Name: ______
PID: _____

Question	Points	Score
1	7	
2	10	
3	15	
4	10	
5	8	
6	7	
7	5	
8	8	
Total:	70	

- 1. Write your Name on the front page of your exam.
- 2. Read each question carefully, and answer each question completely.
- 3. Write your solutions clearly in the exam sheet.
- 4. Show all of your work; no credit will be given for unsupported answers.
- 5. You may use the result of one part of the problem in the proof of a later part, even you do not complete the earlier part.

- 1. Suppose G is a nilpotent group.
 - (a) (5 points) Prove that for every proper subgroup H of G, $H \neq N_G(H)$.

(b) (2 points) Prove that every maximal subgroup of G is normal.

- 2. Suppose G is a finite group, p is prime, m is an integer, gcd(p,m) = 1, and |G| = pm. Suppose P is a Sylow p-subgroup and $N_G(P) = P$.
 - (a) (4 points) Prove that if G has a subgroup H of order m, then

$$H = \{ x \in G \mid o(x) \neq p \}.$$

Deduce that in this case, H is a characteristic subgroup.

- (b) (1 point) Suppose G is solvable. Prove that G has a normal subgroup N such that $G/N \simeq \mathbb{Z}/\ell\mathbb{Z}$ for some prime ℓ .
- (c) (5 points) Suppose G is solvable. Prove that G has a normal subgroup of order m. (**Hint.** Use induction on |G|, the subgroup N from the previous part, and a Sylow ℓ -subgroup of N if needed.)

3. Suppose $A = \mathbb{Z}[\sqrt{-5}]$.

(a) (5 points) Prove that 3 is irreducible in A, but it is not prime.

(b) (5 points) Prove that $\mathfrak{a} := \langle 1 + \sqrt{-5}, 3 \rangle$ is **not** a free *A*-module.

(c) (5 points) Prove that $\mathfrak a$ is a projective A-module.

4. Suppose A is a unital commutative ring.

(a) (5 points) Suppose P_1 and P_2 are projective A-modules. Prove that

 $P_1 \otimes_A P_2$

is a projective A-module.

(b) (5 points) Suppose M_1 and M_2 are flat A-modules. Prove that $M_1 \otimes_A M_2$ is a flat A-module.

- 5. Suppose p is a prime number and the minimal polynomial of $a \in M_p(F)$ is $t^p 1$.
 - (a) (4 points) Find the Jordan form of a if $F = \mathbb{C}$. Justify your answer.

(b) (4 points) Find the Jordan form of a if $F=\mathbb{F}_p.$ Justify your answer.

- 6. Suppose A is a finitely generated Q-algebra, and $\phi:A\to A$ is a surjective ring homomorphism.
 - (a) (2 points) Prove that A is a Noetherian ring.

(b) (5 points) Prove that ϕ is an isomorphism. (**Hint.** Consider $\{\ker \phi^n\}_{n=1}^{\infty}$.)

7. (5 points) Suppose F is a field, $f \in F[x]$ is irreducible, and E is a splitting field of f over F. Suppose there exists $\alpha \in E$ such that $f(\alpha) = f(\alpha + 1) = 0$. Prove that the characteristic of F is positive.

- 8. Suppose p is a prime and $p \nmid n$. Let $\overline{\mathbb{F}}_p$ be an algebraic closure of \mathbb{F}_p . Suppose $\zeta \in \overline{\mathbb{F}}_p^{\times}$ is an element of (multiplicative) order n.
 - (a) (2 points) Prove that $x^n 1 = \prod_{i=0}^{n-1} (x \zeta^i)$ in $\overline{\mathbb{F}}_p$.

(b) (3 points) Let $E_{n,p} \subseteq \overline{\mathbb{F}}_p$ be a splitting field of $x^n - 1$ over \mathbb{F}_p . Prove that $E_{n,p}/\mathbb{F}_p$ is a Galois extension and $\operatorname{Gal}(E_{n,p}/\mathbb{F}_p)$ can be embedded into the group of automorphisms $\operatorname{Aut}(\langle \zeta \rangle)$ of the cyclic group $\langle \zeta \rangle$.

(c) (3 points) Prove that $\operatorname{Gal}(E_{n,p}/\mathbb{F}_p)$ is isomorphic to the cyclic subgroup of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ which is generated by $p + n\mathbb{Z}$.

Good Luck!