Applied Algebra Qualifying Exam: Part B

Spring 2023

Instructions: Do all problems. All problems are weighted equally. You are not allowed to consult any external resource during this exam. Good luck!

Problem 1: Let D_{6} be the group of symmetries of a regular hexagon, let S_{3} be the symmetric group on three objects, and let C_{2} be the cyclic group of order 2 .
(1) Prove that D_{6} is isomorphic to the direct product $S_{3} \times C_{2}$.
(2) Calculate the character table of D_{6}.

Problem 2: Let X be the 9 -element set of positions in a 3×3 matrix. The dihedral group D_{4} of symmetries of a square acts on X in a natural way. Let $\mathbb{C}[X]$ be the corresponding permutation representation and let $R: \mathbb{C}[X] \rightarrow \mathbb{C}[X]$ be the operator defined by

$$
R(v):=\frac{1}{\left|D_{4}\right|} \sum_{g \in D_{4}} g \cdot v
$$

for all $v \in \mathbb{C}[X]$. What is the rank of the linear operator R ?

Problem 3: The symmetric group S_{5} acts on the set X of ordered pairs (i, j) of (not necessarily distinct!) elements of $\{1,2,3,4,5\}$. Let $\mathbb{C}[X]$ be the associated permutation representation.
(1) Find the decomposition of $\mathbb{C}[X]$ into irreducible S_{5}-modules.
(2) Find the dimension of the endomorphism algebra $\operatorname{End}_{S_{5}}(\mathbb{C}[X])$.

Problem 4: Let $G=\mathbb{Z}$ be the group of integers under addition. The group homomorphism $\rho: G \rightarrow G L_{2}(\mathbb{C})$ given by

$$
\rho(n)=\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)
$$

gives \mathbb{C}^{2} the structure of a G-module. Does \mathbb{C}^{2} admit a G-invariant inner product?

