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1 Representation and Character Varieties

For n a positive integer and Γ a group, let Hom(Γ,SLn) denote the functor
which sends a unital commutative ring R to the set of group homomorphisms
Hom(Γ,SLn(R)). We call this the SLn-representation variety of the group Γ.

We shall define the universal representation algebra A(Γ,SLn) as follows:

Consider a set of indeterminates {aij(g)}1≤i,j≤n, g∈Γ.

For each g ∈ Γ define the n× n matrix σ(g) := (aij(g))1≤i,j≤n.

Define the ideal

I := ⟨aij(e)−δij , aij(g1g2)−
n∑

k=1

aik(g1)akj(g2), det(σ(g))−1 | g1, g2, g ∈ Γ, 1 ≤ i, j ≤ n⟩.

Then

A(Γ,SLn) :=
Z[aij(g) | g ∈ Γ, 1 ≤ i, j ≤ n]

I
.

Now define the universal representation of Γ in SLn σ : Γ → SLn(A(Γ,SLn)) by

σ(g) := (aij(g))1≤i,j≤n,

where now we are viewing the aij ’s as elements of A(Γ,SLn).

Lemma 1. Hom(Γ,SLn) is a representable functor represented by A(Γ,SLn).

(See Section 1.1 of [13] for further explanation of this result.)

By an abuse of notation, we shall use Hom(Γ,SLn) and the term “representation
variety” to refer to the affine scheme over Z given by Spec(A(Γ,SLn)).

Now we shall define another ring, the universal character ring of representations
of Γ in SL2, by

R(Γ,SL2) :=
Z[tg | g ∈ Γ]

⟨te − 2, tg1tg2 − tg1g2 − tg−1
1 g2

| g1, g2 ∈ Γ⟩
,
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where the relations we are modding out by are referred to as the Fricke identities.

We shall define the SL2-character variety of Γ to be the affine scheme given by
taking Spec of the universal character ring, that is,

Ch(Γ,SL2) := Spec(R(Γ,SL2)).

Define a ring homomorphism Φ : R(Γ,SL2) → A(Γ,SL2) by

Φ(tg) := tr(σ(g)).

It follows precisely from the Fricke identities that Φ is well-defined.

Recall that every ring homomorphism B → A induces a morphism of schemes
Spec(A) → Spec(B), and conversely, every morphism of schemes Spec(A) →
Spec(B) is induced by some ring homomorphism B → A (see Proposition 2.3
of [10]).

Thus, Φ induces a morphism πΓ : Hom(Γ,SL2) → Ch(Γ,SL2) from the SL2-
representation variety of Γ to the SL2-character variety of Γ, which we call the
invariant morphism.

It is a result of Robert Horowitz (see Theorem 3.1 of [11]) that if Γ is a finitely
generated group with a linearly ordered generating set Ω, then R(Γ,SL2) is a
finitely generated ring, with a generating set over Z given by

{tω | n ∈ N, ω = g1g2 · · · gn, g1, ..., gn ∈ Ω, g1 < g2 < · · · < gn}.

R(Γ,SL2) being a finitely generated ring over Z with this generating set means
that there exist polynomials

p1, ..., ps ∈ Z[tω | n ∈ N, ω = g1g2 · · · gn, g1, ..., gn ∈ Ω, g1 < g2 < · · · < gn]

such that

R(Γ,SL2) ∼=
Z[tω | n ∈ N, ω = g1g2 · · · gn, g1, ..., gn ∈ Ω, g1 < g2 < · · · < gn]

⟨p1, ..., ps⟩
.

If we let

ℓ := |{ω ∈ Γ | n ∈ N, ω = g1g2 · · · gn, g1, ..., gn ∈ Ω, g1 < g2 < · · · < gn}|,

then for a ring R, the set of R-points of the SL2-character variety of Γ is thus
given by

Ch(Γ,SL2)(R) := {−→r ∈ Rℓ | pi(−→r ) = 0 ∀ 1 ≤ i ≤ s}.

Hence we have a morphism πΓ(R) : Hom(Γ,SL2(R)) → Ch(Γ,SL2)(R) given by

πΓ(R)(ρ) := (tr(ρ(ω)) | n ∈ N, ω = g1g2 · · · gn, g1, ..., gn ∈ Ω, g1 < g2 < · · · < gn).
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An alternative way of thinking about πΓ(R) is by viewing tg, for each g ∈ Γ, as
a regular function of Ch(Γ,SL2) such that for every ρ ∈ Hom(Γ,SL2(R)),

tg(πΓ(R)(ρ)) = tr(ρ(g)).

Moving forward, we will often simply write πΓ instead of πΓ(R) if the ring R is
clear from context.

For the remainder of this work, we shall be concerned with representation vari-
eties and character varieties of surface groups. By surface groups, we mean fun-
damental groups of compact, connected, orientable surfaces with finitely many
punctures. (Of course, after puncturing, the surface is no longer compact.) Let
Σg,n denote such a surface with genus g and n punctures. Then the fundamen-
tal group of Σg,n with respect to some arbitrary basepoint x0, which we shall
denote by Πg,n, is given by the presentation:

Πg,n := π1(Σg,n, x0) ∼= ⟨a1, b1, ..., ag, bg, c1, ..., cn | [a1, b−1
1 ] · · · [ag, b−1

g ]c1 · · · cn⟩,

where ai’s, bi’s, and ci’s correspond to the homotopy classes of the blue, red,
and green loops in the following diagram, respectively:

For convenience, we introduce the following notation:

Repg,n := Hom(Πg,n,SL2)

Chg,n := Ch(Πg,n,SL2).

πg,n := πΠg,n
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2 Examples

Let Fn denote the free group of rank n. Observe that the representation and
character variety corresponding to a given surface Σg,n depend only on the
fundamental group Πg,n. For the three-punctured sphere and the one-punctured
torus, we get a neat result, for which the details can be found in Section 6.2 of
[2]:

Lemma 2. R(F2,SL2) ∼= Z[x1, x2, x3].

Notice that Π0,3
∼= F2 and Π1,1

∼= F2. Therefore, the lemma demonstrates that
Ch0,3 ∼= A3 and Ch1,1 ∼= A3.

The case of the four-holed sphere and the two-holed torus is less simple:

Lemma 3. Define the polynomial p ∈ Z[x1, x2, x3, x4, x5, x6, x7] by

p :=

7∑
j=1

x2
j−(x1x2x4+x2x3x6+x1x3x5+x3x4x7+x1x6x7+x2x5x7)+x4x5x6+x1x2x3x7−4.

We have that R(F3,SL2) ∼= Z[x1,x2,x3,x4,x5,x6,x7]
⟨p⟩ .

For details on this case see Section 1.5 of [4].

Notice this time that Π0,4
∼= F3 and Π1,2

∼= F3. Thus the lemma effectively
gives us Ch0,4 and Ch1,2. This example demonstrates that Chg,n is not always
affine and may not be easy to understand in general.

3 Action of Mapping Class Group

Definition 1. Themapping class group of a surface Σg,n, denoted MCG(Σg,n),
is the group of isotopy classes of orientation-preserving homeomorphisms of Σg,n

which restrict to the identity on the boundary ∂Σg,n.

Definition 2. The pure mapping class group of a surface Σg,n, denoted Γg,n,
is the subgroup of MCG(Σg,n) consisting of elements which fix each puncture
individually.

I now aim to describe the action of MCG(Σg,n) on Chg,n.

Lemma 4. If Γ is a group and g1, g2 ∈ Γ, then tg1g2g−1
1

= tg2 , viewed as

elements of R(Γ,SL2).

Let [φ] ∈ MCG(Σg,n), where φ is an orientation-preserving homeomorphism of
Σg,n fixing the boundary pointwise. Recall Πg,n = π1(Σg,n, x0), where x0 was
an arbitrarily chosen basepoint. For a choice of a path ρ : I → Σg,n from x0 to
φ(x0), we can define a homomorphism φ∗ : Πg,n → Πg,n by

φ∗([γ]) := [ρ · (φ ◦ γ) · ρ−1].
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Since φ is a homeomorphism and is thus invertible, it follows that φ∗ is in-
vertible and is thus an automorphism. Choosing a different path ρ′ from x0 to
φ(x0) results in a different automorphism φ′

∗, which is equivalent to φ∗ com-
posed with an inner automorphism. Thus, what we have described defines a
group homomorphism from MCG(Σg,n) to Out(Πg,n), where an isotopy class
[φ] gets sent to the automorphism class [φ∗]. For [φ] ∈ MCG(Σg,n), define a
ring homomorphism

φ̃ : Z[tγ | γ ∈ Πg,n] → R(Πg,n,SL2)

by
φ̃(tγ) := tφ∗(γ),

where φ∗ is in [φ∗], the Out(Πg,n) element associated to [φ], and the choice of
φ∗ ∈ [φ∗] doesn’t matter by Lemma 4. Notice firstly that φ̃ is surjective. Also,

kerφ∗ = ⟨te − 2, tγ1
tγ2

− tγ1γ2
− tγ−1

1 γ2
| γ1, γ2 ∈ Πg,n⟩.

Therefore φ̃ induces a ring automorphism ¯̃φ of R(Πg,n,SL2), which in turn
induces a scheme automorphism φ̂ of Chg,n. It follows that MCG(Σg,n) acts on
Chg,n, where an element [φ] is associated to the scheme automorphism φ̂. This
action restricts to an action of Γg,n on Chg,n.

4 Result of Golsefidy and Tamam

In this section we will develop the terminology for and then state the theorem
from [14] upon which this thesis is meant to build upon.

Definition 3. For γ, γ′ ∈ Πg,n, the discriminant ∆(γ, γ′) ∈ R(Πg,n,SL2) is
defined by

∆(γ, γ′) := t[γ,γ′] − 2.

Manipulation using the Fricke identities gives that for γ, γ′ ∈ Πg,n,

∆(γ, γ′) = t2γ + t2γ′ + t2γγ′ − tγtγ′tγγ′ − 4.

Definition 4. The discriminant subvariety Dg,n of Chg,n is the subvariety given
by the ideal

⟨∆(γ, γ′) | γ, γ′ ∈ Πg,n⟩⊴R(Πg,n,SL2).

Definition 5. Define Zariski-open subschemes Ch×g,n and Rep×g,n of Chg,n and
Repg,n, respectively, by

Ch×g,n := Chg,n \Dg,n

Rep×g,n := Repg,n \π−1
g,n(Dg,n).

The following result of Golsefidy and Tamam is directly from Section 2.2 of [14]:
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Lemma 5. Let G be a group isomorphic to either SL2(F3), a double cover of
S4, or SL2(F5). Then there exists a closed subscheme F g,n;G of Ch×g,n such that
for every algebraically closed field F of characteristic either zero or more than
5,

π−1
g,n(F g,n;G(F )) = {ρ ∈ Rep×g,n(F ) | Im(ρ) ∼= G}.

This lemma serves as a definition of F g,n;G.

Definition 6. For R a subset of a free group on 2g+n generators, let Rep×g,n,R
denote the closed subscheme of Rep×g,n such that for every unital commutative
ring R,

ρ ∈ Rep×g,n,R(R) ⇐⇒ ρ ∈ Rep×g,n(R) and ∀w ∈ R, w(ρ) = 1.

Similarly, let Ch×g,n;R denote the closed subscheme of Ch×g,n such that for every
unital commutative ring R,

x ∈ Ch×g,n;R(R) ⇐⇒ x ∈ Ch×g,n(R) and ∀w ∈ R, ∀s1, s2, s3 ∈ S, ts1s2s3(x) =
tws1s2s3(x),

where S := {1, a1, ..., ag, b1, ..., bg, c1, ..., cn}.

It follows from this definition that πg,n induces a well-defined morphism from
Rep×g,n,R to Ch×g,n;R.

Definition 7. For every subset I of

{a1, ..., ag, b1, ..., bg, c1, ..., cn},

let RI denote the subset of the free group on 2g+ n generators generated by I.
Then define

Rep•g,n := Rep×g,n \(
⋃
I

Rep×g,n,RI
∪
⋃
G

π−1
g,n(F g,n;G)),

where I ranges over all subsets of {a1, ..., ag, b1, ..., bg, c1, ..., cn} and G ranges
over SL2(F3), a double cover of S4, and SL2(F5). Similarly, define

Ch•g,n := Ch×g,n \(
⋃
I

Ch×g,n;RI
∪
⋃
G

F g,n;G).

Now let I be a subset of {1, ..., n}, and let ϵ := (ϵi)i∈I be a collection of signs
(±1). Golsefidy and Tamam define a closed subscheme Ch×g,n;ϵ of Ch×g,n with
the following property (see Section 3.1, Lemma 23 of [14]):

For any unital commutative ring R and element x ∈ Ch×g,n(R), x ∈ Ch×g,n;ϵ(R)

if and only if for every ring extension A of R and for every ρ ∈ Rep×g,n(A)
such that πg,n(ρ) = x (we call such a representation a lift of x) we have that
ρ(ci) = ϵi1 for all i ∈ I.
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Now further let R be a unital commutative ring and let k := (ki)i∈{1,...,n}\I be a

collection of elements of R. Golsefidy and Tamam define a subscheme Ch×g,n;ϵ,k
of Ch×g,n;ϵ ×ZR given by the equation

(tci(x))i∈{1,...,n}\I = k.

That is, for B another unital commutative ring and x ∈ Ch×g,n;ϵ,k(B), we require
that for every lift ρ of x and every i ∈ {1, ..., n}\I,

tr(ρ(ci)) = ki.

Ch×g,n;ϵ,k is referred to as a modified relative character variety of Σg,n.

Finally, Golsefidy and Tamam define an open subscheme Cg,n;ϵ,k of Ch×g,n;ϵ,k by
requiring that for B any unital commutative ring, the number

|{i ∈ {1, ..., n} | ρ(ci) ̸= ±1}|

remains constant as x ranges over Ch×g,n;ϵ,k(B) and ρ ranges over all lifts of x.

We are almost ready to state the result.

For k ∈ Z≥1, let

C•
g,n+m;ϵ,k(Z/pkZ) := Cg,n+m;ϵ,k(Z/pkZ) ∩ Ch•g,n+m(Z/pkZ),

where n + m indicates that we are working with Σg,n+m and |I| = m. Let
Ng,n;ϵ,k(k) denote the number of Γg,n+m-orbits in C•

g,n+m;ϵ,k(Z/pkZ). Then
the following is due to Golsefidy and Tamam (see Section 7.4, Theorem 98 in
[14]):

Theorem 6. Suppose p is a prime, g is a positive integer, n is a non-negative
integer, k ∈ Zn

p , and ϵ := (ϵi)i ∈ {±1}m. Suppose one of the following conditions
hold:

1. g ≥ 3.

2. g = 2 and either n > 0 or
∏m

i=1 ϵi ̸= −1.

3. g = 1 and n ̸= 2.

Then there exists a positive integer k0 := k0(g, n, ϵ, k, p) and a real number
c0 := c0(g, n, ϵ, k, p) ≥ 1 such that for all k ≥ k0, the following statements hold:

1. Ng,n;ϵ,k(k) = Ng,n;ϵ,k(k0)

2. For every x ∈ C•
g,n+m;ϵ,k(Z/pkZ),

c−1
0 pdk ≤ |Γg,n+m · x| ≤ c0p

dk,

where d = 2(3g + n− 3).
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We are concerned particularly with the first of the two statements. The result
gives the existence of a number k0 such that the number of Γg,n+m-orbits in
C•

g,n+m;ϵ,k(Z/pkZ) is constant for increasing k ≥ k0. However, the method of
proof does not provide any upper bounds on k0. Our goal is to show that in
specific cases, that is for explicit choices of p, g, n, k, and ϵ, we have that k0
is actually small, for instance k0 = 1 or k0 = 2. In a sense, this would demon-
strate that in certain cases, the number of Γg,n+m-orbits in C•

g,n+m;ϵ,k(Z/pkZ)
“stabilizes quickly” with respect to k. The hope is that this would shed light
on the general behavior of k0 with respect to the different parameters.

5 Pure mapping class group is finitely generated

Definition 8. A closed curve in a surface Σg,n is defined to be a continuous
map S1 → Σg,n. We say that a closed curve is simple if the corresponding map
S1 → Σg,n is injective.

Often when we refer to a closed curve, we are really referring to the image of
the associated map.

We now define the notion of a Dehn twist, following closely to the exposition
given in Chapter 3 of [3].

Consider the annulus A = S1× [0, 1]. We orient A by embedding it in the polar
coordinate plane via the map

(θ, t) 7→ (θ, t+ 1)

and giving it the orientation induced by the standard orientation of the plane.
Now define the twist map T : A → A by

T (θ, t) := (θ + 2πt, t).

It may be helpful to see what T does to the set {(0, t) | t ∈ [0, 1]} ⊆ A:

Notice that T is an orientation-preserving homeomorphism of A which fixes ∂A
pointwise.

Remark. We could have defined T by (θ, t) 7→ (θ − 2πt, t). This would be a
“right” twist, while our definition above is a “left” twist.

Let α be a simple closed curve in Σg,n. Let N be a regular neighborhood of
α, and let ϕ be an orientation-preserving homeomorphism A → N . Then the
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Dehn twist about α is the homeomorphism Tα : Σg,n → Σg,n defined by

Tα(x) :=

®
ϕ ◦ T ◦ ϕ−1(x) x ∈ N

x x ∈ Σg,n\N

Observe that Tα always fixes ∂Σg,n. We see that Tα itself depends on the choice
of regular neighborhood N and homeomorphism ϕ. However, via the theory
of regular neighborhoods, the isotopy class of Tα does not depend on these
choices. Furthermore, it also doesn’t depend on the choice of the simple closed
curve within the isotopy class of α. So if we let a denote the isotopy class of α,
then Ta is a well-defined element of MCG(Σg,n), which we shall refer to as the
Dehn twist about a. The following result is remarkable and important:

Theorem 7. For any surface Σg,n, Γg,n is generated by finitely many Dehn
twists.

Furthermore, for g ≥ 0 and n ≥ 1, Dehn twists about the following simple closed
curves generate Γg,n:

6 A Hensel-type argument

Suppose we have polynomials f1, ..., fm ∈ Z[x1, ..., xn]. Then for any unital
commutative ring R, define

X(R) := {r⃗ = (r1, ..., rn) ∈ Rn | fi(r⃗) = 0 ∀i ∈ {1, ...,m}}.

Let p ≥ 3 be a prime, and let Zp denote the p-adic integers. For k ≥ 1, let
πk : Zp → Z/pkZ denote the residue modulo pk ring homomorphism. By an
abuse of notation, we will often use πk to also denote the map (Zp)

n → (Z/pkZ)n
defined by applying πk to each entry of (Zp)

n. Then for a fixed k ≥ 1 and a
fixed a⃗ ∈ (Zp)

n such that πk (⃗a) ∈ X(Z/pkZ), we would like to know for which
x⃗ ∈ (Z/pk+1Z)n it is true that πk+1(⃗a) + pkx⃗ ∈ X(Z/pk+1Z). That is, we are
interested in the set

{x⃗ ∈ (Z/pk+1Z)n | πk+1(⃗a) + pkx⃗ ∈ X(Z/pk+1Z)}.

This set describes exactly the elements in X(Z/pk+1Z) which get projected onto
the same element πk (⃗a) ∈ X(Z/pkZ). We may call these elements the “children”
of πk (⃗a).
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For f ∈ Z[x1, ..., xn] and a⃗, x⃗ ∈ (Zp)
n, the Taylor expansion of f about a⃗ is

given by

f(x⃗) =
∑

I=(i1,...,in)∈Zn
≥0

∂If (⃗a)

I!
(x⃗− a⃗)I

where

I! := i1! · · · in!, ∂If := ∂i1
1 · · · ∂in

n f , and (x⃗− a⃗)I := (x1 − a1)
i1 · · · (xn − an)

in .

Fix k ≥ 1 and a⃗ ∈ (Zp)
n such that πk (⃗a) ∈ X(Z/pkZ). Then for x⃗ ∈ (Zp)

n and
j ∈ {1, ...,m}, we have by Taylor expansion about a⃗ that

fj (⃗a+ pkx⃗) =
∑

I∈Zn
≥0

∂Ifj (⃗a)

I!
(pkx⃗)I

= fj (⃗a) + pk
n∑

i=1

∂ifj (⃗a)xi +
∑

I∈Zn
≥0

,|I|≥2

pk|I|∂Ifj (⃗a)

I!
x⃗I .

It is a basic fact from number theory that

νp(i!) = ⌊ i
p
⌋+ ⌊ i

p2
⌋+ · · · .

Therefore for i ≥ 1,

νp(i!) <
i

p
+

i

p2
+ · · ·

=
i

p
(1 +

1

p
+

1

p2
+ · · · ) = i

p
(

1

1− 1
p

) =
i

p− 1
.

Notice that for k ≥ 1, |I| ≥ 2, and p ≥ 3,

k|I| − |I|
p− 1

= |I|(k − 1

p− 1
) ≥ 2(k − 1

p− 1
) = 2k − 2

p− 1
≥ 2k − 1 ≥ k.

So for k ≥ 1, |I| ≥ 2, and p ≥ 3,

νp(
pk|I|

I!
) = νp(p

k|I|)− νp(I!) > k|I| − |I|
p− 1

≥ k,

which means that

νp(
pk|I|

I!
) ≥ k + 1.

Thus for x⃗ ∈ (Z/pk+1Z)n,

fj(πk+1(⃗a) + pkx⃗) = fj(πk+1(⃗a)) + pk
n∑

i=1

∂ifj(πk+1(⃗a))xi.
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Observe that fj(πk (⃗a)) = 0 implies that there exists tj ∈ Zp such that fj (⃗a) =
pktj . Hence

fj(πk+1(⃗a) + pkx⃗) = 0 ∀j ⇐⇒ pkπk+1(tj) + pk
n∑

i=1

∂ifj(πk+1(⃗a))xi = 0 ∀j

⇐⇒ π1(tj) +

n∑
i=1

∂ifj(π1(⃗a))π1(xi) = 0 ∀j

⇐⇒


∂1f1(π1(⃗a)) · · · ∂nf1(π1(⃗a))

· ·
· ·
· ·

∂1fm(π1(⃗a)) · · · ∂nfm(π1(⃗a))



π1(x1)

·
·
·

π1(xn)

 = −


π1(t1)

·
·
·

π1(tm)

 . (∗)

Define the Jacobian of f1, ..., fm by

J(f1, ..., fm) := [∂jfi] ∈ Mm×r(Z[x1, ..., xr]).

For A a unital commutative ring and a ∈ Ar, define

J(f1, ..., fm)(a) := [∂jfi(a)] ∈ Mm×r(A).

What we have shown then is that if J(f1, ..., fm)(π1(⃗a)) is full rank and m ≤ n,
then the set

{x⃗ ∈ (Z/pk+1Z)n | πk+1(⃗a) + pkx⃗ ∈ X(Z/pk+1Z)}

is non-empty, and by the rank-nullity theorem, has pn−m elements.

Moreover, let Tπ1(a⃗) X(Z/pZ) denote the kernel of the map J(f1, ..., fm)(π1(⃗a)).
Then we have also shown that the set

{x⃗ ∈ (Z/pk+1Z)n | π1(x⃗) ∈ Tπ1(a⃗) X(Z/pZ)}

differs from the set

{x⃗ ∈ (Z/pk+1Z)n | πk+1(⃗a) + pkx⃗ ∈ X(Z/pk+1Z)}

by a translation.

7 Progress with twice-punctured torus

The example we have worked with so far has been the twice-punctured torus,
that is, g = 1 and n = 2, and we have chosen p = 13, ϵ = ∅, and k =
(−2, 2). Our over-arching goal then is to show that the number of Γ1,2-orbits
in C•

1,2;(−2,2)(Z/13kZ) is constant for increasing k ≥ 1. However, since the
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definition of C•
1,2;(−2,2)(Z/13kZ) is a bit technical, our strategy has been to

investigate the Γ1,2-orbits of a different but related set which is more straight-
forward to compute with, using the results of the last section. Then we expect
to be able to expand our argument to all of C•

1,2;(−2,2)(Z/13kZ).

Recall our notation from Section 1 that

Π1,2
∼= ⟨a, b, c1, c2 | [a, b−1]c1c2⟩.

Combining the result of Horowitz and our example from Section 2, we have that
Ch1,2 is defined by the equation

t2a + t2b + t2c1 + t2ab + t2ac1 + t2bc1 + t2abc1 − (tatbtab + tc1tabtabc1
+tbtc1tbc1 + tatbc1tabc1 + tatc1tac1 + tbtac1tabc1)

+tabtac1tbc1 + tatbtc1tabc1 − 4 = 0
.

Using the Fricke identities, we can deduce that

tc2 = tatac1 + tbtbc1 + tabtabc1 − tatbtabc1 − tc1 .

We want to investigate what happens when we fix the values of tc1 and tc2 to
be −2 and 2.

Thus, define

f1 :=

6∑
i=1

T 2
i +2T1T3−T2T3T6−T1T2T5+2T5T6+2T2T4−T1T4T6+T3T4T5−2T1T2T6

and
f2 := T1T3 + T2T4 + T5T6 − T1T2T6.

T1 through T6 correspond to the generators of R(Γ1,2,SL2) given the ordering
a < b < c1.

In the spirit of the last section, for k ≥ 1, define

X(Z/13kZ) := {a⃗ ∈ (Z/13kZ)6 | f1(⃗a), f2(⃗a) = 0}.

The action of Γ1,2 is well-defined on X(Z/13kZ), so it still makes sense to
investigate orbit stability in this context. In particular we want to look at
X(Z/13Z) and X(Z/132Z). However, instead of looking at all the elements of
X(Z/13Z) at once, we will fix a single element x⃗ ∈ X(Z/13Z) and look at its
children, and we will check if StabΓ1,2

(x⃗) acts transitively on the children.

Utilizing Section 5, we see that Γ1,2 is generated by Dehn twists about the
simple loops homotopic to a, b, and c1. Recall that the action of an element
γ of Γ1,2 is given by choosing an element of Aut(Π1,2) which represents the
element of Out(Π1,2) associated to γ. Golsefidy and Tamam show in Section
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8.2 of [14] that the following automorphisms of Π1,2 are suitable representative
elements of the generating Dehn twists:

τ1(a, b, c1) := (a, ab, c1)

τ2(a, b, c1) := (ab−1, b, c1)

τ3(a, b, c1) := (a, bd−1, dc1d
−1),

where d := c−1
1 b−1ab.

Using these Dehn twist “lifts”, along with the Fricke identities, we can look
at how the Dehn twists act on the generating set of R(Π1,2,SL2). This will
give an explicit description of the action of Γ1,2 on X(Z/13kZ) as an action on
(Z/13kZ)6.

We are currently in the process of calculating these explicit descriptions and
writing a program in Mathematica to check if these descriptions lead to a tran-
sitive action of StabΓ1,2

(x⃗) on the children of a carefully selected solution.
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