Complex Analysis Qualifying Exam – Spring 2022

Name: ________________________________

Student ID: ________________________________

Instructions: 3 hours. Open book: Conway and personal notes from lectures may be used. You may use without proof results proved in Conway I-VIII, X-XI. When using a result from the text, be sure to explicitly verify all hypotheses in it. Present your solutions clearly, with appropriate detail.

Notation and terminology: A region is an open and connected subset of \(\mathbb{C} \). The space of analytic (resp., meromorphic) functions in \(G \) is denoted by \(H(G) \) (resp., \(M(G) \)).

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>
Problem 1. [10 points.]

Let $G \subset \mathbb{C}$ be a bounded, simply connected region and let $a \in G$. Let f be an analytic self-map of G (i.e., $f(G) \subset G$) such that $f(a) = a$ and $f'(a) = 1$. Show that $f(z) = z$.
Problem 2. [10 points; 4, 4, 2.]

Let \(p(z) \) be a nonconstant polynomial of \(z \). Let \(G \subset \mathbb{C} \) be a component of the set \(\{ z : |p(z)| < 1 \} \).

(a) Show that \(p \) has at least one zero in \(G \).

(b) Let \(f \) be analytic in \(G \) with \(|f| \leq 1 \). Assume that \(f \) has a zero at every zero of \(p \) such that the order of vanishing of \(f \) is at least that of \(p \). Show that \(|f(z)| \leq |p(z)| \) and if \(z = a \) is a zero of \(p \) of order \(k \), then \(|f^{(k)}(a)| \leq |p^{(k)}(a)| \).

(c) If either \(|f(a)| = |p(a)| \) for some \(z = a \) that is not a zero of \(p \) or if \(|f^{(k)}(a)| = |p^{(k)}(a)| \) for some \(z = a \) that is a zero of \(p \) of order \(k \), then \(f(z) = cp(z) \) for some constant \(c \).
Problem 3. [10 points.]

Consider the function

$$f(z) = \frac{z^2 + 1}{z^2 - 1}$$

in $G = \{z : |z| > 2\}$. Does f have a primitive in G (i.e., $F \in H(G)$ such that $F' = f$)? Prove your assertion.
Problem 4. [10 points.]

Let $G \subset \mathbb{C}$ be a region such that $0 \not\in G$ and G is not simply connected. Show that the following are equivalent:

(i) $\mathbb{C}_\infty \setminus G$ has precisely two components F_0, F_∞ such that $0 \in F_0$, $\infty \in F_\infty$.

(ii) Every $f \in H(G)$ can be approximated in $H(G)$ by rational functions with poles only in $\{0, \infty\}$.
Problem 5. [10 points.]

Let $G \subset \mathbb{C}$ be an open set, $\{f_n\}$ a sequence in $M(G)$, and f a meromorphic function such that $f_n \rightarrow f$ in $M(G)$. Suppose $a \in G$ is a pole of f. Show that there is a sequence $\{a_n\}$ in G such that $a_n \rightarrow a$ and f_n has a pole at a_n for sufficiently large n.
Problem 6. [10 points.]

Let h be a bounded harmonic function on the unit disc $\mathbb{D} = \{ z : |z| < 1 \}$. Assume that

$$\limsup_{z \to a} h(z) \leq 0$$

for all $a \in \partial \mathbb{D} \setminus \{1\}$. Show that $h \leq 0$ in \mathbb{D}.