Fall 2023

Applied Algebra Qualifying Exam: Part A

1:00pm-4:00pm (PDT)

Thursday September 7th

- Write your name and student PID at the top right corner of each page of your submission.
- Do all four problems. Show your work.
- This part of the exam will represent 40% of the total score.
- Notation:
- $\mathcal{M}_{m, n}$ denotes the set of $m \times n$ matrices with complex components.
- \mathcal{M}_{n} denotes the set $\mathcal{M}_{m, n}$ with $m=n$.
- \mathbb{C}^{n} is the set of column vectors with n complex components.
$-x^{\mathrm{T}}$ is the transpose of a vector or matrix x.
$-x^{\mathrm{H}}$ is the Hermitian transpose of a vector or matrix x.
$-\operatorname{eig}(A)$ is the set of eigenvalues of the matrix A (counting multiplicities).
$-\operatorname{Re}(\alpha)$ is the real part of the complex scalar α.
$-\operatorname{Im}(\alpha)$ is the imaginary part of the complex scalar α.

Question 1.

(a) State, but do not prove, the Schur decomposition theorem for a matrix $A \in M_{n}$.
(b) Prove that for $A, B \in \mathcal{M}_{n}$, if $x^{\mathrm{H}} A x=x^{\mathrm{H}} B x$ for all $x \in \mathbb{C}^{n}$, then $A=B$. Give an example for which $x^{\mathrm{T}} A x=x^{\mathrm{T}} B x$ for all $x \in \mathbb{C}^{n}$ but $A \neq B$.

Question 2.

(a) Prove that every $A \in \mathcal{M}_{n}$ may be written uniquely as $A=S+i T$, where S and T are Hermitian.
(b) For any $A \in \mathcal{M}_{n}$, consider the unique expansion $A=S+i T$, where S and T are Hermitian. Prove that for any $\lambda \in \operatorname{eig}(A)$, it holds that

$$
\lambda_{n}(S) \leq \operatorname{Re}(\lambda) \leq \lambda_{1}(S) \quad \text { and } \quad \lambda_{n}(T) \leq \operatorname{Im}(\lambda) \leq \lambda_{1}(T),
$$

where $\lambda_{1}(C)$ and $\lambda_{n}(C)$ denote the largest and smallest eigenvalues of a Hermitian matrix $C \in \mathcal{M}_{n}$.

Question 3. Consider any $A \in \mathcal{M}_{m, n}$.
(a) Define $|A|$, the modulus of A. Prove that the eigenvalues of $|A|$ are the singular values of A.
(b) Prove that if $m=n$, then $|A|$ and $\left|A^{\mathrm{H}}\right|$ are similar.

Question 4.

(a) Consider any Hermitian $A \in \mathcal{M}_{n}$ with eigenvalues ordered so that $\lambda_{n}(A) \leq$ $\cdots \leq \lambda_{2}(A) \leq \lambda_{1}(A)$. Prove that

$$
\lambda_{n}(A) \leq \frac{x^{\mathrm{H}} A x}{x^{\mathrm{H}} x} \leq \lambda_{1}(A),
$$

for all nonzero $x \in \mathbb{C}^{n}$.
(b) Suppose that $D \in \mathcal{M}_{n}$ with $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. Prove that for all $1 \leq$ $p \leq \infty$ the p-norm of D is given by $\|D\|_{p}=\max _{1 \leq i \leq n}\left|d_{i}\right|$.
(c) Given $a \in \mathbb{C}^{n}$, find $\|A\|_{2}$ for the matrices

$$
A=a a^{\mathrm{H}} \quad \text { and } \quad A=\left(\begin{array}{cc}
0 & a^{\mathrm{H}} \\
a & 0
\end{array}\right) .
$$

(Show your work. Simply writing down the answer will not be sufficient.)

