Complex Analysis Qualifying Exam

1:00pm-4:00pm (PDT), in person

Thursday May 25, 2023

- Write your name and student PID at the top right corner of each page of your submission.
- The more detail you provide, the more accurately your work can be evaluated.
- By participating in this exam you are agreeing to abide by the UCSD Policy on Academic Integrity. The instructors reserve the right to require a follow-up oral examination.
- This is a closed-book examination. No cell-phone or Internet aids.
- Each problem is worth 10 points, except a bonus problem worth 3 points.
- Notation:
- \mathbb{C} denotes the complex plane.
$-\mathbb{D}$ denotes the open unit disc in \mathbb{C}.
$-\mathbb{T}=\partial \mathbb{D}$ denotes the unit circle in \mathbb{C}.
$-\overline{\mathbb{D}}$ denotes the closed unit disc $\mathbb{D} \cup \mathbb{T}$.
$-\mathcal{C}(\mathbb{K})=\{$ continuous $f: \mathbb{K} \rightarrow \mathbb{C}\}$.

Question 1. Let $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with radius of convergence equal to one.
(a) Give an example where $A(z)$ diverges at each point of \mathbb{T}, and explain why.
(b) Give an example where $A(z)$ converges absolutely on \mathbb{T}, and explain why.
(c) Prove that $A(z)$ has a singularity on \mathbb{T}, i.e. cannot be analytically continued to an open set containing \mathbb{D}.
(d) Prove that if $A(z)$ has nonnegative coefficients, the point $z=1$ is a singularity of $A(z)$. (Hint: the previous problem could be useful.)
(e) Verify that $A(z)=\sum_{n=0}^{\infty} z^{n!}$ has radius of convergence one, and that each point of \mathbb{T} is a singularity of $A(z)$.

Question 2. Let z_{1}, \ldots, z_{n} be points on \mathbb{T}. Prove that that there is $z_{0} \in \mathbb{T}$ such that the product of the distances from z_{0} to each of the given points is at least one.

Question 3. By evaluating an appropriate contour integral, show that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos ^{2 n}(t) d t=\frac{(2 n-1)(2 n-3) \ldots(3)}{(2 n)(2 n-2) \ldots(2)} .
$$

Question 4. Let $f(z)$ be analytic on an open set containing $\overline{\mathbb{D}}$. Suppose that $|f(z)|>m$ for $|z|=1$ and $|f(0)|<m$ for a positive number m. Prove that $f(z)$ has a zero in \mathbb{D}.

Question 5. Let $f(z)$ be analytic on \mathbb{D}. Prove the following statements.
(a) If $\left|f^{\prime}(z)-f^{\prime}(0)\right|<\left|f^{\prime}(0)\right|$ for all $z \in \mathbb{D}$, then $f(z)$ is injective.
(b) If $|f(z)|<1$ for all $z \in \mathbb{D}$ and $f(z)$ has two distinct fixed points, then $f(z)=z$. (Hint: Analytic automorphisms of \mathbb{D} and Schwarz's Lemma could be useful.)

Question 6. Let $f(z)=\frac{\cos z}{z(z-5)}$.
(a) Prove that there is a sequence of rational functions $R_{n}(z)$ whose poles can only occur at 2 and 6 such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{3 \leq|z| \leq 4}\left|f(z)-R_{n}(z)\right|=0 . \tag{1}
\end{equation*}
$$

(b) Does there exist a sequence of rational functions $R_{n}(z)$ whose poles can only occur at 6 such that (1) holds? Justify your answer.

Question 7. Let $a \in \mathbb{D}$ and $\mathbb{G}=\mathbb{D} \backslash\{a\}$.
(a) Construct a harmonic function v on \mathbb{G} such that the following two conditions are satisfied:

$$
\lim _{z \rightarrow z^{*}} v(z)=0 \forall z^{*} \in \mathbb{T} \quad \text { and } \quad \lim _{z \rightarrow a} v(z)=+\infty .
$$

Write down an explicit formula for the function v you constructed. (Hint: you only need to find one such function; first think about the case $a=0$.)
(b) Let $f \in \mathcal{C}(\partial \mathbb{G})$ be defined as $f(z)=0$ for $z \in \mathbb{T}$ and $f(a)=2$. Prove that the Dirichlet problem on \mathbb{G} with boundary data f has no solution: there is no harmonic function u on \mathbb{G} such that $\lim _{z \rightarrow z_{0}} u(z)=f\left(z_{0}\right)$ for all $z_{0} \in \partial \mathbb{G}$. (Hint: argue by contradiction, making use of the function you constructed in part (a).)

Question 8. This is an optional bonus question. Precisely formulate a problem/question in complex analysis whose solution/answer is not yet known to you, but which you are are eager to learn.

