Qualifying Exam in Numerical Analysis Fall 2023

Time: 1:00 pm - 4:00 pm, Friday, September 8, 2023

	Full Scores	Your Scores
$\# 1$	25	
$\# 2$	25	
$\# 3$	25	
$\# 4$	25	
$\# 5$	25	
$\# 6$	25	
$\# 7$	25	
$\# 8$	25	
Total	200	

Exam Rules and Instructions

- This is a three-hour, close-book, and close-note exam. No calculators, computers, tablets, and any other electronic devices are allowed. No cheatsheets are allowed.
- There are a total of 10 pages (including this cover page) of the exam.
- You must show all the computational steps for how you get the answers. No credit will be given for unsupported answers.
- All numbers in computational results must be exact, whether written in rational/radical or decimal format. No credit will be given for rounded numbers.

1. (25 points) Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. Consider the linear system $A x=b$ and the perturbed system $(A+\delta A) \hat{x}=b+\delta b$. Let $\delta x=\hat{x}-x$. Show that

$$
\frac{\|\delta x\|_{2}}{\|\hat{x}\|_{2}} \leq\|A\|_{2}\left\|A^{-1}\right\|_{2} \cdot\left(\frac{\|\delta A\|_{2}}{\|A\|_{2}}+\frac{\|\delta b\|_{2}}{\|A\|_{2}\|\hat{x}\|_{2}}\right)
$$

Also show that there exist δA and $\delta b=0$ such that the above is an equality.
2. (25 points) Let $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$. Write an algorithm for computing orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that the product $B:=U^{T} A V$ is an m-by- n upper bidiagonal matrix, i.e., $B_{i j}=0$ if either $i>j$ or $j>i+1$.
3. (25 points) Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$. Show that the Jacobi iterative method for solving the linear system $A x=b$ converges for all initial points $x_{0} \in \mathbb{R}^{n}$ if A is strictly row diagonally dominant.
4. (25 points) Let $n \geq 1$ be an integer and $f(x)=x^{n+2}$ for all $x \in[-1,1]$. Find the best uniform approximation of f in \mathcal{P}_{n} (the class of real polynomials of degree $\leq n$) with respect to the $C([-1,1])$ norm. (You need to find an explicit formula of the approximation and justify your answer.)
5. (25 points) Let $f \in C^{3}([0,1])$. Let $n \geq 2$ be an integer and $x_{i}=i / n(i=0,1, \ldots, n)$. Define $I_{n} f$: $[0,1] \rightarrow \mathbb{R}$ as follows: on the i th interval $\left[x_{i-1}, x_{i}\right](1 \leq i \leq n), I_{n} f$ is the Lagrange interpolation polynomial of degree ≤ 2 that interpolates f at $x_{i-1},\left(x_{i-1}+x_{i}\right) / 2, x_{i}$. Denote $M_{3}=\max _{x \in[0,1]}\left|f^{(3)}(x)\right|$.
(1) Prove that $I_{n} f \in C([0,1])$ and that $\max _{x \in[0,1]}\left|I_{n} f(x)-f(x)\right| \leq \frac{M_{3}}{6 n^{3}}$.
(2) Can you improve the above bound by replacing $1 / 6$ by a smaller number, as smaller as possible?
6. (25 points) Let $n \geq 1$ be an integer, $x_{1}, \ldots, x_{n} \in[-1,1]$ be n distinct points, and w_{1}, \ldots, w_{n} be n real numbers. Denote by d_{n} the degree of precision of the numerical quadrature

$$
\int_{-1}^{1} f(x) d x \approx \sum_{k=1}^{n} w_{k} f\left(x_{k}\right) .
$$

(1) Prove that $d_{n} \leq 2 n-1$.
(2) Define $l_{k}(x)=\prod_{1 \leq j \leq n, j \neq k}\left(x-x_{j}\right) /\left(x_{k}-x_{j}\right)(k=1, \ldots, n)$. Assume further that the numbers w_{1}, \ldots, w_{n} are given by $w_{k}=\int_{-1}^{1} l_{k}(x) d x(k=1, \ldots, n)$. Prove that $d_{n} \geq n-1$.
(3) Assume further that $\omega_{n}(x)=\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)$ is an nth orthogonal polynomial on $[-1,1]$, i.e., $\int_{-1}^{1} \omega_{n}(x) q(x) d x=0$ for any polynomial of $q(x)$ of degree $\leq n-1$. Prove that $d_{n}=2 n-1$.
7. (25 points) Consider the initial value problem with ODE

$$
y^{\prime}=f(t, y)
$$

and initial value $y\left(t_{0}\right)=y_{0}$.
(a) Briefly describe the steps involved to generate the difference formula for the k-step AdamsBashforth method, where $k \geq 1$.
(b) Use this to derive the actual difference formula for the 2-step Adams-Bashforth method.
8. (25 points) Consider the Runge-Kutta method with Butcher tableau

0	0	0
1	$1 / 2$	$1 / 2$
	$1 / 2$	$1 / 2$

for solving the initial value problem with ODE

$$
y^{\prime}=f(t, y)
$$

and initial value $y\left(t_{0}\right)=y_{0}$. Determine whether this method is A -stable. Be sure to justify your conclusion.

