Instructions: This is a closed-book examination. You have 180 minutes to complete the test. You may use without proof results proved in Conway up to and including Chapter XI. When using a result from the text, be sure to explicitly verify all hypotheses in it. Present your solutions clearly, with appropriate detail. If using a homework problem, please make sure you reprove it.

Notation and terminology: The unit disk \(\{ |z| < 1 \} \) is denoted by \(\mathbb{D} \). A region is an open and connected subset of \(\mathbb{C} \).

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>#7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>
Let f be a holomorphic function on a region G such that $|f|^2 + |f|$ is harmonic on G. Prove f is constant.
2. [10] Let $f : \mathbb{C} \to \mathbb{C}$ be an entire nowhere zero function. Define $U = \{ z : |f(z)| < 1 \}$. If $U \neq \emptyset$, show that the connected components of U are unbounded.
3. [10] Let \(f : \mathbb{D} \to \mathbb{C} \) be holomorphic. Assume \(\text{Re} \, f(z) > 0 \) for all \(z \in \mathbb{D} \). Show that

\[
|f'(0)| \leq 2 \text{Re} \, f(0).
\]
Let ϕ be a positive harmonic function on a simply connected region G. Prove that there are two harmonic functions u, v on G such that $\phi = e^u \sin v$.
5. [10] Show that there exist polynomials p_n such that

(i) $p_n(0) = 1$, $p_n'(0) = 0$,

(ii) $p_n(z) \to 0$ as $n \to \infty$ for all fixed $z \in \mathbb{C} \setminus \{0\}$.
6. [4, 6] Let \(U \subset \mathbb{C} \) be a bounded connected open set containing 0, and \(f : U \to U \) a holomorphic function which satisfies \(f(0) = 0 \) and \(|f'(0)| < 1 \). Write
\[
f^{(n)} = f \circ f \circ \ldots \circ f. \]

(i) Show that there is a neighborhood \(V \) of 0 such that the sequence \(f^{(n)} \) converges to 0 locally uniformly on \(V \).

\textit{Hint:} \(|f(z)| \leq M|z| \) for a constant \(M < 1 \), for \(|z| \) small.

(ii) Show that the sequence \(f^{(n)} \) converges locally uniformly to 0 on \(U \).
7. [2, 4, 4] Let $U \subset \mathbb{C}$ be an open set. $f : U \setminus \{a\} \to \mathbb{C}$ be a holomorphic function with an isolated singularity at $a \in U$.

Let P be a non-constant polynomial. Let $g : U \setminus \{a\} \to \mathbb{C}$ be given by

$$g(z) = P(f(z)).$$

Show that:

(i) If f has a removable singularity at a, then g has a removable singularity at a.

(ii) If f has a pole at a, then g has a pole at a.

(iii) If f has an essential singularity at a, then g has an essential singularity at a.