Fall 2023

Applied Algebra Qualifying Exam: Part A

1:00pm-4:00pm (PDT) Thursday September 7th

- Write your name and student PID at the top right corner of each page of your submission.
- Do all four problems. Show your work.
- This part of the exam will represent 40% of the total score.
- Notation:
 - $\mathcal{M}_{m,n}$ denotes the set of $m \times n$ matrices with complex components.
 - \mathcal{M}_n denotes the set $\mathcal{M}_{m,n}$ with m=n.
 - $-\mathbb{C}^n$ is the set of column vectors with n complex components.
 - $-x^{\mathrm{T}}$ is the transpose of a vector or matrix x.
 - $-x^{\mathrm{H}}$ is the Hermitian transpose of a vector or matrix x.
 - $-\operatorname{eig}(A)$ is the set of eigenvalues of the matrix A (counting multiplicities).
 - $Re(\alpha)$ is the real part of the complex scalar α .
 - $\operatorname{Im}(\alpha)$ is the imaginary part of the complex scalar α .

Question 1.

- (a) State, but do not prove, the Schur decomposition theorem for a matrix $A \in M_n$.
- (b) Prove that for $A, B \in \mathcal{M}_n$, if $x^H A x = x^H B x$ for all $x \in \mathbb{C}^n$, then A = B. Give an example for which $x^T A x = x^T B x$ for all $x \in \mathbb{C}^n$ but $A \neq B$.

Question 2.

- (a) Prove that every $A \in \mathcal{M}_n$ may be written uniquely as A = S + iT, where S and T are Hermitian.
- (b) For any $A \in \mathcal{M}_n$, consider the unique expansion A = S + iT, where S and T are Hermitian. Prove that for any $\lambda \in \text{eig}(A)$, it holds that

$$\lambda_n(S) \le \operatorname{Re}(\lambda) \le \lambda_1(S)$$
 and $\lambda_n(T) \le \operatorname{Im}(\lambda) \le \lambda_1(T)$,

where $\lambda_1(C)$ and $\lambda_n(C)$ denote the largest and smallest eigenvalues of a Hermitian matrix $C \in \mathcal{M}_n$.

Question 3. Consider any $A \in \mathcal{M}_{m,n}$.

- (a) Define |A|, the modulus of A. Prove that the eigenvalues of |A| are the singular values of A.
- **(b)** Prove that if m = n, then |A| and $|A^{H}|$ are similar.

Question 4.

(a) Consider any Hermitian $A \in \mathcal{M}_n$ with eigenvalues ordered so that $\lambda_n(A) \le \cdots \le \lambda_2(A) \le \lambda_1(A)$. Prove that

$$\lambda_n(A) \le \frac{x^H A x}{x^H x} \le \lambda_1(A),$$

for all nonzero $x \in \mathbb{C}^n$.

- (b) Suppose that $D \in \mathcal{M}_n$ with $D = \operatorname{diag}(d_1, d_2, \dots, d_n)$. Prove that for all $1 \le p \le \infty$ the *p*-norm of *D* is given by $||D||_p = \max_{1 \le i \le n} |d_i|$.
- (c) Given $a \in \mathbb{C}^n$, find $||A||_2$ for the matrices

$$A = aa^{\mathrm{H}}$$
 and $A = \begin{pmatrix} 0 & a^{\mathrm{H}} \\ a & 0 \end{pmatrix}$.

(Show your work. Simply writing down the answer will not be sufficient.)