Spring 2023

Applied Algebra Qualifying Exam: Part A

1:00pm-4:00pm (PDT)
Tuesday May 23rd

- Write your name and student PID at the top right corner of each page of your submission.
- Do all four problems. Show your work.
- This part of the exam will represent 40% of the total score.
- Notation:
- $\mathcal{M}_{m, n}$ denotes the set of $m \times n$ matrices with complex components.
$-\mathcal{M}_{n}$ denotes the set $\mathcal{M}_{m, n}$ with $m=n$.
$-\mathbb{C}^{n}$ is the set of column vectors with n complex components.
$-x^{\mathrm{H}}$ is the Hermitian transpose of a vector or matrix x.

Question 1.

(a) State, but do not prove, the Schur decomposition theorem.
(b) Let (λ, x) be a simple eigenpair of $A \in \mathcal{M}_{n}$ with $x^{\mathrm{H}} x=1$.
(i) Prove that there exists a nonsingular matrix $(x X)$ with inverse $(y Y)^{\mathrm{H}}$ such that

$$
\binom{y^{\mathrm{H}}}{Y^{\mathrm{H}}} A\left(\begin{array}{ll}
x & X
\end{array}\right)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & M
\end{array}\right), \text { with } M \in \mathcal{M}_{n-1} .
$$

(ii) Hence prove that the angle θ between x and y satisfies $\sec \theta=\|y\|_{2}$.

Question 2. Consider a Hermitian matrix $A \in \mathcal{M}_{n}$.
(a) Show that the eigenvalues of A are real.
(b) Assume that the eigenvalues of A are ordered so that $\lambda_{n} \leq \lambda_{n-1} \leq \cdots \leq \lambda_{2} \leq$ λ_{1}. State, but do not prove, the Courant-Fischer theorem.
(c) Prove that

$$
\lambda_{n}=\min _{x^{\mathrm{H}} x=1} x^{\mathrm{H}} A x, \quad \text { and } \quad \lambda_{1}=\max _{x^{\mathrm{H}} x=1} x^{\mathrm{H}} A x .
$$

Question 3.

(a) Given a vector norm $\|\cdot\|$, define the matrix norm subordinate to $\|\cdot\|$. Prove that every subordinate matrix norm is consistent.
(b) Given $A \in \mathcal{M}_{m, n}$, let $\|A\|$ denote the matrix norm subordinate to the vector norm $\|\cdot\|$. Prove that $\left\|x y^{\mathrm{H}}\right\|=\|x\|\|y\|_{D}$ for all $x, y \in \mathbb{C}^{n}$, where $\|y\|_{D}$ denotes the vector norm dual to $\|\cdot\|$.
(c) Given $A \in \mathcal{M}_{m, n}$, prove that $\|A x\|_{2} \leq\|A\|_{F}\|x\|_{2}$ for all $x \in \mathbb{C}^{n}$.
(d) Find $\left\|x y^{\mathrm{H}}\right\|$ for the Frobenius norm.

Question 4.

(a) State, but do not prove, the singular-value decomposition theorem.
(b) For a given $A \in \mathcal{M}_{m, n}$, prove that

$$
\sigma_{1}(A)=\max _{x, y \neq 0} \frac{\left|y^{\mathrm{H}} A x\right|}{\|y\|_{2}\|x\|_{2}},
$$

where $\sigma_{1}(A)$ is the largest singular value of A.
(c) For any $A \in \mathcal{M}_{n}$, define (i) the field of values $\mathcal{F}(A)$; (ii) the spectral radius $\rho(A)$; and (iii) the numerical radius $\omega(A)$. Prove that $\rho(A) \leq \omega(A) \leq \sigma_{1}(A)$.

