Ph.D./Masters Qualifying Examination
in Numerical Analysis

Examiners: Philip E. Gill and Bo Li

10am–1pm
Wednesday May 30, 2007
5402 AP&M

<table>
<thead>
<tr>
<th>#</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>30</td>
</tr>
<tr>
<td>1.2</td>
<td>30</td>
</tr>
<tr>
<td>1.3</td>
<td>30</td>
</tr>
<tr>
<td>2.1</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>30</td>
</tr>
<tr>
<td>3.1</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>240</td>
</tr>
</tbody>
</table>

- Add your name in the box provided and staple this page to your solutions.
- Write your name clearly on every sheet submitted.
1. **Norms, Condition Numbers, Linear Equations and Linear Least-Squares**

In Parts 1 and 2, $\| \cdot \|_p$ refers to the vector p-norm or its subordinate matrix norm.

Question 1.1.

(a) Given any $x \in \mathbb{C}^n$, find positive constants c_1 and c_2, independent of x such that

$$c_1 \| x \|_2 \leq \| x \|_{\infty} \leq c_2 \| x \|_2.$$

(b) If $A \in \mathbb{C}^{m \times n}$, prove that $\| A \|_2 = \sigma_1$, where σ_1 is the largest singular value of A.

(c) Assume that $A \in \mathbb{C}^{m \times n}$ has rank τ. Find a scalar σ ($\sigma > 0$), independent of p, such that

$$\| Ap \|_{\infty} \geq \sigma \| p \|_2 \quad \text{for all } p \in \text{range}(A^T).$$

Question 1.2.

(a) State the **standard rounding-error model** for floating-point arithmetic.

(b) Let u denote the unit round-off. Let n be a positive integer such that $nu < 1$. If $\{ \delta_i \}$ is a set of n numbers such that $|\delta_i| \leq u$, and $\{ s_i \}$ are integers such that $s_i = \pm 1$, prove that

$$\prod_{i=1}^{n} (1 + \delta_i)^{s_i} = 1 + \theta_n,$$

where $|\theta_n| \leq \gamma_n$, with $\gamma_n = nu/(1 - nu)$.

(c) Given two n-vectors x and y, let \hat{Z} denote the **computed** version of the rank-one matrix $Z = xy^T$. Apply the standard rounding error model to derive a bound for the component-wise forward error in \hat{Z} as an approximation to Z. Is the calculation of \hat{Z} backward stable? Justify your answer.

Question 1.3. Assume that $A \in \mathbb{R}^{n \times n}$.

(a) Suppose that τ ($\tau < n$) steps of Householder reduction with column interchanges gives the decomposition

$$AP = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & 0 \end{pmatrix},$$

where Q is orthogonal, P is a permutation and R_{11} is an $r \times r$ nonsingular upper triangle. Define bases for null(A) and range(A^T) in terms of the QR factors above. Verify that the proposed bases satisfy the properties of a basis.

(b) Now assume that τ steps of Householder reduction give:

$$AP = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & E \end{pmatrix},$$

where Q is orthogonal, P is a permutation and R_{11} is an $r \times r$ nonsingular upper triangle. Show that σ_n, the smallest singular value of A, satisfies $\sigma_n \leq \| E \|_2$. Give a brief discussion of the implication of this result.
2. Nonlinear Equations, Nonlinear Least-Squares and Optimization

Question 2.1.

(a) Let $F : D \subseteq \mathbb{R}^n \mapsto \mathbb{R}^m$ be continuously differentiable on the open convex set D. Compute the Fréchet derivative for the function $f : \mathbb{R}^n \mapsto \mathbb{R}$ such that $f(x) = \|x\|_2$.

(b) Given a real $n \times n$ symmetric matrix A, find the Fréchet derivative of the function $G : \mathbb{R}^{n+1} \mapsto \mathbb{R}^{n+1}$ such that
\[
G(x, \lambda) = \begin{pmatrix} Ax - \lambda x \\ \|x\|_2 - 1 \end{pmatrix}.
\]

Hence define an iteration of Newton's method for finding an eigenvalue of A and its associated eigenvector.

(c) An eigenvalue of a matrix is simple if it has algebraic multiplicity 1. If λ^* is a simple eigenvalue of A and x^* is its corresponding normalized eigenvector, prove that $G'(x^*, \lambda^*)$ is nonsingular. Give a brief discussion of the implication of this result when finding x^* and λ^* using Newton's method.

Question 2.2. Consider the function $f : \mathbb{R}^3 \mapsto \mathbb{R}$ such that
\[
f(x) = x_1^2 + x_2^2 \cos x_3 - e^{x_2} x_3^2 + 4x_3.
\]

(a) Compute the spectral decomposition of the Hessian matrix of second derivatives at $\bar{x} = (0, 1, 0)^T$.

(b) Compute the Newton direction p^N and modified Newton direction p^M at \bar{x}. Determine if p^N and p^M are descent directions.

(c) Find a direction of negative curvature that is a direction of decrease for f at \bar{x}.

Question 2.3.

(a) Find all the eigenvalues of the matrix $I + \gamma uv^T$, where γ is a scalar and u and v are n vectors.

(b) Given an $n \times n$ symmetric positive-definite matrix B, and n-vectors y and s, consider the symmetric rank-one quasi-Newton update
\[
B_+ = B + \frac{1}{(y - Bs)^T s}(y - Bs)(y - Bs)^T.
\]

(i) Let $f : \mathbb{R}^n \mapsto \mathbb{R}$ be a quadratic function with a symmetric positive-definite Hessian matrix. Let $s = x_+ - x$ and $y = \nabla f(x_+) - \nabla f(x)$, where $\nabla f(x)$ is the gradient of f evaluated at x. If vectors $\bar{s} = \bar{x}_+ - \bar{x}$ and $\bar{y} = \nabla f(\bar{x}_+) - \nabla f(\bar{x})$ satisfy $B\bar{s} = \bar{y}$, prove that $B_+\bar{s} = \bar{y}$.

(ii) Find a condition on the vectors y and s that will guarantee the positive definiteness of B_+.
3. **Approximation and Numerical ODEs**

In this part, we assume that \(a, b \in \mathbb{R} \) with \(a < b \). We also denote by \(\mathcal{P}_n \) the set of all polynomials of degree \(\leq n \) for any integer \(n \geq 0 \).

Question 3.1.

(a) Prove for any \(f \in C[a, b] \) that

\[
\lim_{n \to \infty} \inf_{q_n \in \mathcal{P}_n} \max_{a \leq x \leq b} |f(x) - q_n(x)| = 0,
\]

\[
\lim_{n \to \infty} \inf_{q_n \in \mathcal{P}_n} \int_a^b [f(x) - q_n(x)]^2 \, dx = 0.
\]

(b) Let \(p_2 \in \mathcal{P}_2 \) be the best uniform approximation in \(\mathcal{P}_2 \) of the function \(g(x) = x^3 - 2x^2 + 1 \) with respect to the \(C[-1,1] \)-norm. What is the value of \(p_2(1) \)? Justify your answer.

(c) Let \(Q_0, \ldots, Q_n, \ldots \) be orthogonal polynomials in \(L^2[a, b] \). Fix \(n \geq 1 \). Prove that \(Q_n \) has \(n \) simple roots in \([a, b] \).

Question 3.2.

(a) Find the degree of precision of the numerical quadrature

\[
\int_a^b f(x) \, dx \approx \frac{1}{2}(b-a)[f(a) + f(b)] - \frac{1}{12}(b-a)^2[f'(b) - f'(a)] \quad \forall f \in C^1[a, b].
\]

(b) Consider a sequence of interpolatory numerical integration formulas

\[
\int_a^b f(x) \, dx \approx \sum_{k=1}^n A_k^{(n)} f(x_k^{(n)}), \quad n = 1, \ldots.
\]

Suppose all the coefficients \(A_k^{(n)} \) \((k = 1, \ldots, n; n = 1, \ldots)\) are positive. Prove that

\[
\lim_{n \to \infty} \sum_{k=1}^n A_k^{(n)} f(x_k^{(n)}) = \int_a^b f(x) \, dx \quad \forall f \in C[a, b].
\]