \mathcal{C}. So it remains to show for each fiber category is a groupoid. Let $U \in \mathrm{Ob}(\mathcal{C})$, by definition of the functor F

$$
\mathrm{Ob}\left(\left(\mathcal{S}_{F}\right)_{U}\right)=\{(U, x) \mid x \in F(U)\}
$$

and $\operatorname{Mor}_{\left(S_{F}\right)_{U}}((U, y),(U, x))=\left\{\left(\operatorname{id}_{U}, \varphi\right) \mid \varphi \in \operatorname{Mor}_{F(U)}(y, x)\right\}$. Since $F(U)$ is a groupoid, it follows that the inverse of a morphism $\left(\operatorname{id}_{U}, \varphi\right)$ in $\operatorname{Mor}_{\left(\mathcal{S}_{F}\right)_{U}}$ is $\left(\operatorname{id}_{U}, \varphi^{-1}\right)$. Then $\left(\mathcal{S}_{F}\right)_{U}$ is a groupoid because every morphism in $\left(\mathcal{S}_{F}\right)_{U}$ is an isomorphism.

Definition 2.3.5. [Sta24, 02Y0] A discrete category is a category where the only morphisms are the identity morphisms.

Definition 2.3.6. [Sta24, 0043] Let $p: \mathcal{S} \rightarrow \mathcal{C}$ be a functor. \mathcal{S} is fibered in sets over \mathcal{C} if \mathcal{S} is fibered in groupoids over \mathcal{C} and all fiber category over \mathcal{C} are discrete.

Remark 2.3.7. A discrete category is a groupoid because identity morphism is isomorphism. The data of a discrete category is no more than its collection of objects. So we may view a set as a discrete category, and therefore a groupoid.

Example 2.3.8. [Sta24, 0049] Let \mathcal{C} be a category, and $F: \mathcal{C}^{\text {opp }} \rightarrow$ Sets be a contravariant functor. For a morphism $f: U \rightarrow V$, we write f^{*} for the morphism (covariant functor) $F(f): F(V) \rightarrow F(U)$. We construct a category \mathcal{S}_{F} fibered in sets over \mathcal{C} as follows.

$$
\mathrm{Ob}\left(\mathcal{S}_{F}\right)=\{(U, x) \mid U \in \mathrm{Ob}(\mathcal{C}), x \in F(U)\}
$$

and for $(U, x),(V, y) \in \operatorname{Ob}\left(\mathcal{S}_{F}\right)$

$$
\operatorname{Mor}_{s_{F}}((V, y),(U, x))=\left\{f \in \operatorname{Mor}_{e}(V, U) \mid f^{*} x=y\right\}
$$

The identity morphism for an object $(U, x) \in \mathrm{Ob}\left(\mathcal{S}_{F}\right)$ is id_{U} and associativity of composition holds. So \mathcal{S}_{F} is a category.

Define covariant functor $p_{F}: \mathcal{S}_{F} \rightarrow \mathcal{C}$ by $p_{F}(U, x)=U$ and $p_{F}(f)=f$. Viewing $F(U)$ as a groupoid as in remark 2.3.7. \mathcal{S}_{F} is a fibered in groupoid by example 2.3.4. Then \mathcal{S}_{F} is fibered in sets because each fiber category is $F(U)$, which is a set, and therefore discrete.

Remark 2.3.9. The category \mathcal{S}_{F} in example 2.3 .8 is known as the category of elements of the functor $F: \mathcal{C} \rightarrow$ Sets. It will be used to define what it means for a category over the category of schemes to be representable by an algebraic space (definition 4.4.2)

Definition 2.3.10. [Sta24, 02ZI] A stack in groupoids over a site \mathcal{C} is a category $p: \mathcal{S} \rightarrow \mathcal{C}$ over \mathcal{C} such that
(1) $p: \mathcal{S} \rightarrow \mathcal{C}$ is fibered in groupoids over \mathcal{C}.
(2) For every $U \in \operatorname{Ob}(\mathcal{C})$ and every $x, y \in \operatorname{Ob}\left(\mathcal{S}_{U}\right)$, the presheaf $\operatorname{Isom}(x, y)$ is a sheaf on the site \mathcal{C} / U.
(3) For every covering $\mathcal{U}=\left\{U_{i} \rightarrow U\right\}$ in \mathcal{C}, all descent data $\left(x_{i}, \varphi_{i j}\right)$ for \mathcal{U} are effective.

3 Smooth and Étale Maps

3.1 Homological Algebra

Definition 3.1.1. A category \mathcal{A} is a preadditive category if each morphism set $\operatorname{Mor}_{\mathcal{A}}(x, y)$ is endowed with the structure of an abelian group such that the compositions

$$
\operatorname{Mor}(x, y) \times \operatorname{Mor}(y, z) \longrightarrow \operatorname{Mor}(x, z)
$$

are bilinear, i.e., if $f_{1}, f_{2} \in \operatorname{Mor}(x, y), g_{1}, g_{2} \in \operatorname{Mor}(y, z)$, then

$$
\left(g_{1}+g_{2}\right) \circ\left(f_{1}+f_{2}\right)=g_{1} \circ f_{1}+g_{1} \circ f_{2}+g_{2} \circ f_{1}+g_{2} \circ f_{2}
$$

Sometimes a preadditive category is also called an ab-enriched category or a ringoid. A functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between two preadditive category is additive if for all $x, y \in \operatorname{Ob}(\mathcal{A})$, $F: \operatorname{Mor}_{\mathcal{A}}(x, y) \rightarrow \operatorname{Mor}_{\mathcal{B}}(F(x), F(y))$ is an abelian group homomorphism.

Joke 3.1.2.

- A monoid can be viewed as a one object category.
- A group can be viewed as a one object category such that every morphism is an isomorphism.
- A ring can be viewed as a one object preadditive category.
- A preadditive category with potentially more than one object is called a ringoid.
- A category where every morphism is an isomorphism with potentially more than one object is called a groupoid.

	One object	Multiple objects
No condition on morphisms	Monoid	$?$
Every morphism is an isomorphism	Group	Groupoid
Morphisms form an abelian group	Ring	Ringoid

So a category with potentially more than one object and no restriction on morphisms should be called a monoidoid. But that is just a category!

Definition 3.1.3. Let \mathcal{A} be a preadditive category and $f: x \rightarrow y$ be a morphism.
(1) A kernel of f is a morphism $i: z \rightarrow x$ such that $f \circ i=0$ and for any $i^{\prime}: z^{\prime} \rightarrow x$ such that $f \circ i^{\prime}=0$, there exists a unique morphism $g: z^{\prime} \rightarrow z$ such that $i^{\prime}=i \circ g$

When a kernel of f exists, it is denoted by ker $f \rightarrow x$.
(2) A cokernel of f is a morphism $p: y \rightarrow z$ such that $p \circ f=0$ and for any $p^{\prime}: y \rightarrow z^{\prime}$ such that $p^{\prime} \circ f=0$, there exist a unique morphism $g: z \rightarrow z^{\prime}$ such that $g^{\prime}=g \circ p$

When a cokernel of f exist, it is denoted by $y \rightarrow \operatorname{coker} f$.
(3) If a kernel of f exist, then a coimage of f is a cokernel of the morphism ker $f \rightarrow x$. When a kernel and coimage exist, it is denoted by $x \rightarrow \operatorname{coim} f$.
(4) If a cokernel of f exist, then an image of f is a kernel of the morphism $y \rightarrow \operatorname{coker} f$. When a cokernel and image exist, it is denoted by im $f \rightarrow y$.

Lemma 3.1.4. [Sta24, 0E43] Let \mathcal{A} be a preadditive category and $f: x \rightarrow y$ be a morphism.
(1) If a kernel of f exists, then $i: \operatorname{ker} f \rightarrow x$ is a monomorphism.
(2) If a cokernel of f exists, then $p: y \rightarrow$ coker f is an epimorphism.
(3) If a kernel and a coimage of f exist, then $x \rightarrow \operatorname{coim} f$ is an epimorphism.
(4) If a cokernel and an image of f exist, then $\operatorname{im} f \rightarrow x$ is a monomorphism.

Proof.
(1) Suppose $g, h: z \rightarrow \operatorname{ker} f$ are two morphisms such that $i \circ g=i \circ h$, it suffices to show $g=h . \mathcal{A}$ is a preadditive category implies $i \circ(g-h)=i \circ g-i \circ h=0$. Then $f \circ i \circ(g-h)=0$ which means by the universal property of kernel, there exist a unique morphism $z \rightarrow \operatorname{ker} f$ such that the following diagram commute

Now, both $0: z \rightarrow \operatorname{ker} f$ and $(g-h): z \rightarrow \operatorname{ker} f$ make the diagram commute. By uniqueness, $0=g-h$ which implies $g=h$ as desired.
(2) Suppose g, h : coker $f \rightarrow z$ are two morphisms such that $g \circ p=h \circ p$, it suffices to show $g=h$. \mathcal{A} is a preadditive category implies $(g-h) \circ p=g \circ p-h \circ p=0$. Then $(g-h) \circ p \circ f=0$ which means by the universal property of cokernel, there exist a unique
morphism coker $f \rightarrow z$ such that the following diagram commute

Now, both 0 : coker $f \rightarrow z$ and $(g-h):$ coker $f \rightarrow z$ make the diagram commute. By uniqueness, $0=g-h$ which implies $g=h$ as desired.
(3) This follows from (2) because $x \rightarrow \operatorname{coim} f$ is the cokernel of $\operatorname{ker} f \rightarrow x$.
(4) This follows from (1) because $\operatorname{im} f \rightarrow y$ is the kernel of $y \rightarrow$ coker f.

Lemma 3.1.5. [Sta24, 0107] Let $f: x \rightarrow y$ be a morphism in a preadditive category such that kernel, cokernel, image, coimage all exist. Then f can be factored uniquely as $x \rightarrow \operatorname{coim} f \rightarrow \operatorname{im} f \rightarrow y$.

Proof. Name the morphisms as labeled in the diagram below

$p_{y} \circ f=0$ by definition of cokernel, which means there exist unique morphism $\varphi: x \rightarrow \operatorname{im} f$ such that the diagram commute because $i_{y}: \operatorname{im} f \rightarrow y$ is the kernel of $p_{y}: y \rightarrow$ coker f. Then $i_{y} \circ \varphi \circ i_{x}=f \circ i_{x}=0$ by that commutativity of the diagram and the definition of kernel. i_{y} is a monomorphism by lemma 3.1.4, which implies $\varphi \circ i_{x}=0$. Then there exist unique morphism $\psi: \operatorname{coim} f \rightarrow \operatorname{im} f$ such that the diagram commute because $p_{x}: x \rightarrow \operatorname{coim} f$ is the cokernel of $i_{x}:$ ker $f \rightarrow x$

Definition 3.1.6. Let \mathcal{A} be a category
(1) \mathcal{A} is an additive category if it is preadditive and finite products exist.
(2) \mathcal{A} is a preabelian category if it is additive and every morphism have a kernel and a cokernel.
(3) \mathcal{A} is an abelian category if it is preabelian and for every morphism f, the natural $\operatorname{map} \operatorname{coim} f \rightarrow \operatorname{im} f$ is an isomorphism.

Definition 3.1.7. A chain complex A_{\bullet} in an preadditive category \mathcal{A} is a collection of object $\left\{A_{i} \in \operatorname{Ob}(\mathcal{A}) \mid i \in \mathbb{Z}\right\}$ and a collection of morphism $\left\{d_{i}: A_{i} \rightarrow A_{i-1} \mid i \in \mathbb{Z}\right\}$ such
that $d_{i-1} \circ d_{i}=0$ for all $i \in \mathbb{Z}$

$$
\cdots \longrightarrow A_{i+1} \xrightarrow{d_{i+1}} A_{i} \xrightarrow{d_{i}} A_{i-1} \longrightarrow \cdots
$$

A morphism of chain complexes $f: A_{\bullet} \rightarrow B_{\mathbf{\bullet}}$ is a family of morphisms $\left\{f_{i}: A_{i} \rightarrow B_{i}\right\}$ such that for all $i \in \mathbb{Z}$, the following diagram commute

The category of chain complexes of \mathcal{A} is denoted by $\operatorname{Ch}(\mathcal{A})$. If \mathcal{A} is a additive category, the full subcategory consisting of objects of the form

$$
\cdots \longrightarrow A_{2} \longrightarrow A_{1} \longrightarrow A_{0} \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots
$$

is denoted by $\mathrm{Ch}_{\geq 0}(\mathcal{A})$.
Remark 3.1.8. Any additive category \mathcal{A} can be identified with the full subcategory of $\mathrm{Ch}(\mathcal{A})$ consisting of chain complexes that are zero except in degree 0 by the functor

$$
\begin{aligned}
& \mathcal{A} \longrightarrow \mathrm{Ch}(\mathcal{A}) \\
& A \longmapsto(\cdots \rightarrow 0 \rightarrow A \rightarrow 0 \rightarrow \cdots)
\end{aligned}
$$

Definition 3.1.9. Let A • be a chain complex in an abelian category \mathcal{A}. For all $i \in \mathbb{Z}$, the i-th homology group of A_{\bullet} is defined by

$$
H_{i}\left(A_{\bullet}\right)=\operatorname{ker}\left(d_{i}\right) / \operatorname{im}\left(d_{i+1}\right)
$$

(the cokernel of $\operatorname{im}\left(d_{i+1}\right) \rightarrow \operatorname{ker}\left(d_{i}\right)$). If $f: A_{\bullet} \rightarrow B_{\boldsymbol{\bullet}}$ is a morphism of chain complexes in \mathcal{A}, then we get an induced morphism $H_{i}(f): H_{i}\left(A_{\bullet}\right) \rightarrow H_{i}\left(B_{\bullet}\right)$ because kernel of d_{i} get maps to kernel of d_{i} and image of d_{i+1} get maps to image of d_{i+1}. Therefore, $H_{i}: \operatorname{Ch}(\mathcal{A}) \rightarrow \mathcal{A}$ is a functor.

Definition 3.1.10. Let \mathcal{A} be a preadditive category.
(1) A homotopy h between a pair of morphisms of chain complex $f, g: A_{\bullet} \rightarrow B_{\bullet}$ is a collection of morphisms $h_{i}: A_{i} \rightarrow B_{i+1}$ such that $f_{i}-g_{i}=d_{i+1} \circ h_{i}+h_{i-1} \circ d_{i}$ for all $i \in \mathbb{Z}$

Two morphisms $f, g: A_{\bullet} \rightarrow B_{\bullet}$ is homotopic if there exist a homotopy between f and g.
(2) A morphism $f: A_{\bullet} \rightarrow B_{\bullet}$ is a homotopy equivalence if there exist a morphism $g: B_{\bullet} \rightarrow A_{\bullet}$ such that there exist a homotopy between $b \circ a$ and id_{A}. and there
exist a homotopy between $a \circ b$ and $\operatorname{id}_{B_{\bullet}} A_{\bullet}$ and B_{\bullet} is homotopy equivalent if there exist a morphism between them that is a homotopy equivalence.

Definition 3.1.11. Let \mathcal{A} be an abelian category. A morphism $f: A_{\bullet} \rightarrow B_{\bullet}$ is a quasiisomorphism if the induced map $H_{i}(f): H_{i}\left(A_{\bullet}\right) \rightarrow H_{i}\left(B_{\bullet}\right)$ is an isomorphism for all $i \in \mathbb{Z} . A_{\bullet}$ is quasi-isomorphic to B_{\bullet} if there exist a morphism from A_{\bullet} to B_{\bullet} that is a quasi-isomorphism

Remark 3.1.12. Quasi-isomorphism is not an equivalence relation because it does not satisfy the symmetric property. For example, consider the following quasi-isomorphism of chain complexes in the category of abelian groups

where $\mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ is the quotient map. There is only one morphism of chain complexes in the other direction, but it is not a quasi-isomorphism.

Lemma 3.1.13. Let \mathcal{A} be an abelian category.
(1) If $f, g: A \bullet \rightarrow B \bullet$ are homotopic, then the induced maps $H_{i}(f)$ and $H_{i}(g)$ are equal.
(2) If $f: A_{\bullet} \rightarrow B_{\bullet}$ is a homotopy equivalence, then f is a quasi-isomorphism.

Proof.
(1) Let $h_{i}: A_{i} \rightarrow B_{i+1}$ be a collection of morphisms such that $f_{i}-g_{i}=d_{i+1} \circ h_{i}+$ $h_{i-1} \circ d_{i}$. Then $\left(f_{i}-g_{i}\right)\left(\operatorname{ker} d_{i}\right) \subseteq \operatorname{im}\left(d_{i+1}\right)$ because $h_{i-1}\left(d_{i}\left(\operatorname{ker} d_{i}\right)\right)=h_{i-1}(0)=0$ and $d_{i+1}\left(h_{i}\left(\operatorname{ker} d_{i}\right)\right) \subseteq \operatorname{im}\left(d_{i+1}\right)$. By definition of homology and the fact that the category $\operatorname{Ch}(\mathcal{A})$ is also abelian, $H_{i}(f-g)=H_{i}(f)-H_{i}(g)=0$, which means $H_{i}(f)=H_{i}(g)$.
(2) Let $g: B_{\bullet} \rightarrow A_{\bullet}$ such that $g \circ f$ is homotopic to $\operatorname{id}_{A_{\bullet}}$ and $f \circ g$ is homotopic to $\mathrm{id}_{B_{\bullet}}$. Then $H_{i}(g) \circ H_{i}(f)=H_{i}(g \circ f)=H_{i}\left(\mathrm{id}_{A_{\bullet}}\right)=\operatorname{id}_{H_{i}\left(A_{\bullet}\right)}$, and $H_{i}(f) \circ H_{i}(g)=H_{i}(f \circ g)=$ $H_{i}\left(\mathrm{id}_{B_{\bullet}}\right)=\operatorname{id}_{H_{i}\left(B_{\bullet}\right)}$ implies $H_{i}(f)$ is an isomorphism. So f is a quasi-isomorphism.

3.2 Differential and Naive Cotangent Complex

Definition 3.2.1. [Sta24, 00RN] Let $\varphi: R \rightarrow S$ be a ring homomorphism and M be an S-module. An R-derivation into M is an R-linear map $d: S \rightarrow M$ that satisfy $d(a b)=a d(b)+b d(a)$ (Leibniz rule).

The set of all R-derivations into M forms an S-module and is called the module of derivation, denoted by $\operatorname{Der}_{R}(S, M)$.

If $f: M \rightarrow N$ is an S-module homomorphism and $f: S \rightarrow M$ is an R-derivation into
M, then $f \circ d$ is an R-derivation into N. In this way, $\operatorname{Der}_{R}(S,-)$ is a functor from the category of S-modules to the category of S-modules.

Lemma 3.2.2. There exist S-module $\Omega_{S / R}$ with a S-module homomorphism d : $S \rightarrow$ $\Omega_{S / R}$ such that $\operatorname{Hom}\left(\Omega_{S / R}, M\right) \rightarrow \operatorname{Der}(S, M)$ defined by $\alpha \mapsto \alpha \circ \mathrm{d}$ gives an isomorphism of functors from $\operatorname{Hom}\left(\Omega_{S / R},-\right)$ to $\operatorname{Der}(S,-)$.

Proof. Define the following map of free S-module

$$
\left(\bigoplus_{(x, y) \in S^{2}} S[(a, b)]\right) \oplus\left(\bigoplus_{(f, g) \in S^{2}} S[(f, g)]\right) \oplus\left(\bigoplus_{(r \in R)} S[r]\right) \rightarrow \bigoplus_{a \in S} S[a]
$$

defined by

$$
\begin{aligned}
{[(a, b)] } & \longmapsto[a+b]-[a]-[b] \\
{[(f, g)] } & \longmapsto[f g]-f[g]-g[f] \\
{[r] } & \longmapsto[\varphi(r)]
\end{aligned}
$$

Denote the cokernel of this map by $\Omega_{S / R}$. Then $\Omega_{S / R}$ satisfies the universal property claimed by construction.

Definition 3.2.3. The pair ($\Omega_{S / R}, \mathrm{~d}$) is call the module of differential of S over R.
Lemma 3.2.4. [Sta24, 00RR] Suppose the following is a commutative diagram of rings

where $\varphi: S \rightarrow S^{\prime}$ is surjective with $\operatorname{ker} \varphi=I$. Then $\Omega_{S / R} \rightarrow \Omega_{S^{\prime} / R^{\prime}}$ is surjective with kernel generated as an S-modules by elements $\mathrm{d} a$, where $\varphi(a) \in \beta\left(R^{\prime}\right)$.

Lemma 3.2.5. [Sta24, 00RU] Suppose the following is a commutative diagram of rings

where $\varphi: S \rightarrow S^{\prime}$ is surjective with $\operatorname{ker} \varphi=I$. Then there is a canonical exact sequence of S^{\prime}-modules

$$
\begin{aligned}
& I / I^{2} \longrightarrow \Omega_{S / R} \otimes_{S} S^{\prime} \longrightarrow \Omega_{S^{\prime} / R} \longrightarrow 0 \\
& f+I^{2} \longmapsto \mathrm{~d} f
\end{aligned}
$$

Lemma 3.2.6. [Sta24, 02HP] Suppose the following is a commutative diagram of rings

where $\varphi: S \rightarrow S^{\prime}$ is surjective with $\operatorname{ker} \varphi=I$. Assume there exist R-algebra homomorphism $S^{\prime} \rightarrow S$ which is a right inverse to φ. Then there is a canonical splitting short exact sequence of S^{\prime}-modules

$$
\begin{aligned}
0 \longrightarrow & I / I^{2} \longrightarrow \Omega_{S / R} \otimes_{S} S^{\prime} \longrightarrow \Omega_{S^{\prime} / R} \longrightarrow 0 \\
& f+I^{2} \longmapsto \mathrm{~d} f
\end{aligned}
$$

Lemma 3.2.7. [Sta24, 02HQ] Let $R \rightarrow S$ be a ring homomorphism, $I \subseteq S$ be an ideal, and $n \in \mathbb{N}$. Let $S^{\prime}=S / I^{n+1}$. Then the induced map $\Omega_{S / R} \rightarrow \Omega_{S^{\prime} / R}$ induces an isomorphism

$$
\Omega_{S / R} \otimes_{S} S / I^{n} \rightarrow \Omega_{S^{\prime} / R} \otimes_{S^{\prime}} S / I^{n}
$$

Lemma 3.2.8. [Sta24, 00RX] If $S=R\left[x_{i} \mid i \in I\right]$, then $\Omega_{S / R}$ is a free S-modules with basis $\left\{\mathrm{d} x_{i} \mid i \in I\right\}$.

Definition 3.2.9. [Sta24, 07BN] Let $R \rightarrow S$ be a ring homomorphism. The naive cotangent complex $N L_{S / R}$ is the chain complex

$$
N L_{S / R}=\left(I / I^{2} \rightarrow \Omega_{R[S] / R} \otimes_{R[S]} S\right)
$$

with I / I^{2} placed in degree 1 and $\Omega_{R[S] / R} \otimes_{R[S]} S$ placed in degree 0 .
Remark 3.2.10. There is an actual cotangent complex associated to a ring homomorphism. See Stacks Project 08PL.

Definition 3.2.11. Let $R \rightarrow S$ be a ring homomorphism. A presentation of S over R is a surjection $\alpha: P \rightarrow S$ of R-algebras where P is a polynomial algebra. For every presentation $\alpha: P \rightarrow S$ with ker $\alpha=I$, we have a two term chain complex of S-modules

$$
N L(\alpha): I / I^{2} \longrightarrow \Omega_{P / R} \otimes_{P} S
$$

with I / I^{2} placed in degree 1 and $\Omega_{P / R} \otimes_{P} S$ placed in degree 0 . The complex $N L(\alpha)$ is called the naive cotangent complex associated to the presentation $\alpha: P \rightarrow S$.

Lemma 3.2.12. [Sta24, 00S1] Suppose the following is a commutative diagram of rings

Let $\alpha: P \rightarrow S$ and $\alpha^{\prime}: P^{\prime} \rightarrow S^{\prime}$ be presentations.
(1) There exists a morphism of presentation from α to α^{\prime}.
(2) Any two morphisms of presentations induce homotopic morphism of complexes $N L(\alpha) \rightarrow N L\left(\alpha^{\prime}\right)$.
(3) The construction is compatible with compositions of morphisms of presentations.
(4) If $R \rightarrow R^{\prime}$ and $S \rightarrow S^{\prime}$ are isomorphisms, then for any morphism of presentation $\alpha \rightarrow \alpha^{\prime}$, the induced map $N L(\alpha) \rightarrow N L\left(\alpha^{\prime}\right)$ is a homotopy equivalence and a quasiisomorphism.

3.3 Smooth and Étale Maps

The goal of this section is to define smooth and étale morphism of schemes.
Definition 3.3.1. [Sta24, 00F3] Let $R \rightarrow S$ be a ring homomorphism
(1) $R \rightarrow S$ is of finite type if there exist $n \in \mathbb{N}$ and a surjection of R-algebras $R\left[x_{1}, \ldots, x_{n}\right] \rightarrow S$.
(2) $R \rightarrow S$ is of finite presentation if there exist $n, m \in \mathbb{N}$ and polynomials $f_{1}, \ldots, f_{m} \in$ $R\left[x_{1}, \ldots, x_{n}\right]$ and an isomorphism of R-algebras $R\left[x_{1}, \ldots, x_{n}\right] /\left\langle f_{1}, \ldots, f_{m}\right\rangle \simeq S$.

Definition 3.3.2. [Sta24, 00T2] A ring homomorphism $R \rightarrow S$ is smooth if it is of finite presentation and the naive cotangent complex $N L_{S / R}$ is quasi-isomorphic to a finite projective S-module place in degree 0 .

Remark 3.3.3. If $R \rightarrow S$ is a smooth ring homomorphism, then $\Omega_{S / R}$ is a finite projective S-module.

Lemma 3.3.4. [Sta24, 05GK] Let $R \rightarrow S$ be a ring homomorphism of finite presentation. Suppose $\alpha: P \rightarrow S$ is a presentation of S over R such that the naive cotangent complex $N L(\alpha)$ is quasi-isomorphic to a finite projective S-module placed in degree 0 , then this holds for any presentation.

Definition 3.3.5. [Sta24, 00TI] A ring homomorphism $R \rightarrow S$ is formally smooth over R if for every commutative diagram

where A is a ring and $I \subseteq A$ is an ideal such that $I^{2}=0$, there exist a ring homomorphism $S \rightarrow A$ such that the diagram commute

Lemma 3.3.6. [Sta24, 031H] A composition of formally smooth ring homomorphisms is formally smooth.

Proof. Let $R \rightarrow S$ and $S \rightarrow T$ be formally smooth ring homomorphisms. Suppose given a commutative diagram

where A is a ring and $I \subseteq A$ is an ideal such that $I^{2}=0$, it suffices to show there exist $T \rightarrow A$ making the diagram commute. We have the commutative diagram on the left where $S \rightarrow A / I$ is the composition $S \rightarrow T \rightarrow A / I$

Since $R \rightarrow S$ is formally smooth, there exist ring homomorphism $S \rightarrow A$ giving the middle commutative diagram. $S \rightarrow T$ is formally smooth implies there exist ring homomorphism $T \rightarrow A$ giving the right commutative diagram. Then $T \rightarrow A$ lifts $T \rightarrow A / I$ which shows $R \rightarrow S \rightarrow T$ is formally smooth.

Lemma 3.3.7. [Sta24, 00TK] A polynomial ring over R is formally smooth over R.
Proof. Let $P=R\left[X_{i} \mid i \in I\right]$ be a polynomial ring over R. Suppose given a commutative diagram

where $R \rightarrow P$ is the inclusion map, A is a ring, and $I \subseteq A$ is an ideal such that $I^{2}=0$. $P \rightarrow A / I$ can be lifted to a ring homomorphism $P \rightarrow A$ by mapping generators to a lift in A and using universal property of polynomial ring. So $R \rightarrow P$ is formally smooth.

Lemma 3.3.8. [Sta24, 00TL] Let $R \rightarrow S$ be a ring homomorphism. Let $P \rightarrow S$ be a presentation of S over R. Denote $J \subseteq P$ the kernel. Then $R \rightarrow S$ is formally smooth if and only if there exists an R-algebra homomorphism $\sigma: S \rightarrow P / J^{2}$ which is a right inverse to the surjection $P / J^{2} \rightarrow S$.

Remark 3.3.9. The proof of lemma 3.3 .8 only make use of the fact that P is formally smooth over R, so the statement can be generalized. But we will only use it when P is a polynomial ring with coefficients in R.

Lemma 3.3.10. [Sta24, 031I] Let $R \rightarrow S$ be a ring homomorphism. Let $P \rightarrow S$ be a presentation of S over R. Denote $J \subseteq P$ the kernel. Then $R \rightarrow S$ is formally smooth if and only if the following is a splitting short exact sequence

$$
0 \longrightarrow J / J^{2} \longrightarrow \Omega_{P / R} \otimes_{P} S \longrightarrow \Omega_{S / R} \longrightarrow 0
$$

Proposition 3.3.11. [Sta24, 031J] Let $R \rightarrow S$ be a ring homomorphism. The following are equivalent
(1) S is formally smooth over R,
(2) there exist presentation $P \rightarrow S$ of S over R with kernel $J \subseteq P$ such that there exists a section $S \rightarrow P / J^{2}$.
(3) for every presentation $P \rightarrow S$ of S over R with kernel $J \subseteq P$, there exist a section $S \rightarrow P / J^{2}$.
(4) there exist presentation $P \rightarrow S$ of S over R with kernel $J \subseteq P$ such that the following is a splitting short exact sequence

$$
0 \longrightarrow J / J^{2} \longrightarrow \Omega_{P / R} \otimes_{P} S \longrightarrow \Omega_{S / R} \longrightarrow 0
$$

(5) for every presentation $P \rightarrow S$ of S over R with kernel $J \subseteq P$, the following is a splitting short exact sequence

$$
0 \longrightarrow J / J^{2} \longrightarrow \Omega_{P / R} \otimes_{P} S \longrightarrow \Omega_{S / R} \longrightarrow 0
$$

(6) the naive cotangent complex $N L_{S / R}$ is quasi-isomorphic to a projective S-module placed in degree 0 .

Proposition 3.3.12. [Sta24, 00TN] Let $R \rightarrow S$ be a ring homomorphism. The following are equivalent
(1) $R \rightarrow S$ is of finite presentation and formally smooth,
(2) $R \rightarrow S$ is smooth.

Proof.
(1) $\Longrightarrow(2)$ Suppose $R \rightarrow S$ is formally smooth, by proposition 3.3.11, then the naive cotangent complex is quasi-isomorphic to a projective S-module placed in degree 0 . Since $R \rightarrow S$ is also of finite presentation, it follows that $R \rightarrow S$ is smooth by definition.
$(2) \Longrightarrow(1)$ Suppose $R \rightarrow S$ is smooth, then the naive cotangent complex is quasiisomorphic to a projective S-module placed in degree 0 . by proposition 3.3.11, $R \rightarrow S$ is formally smooth. $R \rightarrow S$ is of finite presentation because it is smooth.

Definition 3.3.13. [Sta24, 00U1] A ring homomorphism $R \rightarrow S$ is étale if it is of finite presentation and the naive cotangent complex $N L_{S / R}$ is quasi-isomorphic to zero. Given
a prime ideal $\mathfrak{q} \in \operatorname{Spec} S, R \rightarrow S$ is étale at \mathfrak{q} if there exists $g \in S \backslash \mathfrak{q}$ such that $R \rightarrow S_{g}$ is étale.

Definition 3.3.14. [Sta24, 01V5] Let $f: X \rightarrow S$ be a morphism of schemes.
(1) f is smooth at $x \in X$ if there exist an affine open neighborhood Spec $A=U \subseteq X$ of x and affine open $\operatorname{Spec} R=V \subseteq S$ with $f(U) \subseteq V$ such that the induced ring homomorphism $R \rightarrow A$ is smooth.
(2) f is smooth if it is smooth at every point of X.

Definition 3.3.15. [Sta24, 02GI] Let $f: X \rightarrow S$ be a morphism of schemes.
(1) f is étale at $x \in X$ if there exist an affine open neighborhood Spec $A=U \subseteq X$ of x and affine open $\operatorname{Spec} R=V \subseteq S$ with $f(U) \subseteq V$ such that the induced ring homomorphism $R \rightarrow A$ is étale.
(2) f is étale if it is étale at every point of X.

Lemma 3.3.16. Suppose $\operatorname{Spec} A$ and $\operatorname{Spec} B$ are affine open subschemes of a scheme X. Then $\operatorname{Spec} A \cap \operatorname{Spec} B$ is the union of open sets that are simultaneously basic open set of $\operatorname{Spec} A$ and $\operatorname{Spec} B$.

Proof. It suffices to show that for each point in $\operatorname{Spec} A \cap \operatorname{Spec} B$, there is an open set containing that point and is simultaneously basic open set of $\operatorname{Spec} A$ and $\operatorname{Spec} B$. Let $p \in \operatorname{Spec} A \cap \operatorname{Spec} B$. Since basic open sets $\left\{U_{f}: f \in A\right\}$ form a basis of $\operatorname{Spec} A$, and $\operatorname{Spec} A \cap \operatorname{Spec} B$ is an open subset of $\operatorname{Spec} A$, it follows that $\exists f \in A$ such that $U_{f} \subseteq \operatorname{Spec} A \cap \operatorname{Spec} B$. Moreover, $U_{f}=\operatorname{Spec} A_{f}$ (as schemes, where U_{f} have the open subscheme structure) because

$$
\mathscr{O}_{X}\left(U_{f}\right)=\mathscr{O}_{\text {Spec } A}\left(U_{f}\right)=A_{f}
$$

Since basic open sets $\left\{U_{g}: g \in B\right\}$ form a basis of $\operatorname{Spec} B$, and $U_{f}=\operatorname{Spec} A_{f}$ is an open subset of Spec B, it follows that $\exists g \in B$ such that $U_{g} \subseteq U_{f}=\operatorname{Spec} A_{f}$. Moreover, $U_{g}=\operatorname{Spec} B_{g}$ (as schemes, where U_{g} have the open subscheme structure) because

$$
\mathscr{O}_{X}\left(U_{g}\right)=\mathscr{O}_{\mathrm{Spec} B}\left(U_{g}\right)=B_{g}
$$

Consider the following restriction map

and define $g^{\prime} \in A_{f}$ to be the image of $g \in B$. Then

$$
\begin{aligned}
\operatorname{Spec} B_{g} & =\{\mathfrak{p} \in \operatorname{Spec} B \mid g \notin \mathfrak{p}\} \\
& =\left\{\mathfrak{p} \in \operatorname{Spec} B \mid g(\mathfrak{p}) \notin \mathfrak{p} B_{\mathfrak{p}}\right\} \\
& =\left\{\mathfrak{q} \in \operatorname{Spec} A_{f} \mid g^{\prime}(\mathfrak{q}) \notin \mathfrak{q}\left(A_{f}\right)_{\mathfrak{q}}\right\} \\
& =\left\{\mathfrak{q} \in \operatorname{Spec} A_{f} \mid g^{\prime} \notin \mathfrak{q}\right\}=\operatorname{Spec}\left(A_{f}\right)_{g^{\prime}}
\end{aligned}
$$

If $g^{\prime}=g^{\prime \prime} / f^{n} \in A_{f}$ with $g^{\prime \prime} \in A$, then $\operatorname{Spec}\left(A_{f}\right)_{g^{\prime}}=\operatorname{Spec} A_{f g^{\prime \prime}}$. So $\operatorname{Spec} B_{g}=\operatorname{Spec} A_{f g^{\prime \prime}}$ is simultaneously basic open set of $\operatorname{Spec} A$ and $\operatorname{Spec} B$.

Lemma 3.3.17. (Affine Communication Lemma) Let \mathcal{P} be some property enjoyed by some affine open subsets of a scheme X, such that for any affine open subset Spec $A \subseteq X$
(i) if $\operatorname{Spec} A \subseteq X$ has property \mathcal{P}, then for any $f \in A$, $\operatorname{Spec} A_{f} \subseteq X$ does too
(ii) if $\left\langle f_{1}, \ldots, f_{n}\right\rangle=A$ and $\operatorname{Spec} A_{f_{i}} \subseteq X$ has \mathcal{P} for all $i \in\{1, \ldots, n\}$, then so does $\operatorname{Spec} A \subseteq X$.

Suppose X has an open cover $\left\{\operatorname{Spec} A_{i}\right\}_{i \in I}$ each having \mathcal{P}. Then every affine open subset of X have \mathcal{P}.

Proof. Let $\operatorname{Spec} B \subseteq X$ be an affine open subset, it suffices to show B have \mathcal{P}. Then $\left\{\operatorname{Spec} A_{i} \cap \operatorname{Spec} B\right\}_{i \in I}$ covers $\operatorname{Spec} B$. For each $i \in I$, $\operatorname{Spec} A_{i} \cap \operatorname{Spec} B$ is a union of open sets that are simultaneously basic open set of $\operatorname{Spec} A_{i}$ and $\operatorname{Spec} B$ (lemma 3.3.16). Say

$$
\operatorname{Spec} A_{i} \cap \operatorname{Spec} B=\bigcup_{j \in J_{i}} \operatorname{Spec}\left(A_{i}\right)_{f_{j}}
$$

Then $\operatorname{Spec} B=\bigcup_{i \in I} \bigcup_{j \in J} \operatorname{Spec}\left(A_{i}\right)_{f_{j}}$. Since $\operatorname{Spec} B$ is quasi-compact, $\operatorname{Spec} B$ is a finite union of $\operatorname{Spec}\left(A_{i}\right)_{f_{j}}$. Say

$$
\operatorname{Spec} B=\bigcup_{k=1}^{n} \operatorname{Spec}\left(A_{i_{k}}\right)_{f_{j_{k}}}
$$

By lemma 3.3.16, $\forall k \in\{1, \ldots, n\}, \operatorname{Spec}\left(A_{i_{k}}\right)_{f_{j_{k}}}=\operatorname{Spec} B_{g_{k}}$ for some $g_{k} \in B$. Then

$$
\operatorname{Spec} B=\bigcup_{k=1}^{n} \operatorname{Spec} B_{g_{k}}
$$

Then $\left\langle g_{1}, \ldots, g_{k}\right\rangle=B$ because if not, then $\left\langle b_{1}, \ldots, b_{k}\right\rangle$ is contained in some maximal ideal that contains g_{1}, \ldots, g_{k}, contradicting the fact that $\operatorname{Spec} B$ is the union of $\operatorname{Spec} B_{g_{k}}$.

- By assumption (i), $\forall k \in\{1, \ldots, n\}$, $\operatorname{Spec} A_{i_{k}}$ have P implies $\operatorname{Spec}\left(A_{i_{k}}\right)_{f_{j_{k}}}=\operatorname{Spec} B_{g_{k}}$ have \mathcal{P}.
- By assumption (ii), $\operatorname{Spec}\left(A_{i_{k}}\right)_{f_{j_{k}}}=\operatorname{Spec} B_{g_{k}}$ have P for all $k \in\{1, \ldots, n\}$ implies Spec B have \mathcal{P}.

Lemma 3.3.18. [Sta24, 01V6] Let $f: X \rightarrow S$ be a morphism of schemes. The following are equivalent
(1) The morphism f is smooth.
(2) For every affine opens $U \subseteq X, V \subseteq S$ with $f(U) \subseteq V$, the ring map $\mathscr{O}_{S}(V) \rightarrow$ $\mathscr{O}_{X}(U)$ is smooth.
(3) There exist open covering $S=\bigcup_{i \in J} V_{j}$ and open coverings $f^{-1}\left(V_{j}\right)=\bigcup_{i \in I_{j}} U_{i}$ such that $U_{i} \rightarrow V_{j}$ is smooth for all $j \in J$ and $i \in I_{j}$.
(4) There exist an affine open covering $S=\bigcup_{j \in J} V_{j}$ and affine open coverings $f^{-1}\left(V_{j}\right)=$ $\bigcup_{i \in I_{j}} U_{i}$ such that the ring map $\mathscr{O}_{S}\left(V_{j}\right) \rightarrow \mathscr{O}_{X}\left(U_{i}\right)$ is smooth for all $j \in J$ and $i \in I_{j}$.

Proof. It is clear that $(2) \Longrightarrow(4) \Longrightarrow(3) \Longrightarrow(1)$. So it suffices to show $(1) \Longrightarrow(2)$. By Affine Communication Lemma (lemma 3.3.17), it suffices to show
(i) If $B \rightarrow A$ is a smooth ring homomorphism, then for all $f \in A, B \rightarrow A_{f}$ is a smooth ring homomorphism.
(ii) If $B \rightarrow A$ is a ring homomorphism such that $f_{1}, \ldots, f_{n} \in A, B \rightarrow A_{f_{i}}$ are smooth ring homomorphisms, and $\left\langle f_{1}, \ldots, f_{n}\right\rangle=A$, then $B \rightarrow A$ is a smooth ring homomorphism.

Both of these statements are algebra results.
Lemma 3.3.19. Let $f: X \rightarrow S$ be a morphism of schemes. The following are equivalent (1) The morphism f is étale.
(2) For every affine opens $U \subseteq X, V \subseteq S$ with $f(U) \subseteq V$, the ring map $\mathscr{O}_{S}(V) \rightarrow$ $\mathscr{O}_{X}(U)$ is étale.
(3) There exist open covering $S=\bigcup_{i \in J} V_{j}$ and open coverings $f^{-1}\left(V_{j}\right)=\bigcup_{i \in I_{j}} U_{i}$ such that $U_{i} \rightarrow V_{j}$ is étale for all $j \in J$ and $i \in I_{j}$.
(4) There exist an affine open covering $S=\bigcup_{j \in J} V_{j}$ and affine open coverings $f^{-1}\left(V_{j}\right)=$ $\bigcup_{i \in I_{j}} U_{i}$ such that the ring map $\mathscr{O}_{S}\left(V_{j}\right) \rightarrow \mathscr{O}_{X}\left(U_{i}\right)$ is étale for all $j \in J$ and $i \in I_{j}$.

Proof. It is clear that $(2) \Longrightarrow(4) \Longrightarrow(3) \Longrightarrow(1)$. So it suffices to show $(1) \Longrightarrow(2)$. By lemma 3.3.17, it suffices to show
(i) If $B \rightarrow A$ is a étale ring homomorphism, then for all $f \in A, B \rightarrow A_{f}$ is a étale ring homomorphism.
(ii) If $B \rightarrow A$ is a ring homomorphism such that $f_{1}, \ldots, f_{n} \in A, B \rightarrow A_{f_{i}}$ are étale ring homomorphisms, and $\left\langle f_{1}, \ldots, f_{n}\right\rangle=A$, then $B \rightarrow A$ is a étale ring homomorphism.

Both of these statements are algebra results.

4 Algebraic Space and Algebraic Stack

4.1 Yoneda Lemma and Representability

The goal of this section is to understand what it means for a natural transformation to be representable.

Definition 4.1.1. [Sta24, 001O] Let \mathcal{C} be a category. For any $U \in \operatorname{Ob}(\mathcal{C})$

$$
\left.\begin{array}{rl}
h_{U}: \mathrm{C} & \longrightarrow \operatorname{Sets} \\
V & \longmapsto \operatorname{Mor}_{\mathrm{e}}(V, U) \\
(f: W \longrightarrow V) & \longmapsto\left(\begin{array}{c}
\operatorname{Mor}_{\mathrm{e}}(V, U)
\end{array}\right) \operatorname{Mor}_{\mathrm{e}}(W, U) \\
g & \longmapsto g \circ f
\end{array}\right)
$$

defines a contravariant functor. It is called the representable presheaf (definition 2.2.2) associated to U. This functor is denoted by h_{U}.

Definition 4.1.2. [Sta24, 001Q] Let \mathcal{C} be a category. A contravariant functor $F: \mathcal{C} \rightarrow$ Sets is representable if it is isomorphic to h_{U} for some $U \in \mathrm{Ob}(\mathrm{C})$.

Lemma 4.1.3. [Sta24, 001P] (Yoneda lemma) Let \mathcal{C} be a category and F be contravariant functor from \mathcal{C} to Sets. Then for every $U \in \mathrm{Ob}(\mathcal{C})$, there is a natural bijection between the natural transformation $\eta: h_{U} \rightarrow F$ and the set $F(U)$.

Proof. Denote the set of natural transformation $h_{U} \rightarrow F$ by $\operatorname{Nat}\left(h_{U}, F\right)$.
Bijection. Define $\Phi: \operatorname{Nat}\left(h_{U}, F\right) \rightarrow F(U)$ by $\Phi(\eta)=\eta_{U}\left(\mathrm{id}_{U}\right)$ for $\eta \in \operatorname{Nat}\left(h_{U}, F\right)$. Define $\Psi: F(U) \rightarrow \operatorname{Nat}\left(h_{U}, F\right)$ by $\Psi(x)_{V}(f)=F(f)(x)\left(f \in h_{U}(V)=\operatorname{Mor}_{e}(V, U)\right)$ where $x \in F(U)$ To check Ψ is well-defined, it suffices to show $\Psi(x)$ is a natural transformation. Let $V, W \in \operatorname{Ob}(\mathrm{C})$ and $f: V \rightarrow W$ a morphism. Then the following diagram commute

because given $g \in h_{V}(U)=\operatorname{Mor}(V, U)$

$$
F(f)\left(\Psi(x)_{V}(g)\right)=F(f)(F(g)(x))=(F(f) \circ F(g))(x)=F(g \circ f)(x)=\Psi(x)_{W}(g \circ f)
$$

Φ and Ψ are inverses of each other because

$$
\begin{aligned}
\Phi(\Psi(x)) & =\Psi(x)_{U}\left(\operatorname{id}_{U}\right)=F\left(\mathrm{id}_{U}\right)(x)=\operatorname{id}_{F(U)}(x)=x \\
\Psi(\Phi(\eta))_{V}(f) & =\Psi\left(\eta_{U}\left(\operatorname{id}_{U}\right)\right)_{V}(f)=F(f)\left(\eta_{U}\left(\operatorname{id}_{U}\right)\right)=\eta_{V}\left(\mathrm{id}_{U} \circ f\right)=\eta_{V}(f)
\end{aligned}
$$

Naturality. Let $f: V \rightarrow U$, it suffices to show the following diagram commute

where $\Psi: h_{U}(V) \rightarrow \operatorname{Nat}\left(h_{V}, h_{V}\right)$ is defined by $\Psi(f)=-\circ f$. This is the case because for $\eta \in \operatorname{Nat}\left(h_{U}, F\right)$

$$
\begin{aligned}
F(f) \Phi^{U}(\eta) & =F(f) \eta_{U}\left(\mathrm{id}_{U}\right)=\eta_{V}\left(f \circ \mathrm{id}_{U}\right)=\eta_{V}(f) \\
\Phi^{V}(\eta \circ \Psi(f)) & =(\eta \circ \Psi(f))_{V}\left(\mathrm{id}_{V}\right)=\eta_{V} \Psi(f)_{V}\left(\mathrm{id}_{V}\right)=\eta_{V}\left(\mathrm{id}_{V} \circ f\right)=\eta_{V}(f)
\end{aligned}
$$

where the second equality hold because the diagram in the construction of bijection in this proof is commutative. Therefore, the bijection between $\operatorname{Nat}\left(h_{U}, F\right)$ and $F(U)$ is natural.

Remark 4.1.4. Let \mathcal{C} be a category and $U, V \in \mathrm{Ob}(\mathcal{C})$. By Yoneda lemma (lemma 4.1.3) applied to the functor h_{V}, there exist a natural bijection between the natural transformations $h_{U} \rightarrow h_{V}$ and $h_{U}(V)=\operatorname{Mor}_{\mathcal{C}}(V, U)$. This implies an object determines and is determined by its representable functor.

Definition 4.1.5. In the category of schemes, a representable functor h_{X} : Sch \rightarrow Set is called the functor of points of the scheme X. For a scheme $Y, h_{X}(Y)=\operatorname{Mor}_{\text {Sch }}(Y, X)$ is called the Y-points of X, and a morphism of scheme $Y \rightarrow X$ is called a Y-point of X. This terminology generalizes the terminology from ring theory which we explain in the remark below.

Remark 4.1.6. Let $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and R be a ring. The R-points of f is defined to be $\left\{\left(a_{1}, \ldots, a_{n}\right) \in R^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0\right\} R \mapsto\left\{\left(a_{1}, \ldots, a_{n}\right) \in R^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0\right\}$ defines a covariant functor from the category of rings to the category of sets. Then

$$
\begin{aligned}
\left\{\left(a_{1}, \ldots, a_{n}\right) \in R^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0\right\} & =\operatorname{Mor}_{\text {Rings }}\left(\frac{\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]}{\langle f\rangle}, R\right) \\
& =\operatorname{Mor}_{\text {Sch }}\left(\operatorname{Spec} R, \operatorname{Spec} \frac{\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]}{\langle f\rangle}\right)
\end{aligned}
$$

This set of morphism is called the R-points of f, so when $\operatorname{Spec} R$ is replaced with Y and $\operatorname{Spec}\left(\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] /\langle f\rangle\right)$ is replaced with X, we call $\operatorname{Mor}_{\text {sch }}(Y, X)$ the Y-points of X.

Lemma 4.1.7. [Sta24, 0022] Let \mathcal{C} be a category, F, G, H be contravariant functor from \mathcal{C} to Sets, and $a: F \rightarrow G, b: H \rightarrow G$ be natural transformations. Then $F \times_{a, G, b} H$ defined as follows

$$
\left(F \times_{a, G, b} H\right)(U)=F(U) \times_{a_{U}, G(U), b_{U}} H(U)
$$

for any $U \in \mathrm{Ob}(\mathcal{C})$ is also a contravariant functor. $F \times_{a, G, b} H$ also defines the fiber product of F, H over G in the category $\operatorname{PSh}(\mathcal{C})$.

Proof.
$F \times_{G} H$ is a contravariant functor. Let $U, V \in \operatorname{Ob}(\mathcal{C})$ and $\varphi \in \operatorname{More}(U, V)$. By universal property of fiber products, there exist an induced map $\left(F \times_{G} H\right)(V) \rightarrow\left(F \times_{G}\right.$ $H)(U)$.

$F \times{ }_{G} H$ respects compositions and identity by the uniqueness of the induced map from the universal property of fiber product.
$F \times_{G} H$ satisfies the universal property of fiber product $F \times_{G} H$ comes with maps $p_{F}: F \times_{G} H \rightarrow F$ and $p_{H}: F \times_{G} H \rightarrow H$ defined by

Suppose $K: \mathcal{C} \rightarrow$ Sets be a contravariant functor with natural transformation c : $K \rightarrow F, d: K \rightarrow H$

Definition 4.1.8. [Sta24, 0023] Let \mathcal{C} be a category and F, G be contravariant functors from \mathcal{C} to Sets. A natural transformation $a: F \rightarrow G$ is representable if for every $U \in \operatorname{Ob}(\mathcal{C})$ and every $\xi \in G(U)$, the functor $F \times_{G} h_{U}$ is representable

using the natural bijection in Yoneda lemma (lemma 4.1.3), $\xi \in G(U)$ correspond to a natural transformation $h_{U} \rightarrow G$ which we will also denote by ξ.

Lemma 4.1.9. [Sta24, 0024] Let \mathcal{C} be a category and F be a contravariant functor from \mathcal{C} to Sets. Assume \mathcal{C} has products of pairs of objects and fiber products. Then the following are equivalent
(1) The diagonal $\Delta: F \rightarrow F \times F$ is representable.
(2) For every $U \in \mathrm{Ob}(\mathcal{C})$, and any $\xi \in F(U)$, the map $\xi: h_{U} \rightarrow F$ is representable.
(3) For every $U, V \in \mathrm{Ob}(\mathcal{C})$, and any $\xi \in F(U), \xi^{\prime} \in F(V)$, the fiber product $h_{U} \times{ }_{F} h_{V}$ is representable.

Proof.
$(2) \Longleftrightarrow(3)$ Unwinding the definition for a natural transformation to be representable in (2) (definition 4.1.8) shows it is precisely (3).
$(1) \Longrightarrow(3)$ Suppose $\Delta: F \rightarrow F \times F$ is representable. Let $U, V \in \mathrm{Ob}(\mathcal{C})$ and $\xi \in F(U), \xi^{\prime} \in F(V)$. It suffices to show the functor $h_{U} \times_{F} h_{V}$ is representable.

By the assumption of existence of product, $U \times V \in \mathrm{Ob}(\mathcal{C})$. By lemma 4.1.7, $h_{U} \times h_{V}=$ $h_{U \times V}$ which is representable. Let $\xi \times \xi^{\prime}: h_{U \times V} \rightarrow F \times F$ be the morphism induced by the universal property of product of $F \times F$

By lemma 4.1.3, suppose $W \in \operatorname{Ob}(\mathcal{C})$ and $\left(\varphi, \varphi^{\prime}\right) \in h_{U}(W) \times h_{V}(W)=h_{U \times V}$, then

$$
\left(\xi \times \xi^{\prime}\right)\left(\varphi, \varphi^{\prime}\right)=\left(\xi(\varphi), \xi^{\prime}\left(\varphi^{\prime}\right)\right)=\left(F(\varphi)(\xi), F\left(\varphi^{\prime}\right)\left(\xi^{\prime}\right)\right)
$$

Let $W \in \mathrm{Ob}(\mathcal{C})$, then

$$
\begin{aligned}
\left(F \underset{F \times F}{\times} h_{U \times V}\right)(W) & =F(W) \underset{(F \times F)(W)}{\times} h_{U \times V}(W) \\
& =\left\{\left.\begin{array}{c}
\left(\varphi, \varphi^{\prime}\right) \in h_{U \times V}(W) \\
\theta \in F(W)
\end{array} \right\rvert\, \Delta(\theta)=\left(\xi \times \xi^{\prime}\right)\left(\varphi, \varphi^{\prime}\right)\right\} \\
& =\left\{\left.\begin{array}{c}
\varphi \in h_{U}(W) \\
\varphi^{\prime} \in h_{V}(W) \\
\theta \in F(W)
\end{array} \right\rvert\,(\theta, \theta)=\left(F(\varphi)(\xi), F\left(\varphi^{\prime}\right)\left(\xi^{\prime}\right)\right)\right\} \\
& =\left\{\left.\begin{array}{c}
\varphi \in h_{U}(W) \\
\varphi^{\prime} \in h_{V}(W)
\end{array} \right\rvert\, F(\varphi)(\xi)=F\left(\varphi^{\prime}\right)\left(\xi^{\prime}\right)\right\} \\
& =h_{U}(W) \underset{F(W)}{\times} h_{V}(W)=\left(h_{U} \times{ }_{F} h_{V}\right)(W)
\end{aligned}
$$

By definition of $\Delta: F \rightarrow F \times F$ is representable, $F \times_{F \times F} h_{U \times V}$ is a representable functor. Therefore, $h_{U} \times_{F} h_{V}=F \times_{F \times F} h_{U \times V}$ is a representable functor.
$(3) \Longrightarrow(1)$ Suppose for every $U, V \in \operatorname{Ob}(\mathcal{C})$, and any $\xi \in F(U), \xi^{\prime} \in F(V)$, the fiber product $h_{U} \times_{F} h_{V}$ is representable. By definition 4.1.8, it suffices to show for every $U \in \operatorname{Ob}(\mathcal{C})$ and every $\left(\xi, \xi^{\prime}\right) \in(F \times F)(U)=F(U) \times F(U)$, the functor $F \times_{F \times F} h_{U}$ is
representable.

$$
\begin{aligned}
\left(F \underset{F \times F}{\times} h_{U}\right)(W) & =F(W) \underset{F(U) \times F(U)}{\times} h_{U}(W) \\
& =\left\{\left.\begin{array}{c}
\varphi \in h_{U}(W) \\
\theta \in F(W)
\end{array} \right\rvert\, \Delta(\theta)=\left(\xi, \xi^{\prime}\right)(\varphi)\right\} \\
& =\left\{\left.\begin{array}{c}
\varphi \in h_{U}(W) \\
\theta \in F(W)
\end{array} \right\rvert\,(\theta, \theta)=\left((F(\varphi)(\xi)),\left(F(\varphi)\left(\xi^{\prime}\right)\right)\right)\right\} \\
& =h_{U}(W) \times_{F(W)} h_{U}(W)=\left(h_{U} \times{ }_{F} h_{U}\right)(W)
\end{aligned}
$$

where the functor $h_{U} \times_{F} h_{U}$ comes from $\xi \in F(U)$ and $\xi^{\prime} \in F(U)$ By assumption, $h_{U} \times_{F} h_{U}$ is representable which implies $F \times_{F \times F} h_{U}=h_{U} \times_{F} h_{U}$ is representable. By definition 4.1.8, $\Delta: F \rightarrow F \times F$ is representable.

Remark 4.1.10. lemma 4.1.9 also follows from the diagonal base change diagram (One reference is [Vak24, Exercise 1.3.S.]) which states in any category, assuming relevant fiber product exist, the following is a fiber product diagram

or more generally, the following is a fiber product diagram

The proof is a rather lengthy diagram chase, and we do not need the result here.

4.2 fppf Topology

Definition 4.2.1. Let $f: X \rightarrow S$ be a morphism of schemes.
(1) $f: X \rightarrow S$ is quasi-compact if the underlying map of topological spaces is quasicompact, i.e., if $V \subseteq S$ is quasi-compact, then $f^{-1}(V)$ is quasi-compact.
(2) $f: X \rightarrow S$ is quasi-separated if the diagonal morphism $\Delta_{X / S}: X \rightarrow X \times_{S} X$ is quasi-compact.
(3) f is flat at a point $x \in X$ if the local ring $\mathscr{O}_{X, x}$ is flat over the local ring $\mathscr{O}_{S, f(x)}$, i.e. $\mathscr{O}_{X, x}$ is a flat $\mathscr{O}_{S, f(x)}$-module.
(4) f is flat if f is flat at every point of X.
(5) f is of finite presentation at $x \in X$ if there exist an affine open neighborhood Spec $A=U \subseteq X$ of x and affine open $\operatorname{Spec} R=V \subseteq S$ with $f(U) \subseteq V$ such that
the induced ring homomorphism $R \rightarrow A$ is of finite presentation (definition 3.3.1).
(6) f is locally of finite presentation if it is of finite presentation at every point of X.
(7) f is of finite presentation if it is locally of finite presentation, quasi-compact and quasi-separated.

Definition 4.2.2. [Sta24, 021M] Let T be a scheme. An fppf covering of T is a family of morphisms $\left\{f_{i}: T_{i} \rightarrow T\right\}_{i \in I}$ of schemes such that each f_{i} is flat, locally of finite presentation and such that $T=\bigcup f_{i}\left(T_{i}\right)$.

Remark 4.2.3. The letters fppf stand for "fidèlement plat de présentation finie".
Lemma 4.2.4. [Sta24, 021O] Let T be a scheme.
(1) If $T^{\prime} \rightarrow T$ is an isomorphism, then $\left\{T^{\prime} \rightarrow T\right\}$ is an fppf covering of T.
(2) If $\left\{T_{i} \rightarrow T\right\}_{i \in I}$ is an fppf covering and for each i, we have an fppf covering $\left\{T_{i j} \rightarrow\right.$ $\left.T_{i}\right\}_{j \in J_{i}}$, then $\left\{T_{i j} \rightarrow T\right\}_{i \in I, j \in J_{i}}$ is an fppf covering.
(3) If $\left\{T_{i} \rightarrow T\right\}_{i \in I}$ is an fppf covering and $T^{\prime} \rightarrow T$ is a morphism of schemes, then $\left\{T^{\prime} \times_{T} T_{i} \rightarrow T^{\prime}\right\}_{i \in I}$ is an fppf covering.

Definition 4.2.5. [Sta24, 021R] A big fppf site is any site Sch $_{\text {fppf }}$ constructed as follows:
(1) Choose any set of schemes S_{0}, and any set of fppf coverings Cov_{0} among theses schemes.
(2) As underlying category, take any category Sch_{α} starting with the set S_{0}.
(3) Choose any set of coverings starting with the category $\operatorname{Sch}_{\alpha}$ and the class of fppf coverings, and the set Cov_{0}.

Remark 4.2.6. The idea behind Sch_{α} is that it is a category where the collection of objects is a set, rather than a proper class, of schemes, and it is closed under a list of natural operations. Then $\mathrm{Sch}_{\text {fppf }}$ is giving a site structure to the category Sch_{α}.

Definition 4.2.7. [Sta24, 021S] Let S be a scheme. Let $\mathrm{Sch}_{\mathrm{fppf}}$ be a big fppf site containing S. The big fppf site of S, denoted by $(\operatorname{Sch} / S)_{\mathrm{fppf}}$, is the site $\operatorname{Sch}_{f p p f} / S$ (item (3)).

4.3 Algebraic Space

The goal of this section is to define an algebraic space over a base scheme.
Definition 4.3.1. Let S be a scheme contained in $\operatorname{Sch}_{\mathrm{fppf}}$. Let $F, G:(\mathrm{Sch} / S)_{\mathrm{fppf}}^{\mathrm{opp}} \rightarrow$ Sets be presheaves, and $a: F \rightarrow G$ be a representable transformation of functors (definition 4.1.8). By definition of representable transformation, for every $U \in \operatorname{Ob}\left((\operatorname{Sch} / S)_{\mathrm{fppf}}\right)$
and any $\xi \in G(U)$, the fiber product $h_{U} \times_{\xi, G, a} F$ is representable. Choose a representing object V_{ξ} and an isomorphism $h_{V_{\xi}} \rightarrow h_{U} \times_{G} F$. By Yoneda lemma (lemma 4.1.3), the projection $h_{V_{\xi}} \rightarrow h_{U} \times{ }_{G} F \rightarrow h_{U}$ comes from a unique morphism of schemes $a_{\xi}: V_{\xi} \rightarrow U$.

Let \mathcal{P} be a property of schemes which
(1) is preserved under any base change, and
(2) is fppf local on the base.

In this case, we say that a has property \mathcal{P} if for every $U \in \operatorname{Ob}(\operatorname{Sch} / S)_{\mathrm{fppf}}$ and any $\xi \in G(U)$, the resulting morphism of schemes $V_{\xi} \rightarrow U$ has property \mathcal{P}.

Definition 4.3.2. [Sta24, 025Y] Let S be a scheme contained in Sch $_{\text {fppf }}$. An algebraic space over S is a presheaf

$$
F:(\mathrm{Sch} / S)_{\mathrm{fppf}}^{\mathrm{opp}} \rightarrow \text { Sets }
$$

with the following properties
(1) The presheaf F is a sheaf (definition 2.2.3).
(2) The diagonal morphism $F \rightarrow F \times F$ is representable (definition 4.1.8).
(3) There exists a scheme $U \in \operatorname{Ob}\left((\operatorname{Sch} / S)_{\mathrm{fppf}}\right)$ and a map $h_{U} \rightarrow F$ which is surjective and étale. (definition 4.3.1)

Lemma 4.3.3. [Sta24, 025Z] A scheme is an algebraic space. More precisely, given a scheme $T \in \operatorname{Ob}\left((\mathrm{Sch} / S)_{\mathrm{fppf}}\right)$, the representable presheaf h_{T} is an algebraic space.

Proof. We check h_{T} satisfies the three conditions in definition 4.3.2. In the site $\operatorname{Sch}_{\mathrm{fppf}}$, all representable presheaves are sheaves. The diagonal morphism $h_{T} \rightarrow h_{T} \times h_{T}=h_{T \times{ }_{S} T}$ is representable because the fiber product $T \times{ }_{S} T$ exist in (Sch $\left./ S\right)_{\text {fppf }}$. The identity map $h_{T} \rightarrow h_{T}$ is surjective and étale.

4.4 Algebraic Stack

The goal of this section is to define an algebraic stack over a base scheme.
Definition 4.4.1. [Sta24, 02ZQ] Let S be a scheme contained in $\operatorname{Sch}_{\mathrm{fppf}}$. Let $p: \mathcal{X} \rightarrow$ $(\mathrm{Sch} / S)_{\mathrm{fppf}}$ be a category fibered in groupoids (definition 2.3.2) over (Sch $\left./ S\right)_{\mathrm{fppf}} . X$ is representable by a scheme if there exist a scheme $U \in \operatorname{Ob}\left((\operatorname{Sch} / S)_{\mathrm{fppf}}\right)$ and an equivalence

$$
j: X \longrightarrow(\operatorname{Sch} / U)_{\mathrm{fppf}}
$$

of categories over $(\mathrm{Sch} / S)_{\mathrm{fppf}}$.
Definition 4.4.2. [Sta24, 04SV] Let S be a scheme contained in $\operatorname{Sch}_{\mathrm{fppf}}$. Let $p: X \rightarrow$ $(\mathrm{Sch} / S)_{\mathrm{fppf}}$ be a category fibered in groupoids over $(\mathrm{Sch} / S)_{\mathrm{fppf}} . X$ is representable by an algebraic space if there exists an algebraic space F over S and an equivalence $j: \mathcal{X} \rightarrow \mathcal{S}_{F}$ of categories over $(\mathrm{Sch} / S)_{\mathrm{fppf}}$ (example 2.3.8)

Definition 4.4.3. [Sta24, 026N] Let S be a scheme contained in $\mathrm{Sch}_{\mathrm{fppf}}$. An algebraic stack over S is a category

$$
p: X \longrightarrow(\mathrm{Sch} / S)_{\mathrm{fppf}}
$$

over $(\mathrm{Sch} / S)_{\text {fppf }}$ with the following properties
(1) The category \mathcal{X} is a stack in groupoids over $(\mathrm{Sch} / S)_{\mathrm{fppf}}$ (definition 2.3.10).
(2) The diagonal $\Delta: X \rightarrow X \times X$ is representable by algebraic spaces.
(3) There exists a scheme $U \in \operatorname{Ob}\left((\operatorname{Sch} / S)_{\mathrm{fppf}}\right)$ and a functor $(\mathrm{Sch} / U)_{\mathrm{fppf}} \rightarrow X$ which is surjective and smooth.

Definition 4.4.4. [Sta24, 03YO] Let S be a scheme contained in $\operatorname{Sch}_{\mathrm{fppf}}$. Let \mathcal{X} be an algebraic stack over $S . X$ is a Deligne-Mumford stack if there exists a scheme U and a surjective étale morphism (Sch $/ U)_{\mathrm{fppf}} \rightarrow X$.

Reference

[BGS15] Jean Bourgain, Alex Gamburd, and Peter Sarnak. Markoff Triples and Strong Approximation. 2015. arXiv: 1505.06411 [math.NT] (cit. on pp. 1, 2).
[BGS16] Jean Bourgain, Alexander Gamburd, and Peter Sarnak. Markoff Surfaces and Strong Approximation: 1. 2016. arXiv: 1607.01530 [math.NT].
[Che21] William Chen. Nonabelian level structures, Nielsen equivalence, and Markoff triples. 2021. arXiv: 2011.12940 [math.NT] (cit. on pp. 2, 3, 6).
[EH00] D. Eisenbud and J. Harris. The Geometry of Schemes. Graduate Texts in Mathematics. Springer, 2000.
[Eis95] D. Eisenbud. Commutative Algebra: With a View Toward Algebraic Geometry. Graduate Texts in Mathematics. Springer, 1995.
[FM12] Benson Farb and Dan Margalit. A Primer on Mapping Class Groups (PMS49). Princeton University Press, 2012 (cit. on p. 5).
[Fri96] R. Fricke. "Ueber die Theorie der automorphen Modulgruppen". ger. In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, MathematischPhysikalische Klasse 1896 (1896), pp. 91-101 (cit. on p. 3).
[Gol05] William M. Goldman. An exposition of results of Fricke. 2005. arXiv: math/ 0402103 [math. GM] (cit. on p. 3).
[Gol06] William M. Goldman. Mapping Class Group Dynamics on Surface Group Representations. 2006. arXiv: math/0509114 [math.GT].
[GT] Alireza Salehi Golsefidy and Nattalie Tamam. Closure of Orbits if the Pure Mapping Class Group in the Character Variety. Unpublished, Authors can be found at https://mathweb.ucsd.edu/~asalehig/ and http://wwwpersonal.umich.edu/~nattalie/.
[Har77] Rabin Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. Springer, 1977.
[Mac71] Saunders MacLane. Categories for the Working Mathematician. SpringerVerlag, 1971.
[Mar79] Markoff. "Sur les formes quadratiques binaires indéfinies". In: Mathematische Annalen 15 (1879), pp. 381-406 (cit. on p. 1).
[Mar80] Markoff. "Sur les formes quadratiques binaires indefinies". In: Mathematische Annalen 17 (1880), pp. 379-399.
[Mat70] H. Matsumura. Commutative Algebra. Mathematics lecture note series. Benjamin, 1970.
[Nak00] Kazunori Nakamoto. "Representation Varieties and Character Varieties". In: Publications of the Research Institute for Mathematical Sciences 36.2 (2000), pp. 159-189.
[Rie17] E. Riehl. Category theory in context. Aurora: Dover modern math originals. Dover Publications, 2017.
[Sai95] Kyoji Saito. "Character Variety of Representations of a Finitely Generated Group in SL2". In: (Jan. 1995).
[Sta24] The Stacks project authors. The Stacks project. https://stacks.math. columbia.edu. 2024.
[Vak24] Ravi Vakil. The Rising Sea: Foundations Of Algebraic Geometry Notes. 2024 (cit. on p. 35).

Index

étale, 26, 27
ab-enriched category, 17
abelian, 19
additive, 17, 19
algebraic space, 37
algebraic stack, 38
big fppf site, 36
canonical descent datum, 12
category of descent data, 11
category of elements, 16
category of object over, 7
category over, 7
chain complex, 19
character variety, 2
choice of pullbacks, 9
closed surface, 3
coimage, 18
cokernel, 18
coverings, 7
Dehn twists, 5
Deligne-Mumford stack, 38
derivation, 21
descent datum, 11
discrete category, 16
effective, 12
fiber category, 7
fibered category, 7
fibered in groupoids, 13
fibered in sets, 16
finite presentation, 24
finite type, 24
flat, 35
formally smooth, 24
fppf covering, 36
Fricke identity, 2
functor of points, 32
groupoid, 13
homology group, 20
homotopic, 20
homotopy, 20
homotopy equivalence, 20
homotopy equivalent, 21
image, 18
kernel, 17
localization of the site, 7
locally of finite presentation, 36
mapping class group, 5
Markoff equation, 1
Markoff triple, 1
modified character variety, 6
module of derivation, 21
module of differential, 22
morphism of descent datum, 11
naive cotangent complex, 23
of finite presentation, 36
preabelian, 19
preadditive, 17
presentation, 23
presheaf, 9
presheaf of isomorphisms, 10
presheaf of morphisms, 10
puntured, 3
quasi-compact, 35
quasi-isomorphic, 21
quasi-isomorphism, 21
quasi-separated, 35
relative modified character variety, 6
representable, 31, 33
representable by a scheme, 37
representable by an algebraic space, 38
representable presheaf, 31
representation variety, 2
ringoid, 17
sheaf, 10
site, 7
smooth, 24, 27
stack, 12
stack in groupoids, 16
subpresheaf, 10
surface, 3
trivial descent datum, 12
universal character ring, 2
universal representation, 2
universal representation algebra, 2
Vieta involution, 1
Yoneda lemma, 31

