Name: ______
PID: _____

Question	Points	Score
1	8	
2	8	
3	8	
4	8	
5	8	
6	8	
7	8	
Total:	56	

- 1. Write your name on the front page of your exam.
- 2. Read each question carefully, and answer each question completely.
- 3. Write your solutions clearly in the exam sheet.
- 4. Show all of your work; no credit will be given for unsupported answers.
- 5. You may use the result of one part of the problem in the proof of a later part, even you do not complete the earlier part.

1. (8 points) Suppose p and q are two distinct primes and G is a group of order p^2q . Prove that G is solvable.

- 2. Suppose G is a finite group. Let $\operatorname{Syl}_p(G)$ be the set of Sylow *p*-subgroups of G and s_p the number of elements in $\operatorname{Syl}_p(G)$.
 - (a) (2 points) Suppose $P, Q \in Syl_p(G)$ are distinct. Prove that

$$P \cap N_G(Q) = P \cap Q.$$

- (b) (2 points) Suppose $P \in \operatorname{Syl}_p(G)$ and consider the action of P on $\operatorname{Syl}_p(G)$ by conjugation. Prove that the P-orbit of $Q \in \operatorname{Syl}_p(G)$ has $[P : P \cap Q]$ many elements.
- (c) (4 points) Suppose $p^e \mid (s_p 1)$ and $p^{e+1} \nmid (s_p 1)$. Prove that there are distinct $P, Q \in Syl_p(G)$ such that

$$[P:P\cap Q] \le p^e.$$

- 3. Suppose A is a unital commutative ring.
 - (a) (3 points) Suppose $I \trianglelefteq A$ (that means I is an ideal of A) and $a \in A$. Suppose $(I : \langle a \rangle) := \{r \in A \mid ra \in I\}$ and $I + \langle a \rangle$ are finitely generated ideals. Prove that I is finitely generated.

(b) (2 points) Let $\Sigma := \{I \trianglelefteq A \mid I \text{ is not finitely generated}\}$. Prove that, if Σ is not empty, then with respect to the inclusion ordering, Σ has a maximal element.

(c) (3 points) Suppose I is a maximal element of Σ . Prove that I is a prime ideal.

- 4. Suppose A is a unital commutative ring and $I, J \trianglelefteq A$. Suppose A/I is a flat A-module.
 - (a) (2 points) Prove that I is a flat A-module. (State carefully the general statement that you are using.)

(b) (2 points) Prove that there is an A-module isomorphism $\iota : I \otimes_A J \to IJ$ such that $\iota(a \otimes b) = ab$ for every $a \in I$ and $b \in J$.

(c) (4 points) Prove that $IJ = I \cap J$.

5. Suppose A is a Noetherian local ring and its only maximal ideal is m.(a) (1 point) Carefully state Nakayama's lemma for A-modules.

(b) (3 points) For every finitely generated A-module M, prove that

$$d(M) = \dim_{A/\mathfrak{m}}(M/\mathfrak{m}M).$$

where d(M) is the minimum number of elements needed to generate M.

(c) (4 points) Prove that every finitely generated projective A-module ${\cal P}$ is free.

•

- 6. Suppose F is a field of characteristic zero and f is an irreducible polynomial of degree n in F[x]. Let E be a splitting field of f over F. Let $\{\alpha_1, \ldots, \alpha_n\}$ be the set of zeros of f in E.
 - (a) (5 points) Prove that if $\operatorname{Gal}(E/F)$ is abelian, then $E = F[\alpha_i]$ for every *i*.

(b) (3 points) Prove that if n = p is prime, then $E = F[\alpha_1]$ implies that $\operatorname{Gal}(E/F) \simeq \mathbb{Z}/p\mathbb{Z}$.

7. (8 points) Let K be a field with 729 elements. Let \mathbb{F}_3 be the prime field of K and set $G = \operatorname{Gal}(K/\mathbb{F}_3)$. Consider the action of G on K given by $\sigma \cdot u = \sigma(u)$. Describe the orbits of this action, calculate their sizes, and calculate how many orbits are there of each size.

(Empty page)

Page 10

(Empty page)

Good Luck!

(Empty page)