Name: ______
PID: _____

Question	Points	Score
1	10	
2	10	
3	5	
4	10	
5	7	
6	8	
7	10	
8	10	
Total:	70	

- 1. Write your Name and PID, on the front page of your exam.
- 2. Read each question carefully, and answer each question completely.
- 3. Write your solutions clearly in the exam sheet.
- 4. Show all of your work; no credit will be given for unsupported answers.
- 5. You may use the result of one part of the problem in the proof of a later part, even if you do not complete the earlier part.
- 6. You may use major theorems *proved* in class, but not if the whole point of the problem is to reproduce the proof of a theorem proved in class or the textbook. Similarly, quote the result of a homework exercise only if the result of the exercise is a fundamental fact and reproducing the result of the exercise is not the main point of the problem.

1. Suppose G is a group of order 55.

(a) (5 points) Classify possible structures of the group G.

(b) (2 points) Is G always solvable? Justify your answer.

(c) (3 points) Is G always nilpotent? Justify your answer.

- 2. Suppose G is a finite group of order $p^k m$ where p is prime and $p \nmid m$. Let $\operatorname{Syl}_p(G)$ be the set of all the Sylow p-subgroups of G. Suppose $P_1 \cap P_2 = \{1\}$ for every two distinct Sylow p-subgroups P_1 and P_2 .
 - (a) (5 points) Prove that $N_G(P_1) \cap P_2 = \{1\}$, where $P_1, P_2 \in \text{Syl}_p(G)$ are distinct. (Derive this based on Sylow's theorems.)

(b) (3 points) Suppose $P_0 \in \operatorname{Syl}_p(G)$ and consider its action on $\operatorname{Syl}_p(G)$ by conjugation. For $P \in \operatorname{Syl}_p(G)$, let \mathcal{O}_P be the P_0 -orbit of P. Prove that if $P \neq P_0$, then $|\mathcal{O}_P| = p^k$.

(c) (2 points) Prove that $|G| \equiv 1 \pmod{p^k}$.

3. (5 points) Suppose A is a unital commutative ring, M and N are A-modules, and $f: M \to N$ is an A-module homomorphism. For every maximal ideal \mathfrak{m} of A, let $M_{\mathfrak{m}}$ and $N_{\mathfrak{m}}$ be the localizations of M and N at \mathfrak{m} , respectively. Recall that

$$f_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}, \quad f_{\mathfrak{m}}\left(\frac{x}{s}\right) := \frac{f(x)}{s}$$

is an $A_{\mathfrak{m}}$ -module homomorphism. Prove that if $f_{\mathfrak{m}}$ is injective, for all maximal ideals \mathfrak{m} , then f is injective.

- 4. In this question, briefly justify your answers by stating the main relevant results.
 - (a) (5 points) Suppose D is a PID. Prove that a finitely generated D-module is flat if and only if it is free.

(b) (5 points) Prove that every projective A-module is flat, where A is a unital commutative ring.

- 5. Suppose D is a Noetherian integral domain and F is its field of fractions. Suppose \mathfrak{a} is an ideal of D. Recall that every D-module homomorphism $\phi : \mathfrak{a} \to D$ is of the form $\phi(x) = cx$ for some $c \in F$.
 - (a) (2 points) Briefly argue why there exists a short exact sequence of D-modules of the following form

$$0 \to K \to D^n \to \mathfrak{a} \to 0.$$

(b) (5 points) Prove that if \mathfrak{a} is a projective *D*-module, then there exists a finitely generated *D*-submodule \mathfrak{c} of *F* such that $\mathfrak{ca} = D$ where

$$\mathfrak{ca} := \bigg\{ \sum_{i=1}^m c_i x_i \mid c_i \in \mathfrak{c}, x_i \in \mathfrak{a} \bigg\}.$$

6. (8 points) Suppose E/F is a separable extension and [E:F] = n. Suppose \overline{E} is an algebraic closure of E. Prove that

$$E \otimes_F \overline{E} \simeq \underbrace{\overline{E} \oplus \cdots \oplus \overline{E}}_{n \text{ times}}$$

as rings.

7. Suppose p is an odd prime and $\zeta_p := e^{2\pi i/p} = \cos(2\pi/p) + i\sin(2\pi/p)$. (a) (2 points) Prove that $[\mathbb{Q}[\zeta_p] : \mathbb{Q}[\cos(\frac{2\pi}{p})]] = 2$.

(b) (6 points) Prove that $\mathbb{Q}[\cos(\frac{2\pi}{p})]/\mathbb{Q}$ is a Galois extension and its Galois group is a cyclic group of order (p-1)/2.

(c) (2 points) Does there exist an odd prime p such that $\sqrt[3]{2} \in \mathbb{Q}[\cos(\frac{2\pi}{p})]$?

- 8. Suppose n is a positive integer, p is a prime number, and $a \in \mathbb{F}_p^{\times}$. Suppose n|p-1. Suppose E is a splitting field of $x^n a$ over \mathbb{F}_p .
 - (a) (6 points) Prove that E/\mathbb{F}_p is a Galois extension and $\operatorname{Gal}(E/\mathbb{F}_p)$ can be embedded into \mathbb{F}_p^{\times} .

(b) (4 points) Prove that $\operatorname{Gal}(E/\mathbb{F}_p) \simeq \langle a^{\frac{p-1}{n}} \rangle \subseteq \mathbb{F}_p^{\times}$.

(Blank page)

•

(Blank page)

•

(Blank page)

•