Spring 2023

Applied Algebra Qualifying Exam: Part A

1:00pm-4:00pm (PDT) Tuesday May 23rd

- Write your name and student PID at the top right corner of each page of your submission.
- Do all four problems. Show your work.
- This part of the exam will represent 40% of the total score.
- Notation:
 - $\mathcal{M}_{m,n}$ denotes the set of $m \times n$ matrices with complex components.
 - \mathcal{M}_n denotes the set $\mathcal{M}_{m,n}$ with m=n.
 - $-\mathbb{C}^n$ is the set of column vectors with n complex components.
 - $-x^{H}$ is the Hermitian transpose of a vector or matrix x.

Question 1.

- (a) State, but do not prove, the Schur decomposition theorem.
- (b) Let (λ, x) be a simple eigenpair of $A \in \mathcal{M}_n$ with $x^H x = 1$.
 - (i) Prove that there exists a nonsingular matrix $(x \ X)$ with inverse $(y \ Y)^{H}$ such that

$$\begin{pmatrix} y^{\mathrm{H}} \\ Y^{\mathrm{H}} \end{pmatrix} A \begin{pmatrix} x & X \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & M \end{pmatrix}, \text{ with } M \in \mathcal{M}_{n-1}.$$

(ii) Hence prove that the angle θ between x and y satisfies $\sec \theta = ||y||_2$.

Question 2. Consider a Hermitian matrix $A \in \mathcal{M}_n$.

- (a) Show that the eigenvalues of A are real.
- (b) Assume that the eigenvalues of A are ordered so that $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_2 \leq \lambda_1$. State, but do not prove, the Courant-Fischer theorem.
- (c) Prove that

$$\lambda_n = \min_{x^H x = 1} x^H A x$$
, and $\lambda_1 = \max_{x^H x = 1} x^H A x$.

Question 3.

- (a) Given a vector norm $\|\cdot\|$, define the matrix norm subordinate to $\|\cdot\|$. Prove that every subordinate matrix norm is consistent.
- (b) Given $A \in \mathcal{M}_{m,n}$, let ||A|| denote the matrix norm subordinate to the vector norm $||\cdot||$. Prove that $||xy^{\mathrm{H}}|| = ||x|| ||y||_D$ for all $x, y \in \mathbb{C}^n$, where $||y||_D$ denotes the vector norm dual to $||\cdot||$.
- (c) Given $A \in \mathcal{M}_{m,n}$, prove that $||Ax||_2 \le ||A||_F ||x||_2$ for all $x \in \mathbb{C}^n$.
- (d) Find $||xy^{H}||$ for the Frobenius norm.

Question 4.

- (a) State, but do not prove, the singular-value decomposition theorem.
- (b) For a given $A \in \mathcal{M}_{m,n}$, prove that

$$\sigma_1(A) = \max_{x,y \neq 0} \frac{|y^{H}Ax|}{\|y\|_2 \|x\|_2},$$

where $\sigma_1(A)$ is the largest singular value of A.

(c) For any $A \in \mathcal{M}_n$, define (i) the field of values $\mathcal{F}(A)$; (ii) the spectral radius $\rho(A)$; and (iii) the numerical radius $\omega(A)$. Prove that $\rho(A) \leq \omega(A) \leq \sigma_1(A)$.