Qualifying Exam in Numerical Analysis Fall 2023

Time: 1:00 pm - 4:00 pm, Friday, September 8, 2023

	Full Scores	Your Scores
#1	25	
# 2	25	
#3	25	
# 4	25	
# 5	25	
# 6	25	
# 7	25	
# 8	25	
Total	200	

Exam Rules and Instructions

- This is a three-hour, close-book, and close-note exam. No calculators, computers, tablets, and any other electronic devices are allowed. No cheatsheets are allowed.
- There are a total of 10 pages (including this cover page) of the exam.
- You must show all the computational steps for how you get the answers. No credit will be given for unsupported answers.
- All numbers in computational results must be exact, whether written in rational/radical or decimal format. No credit will be given for rounded numbers.

1. (25 points) Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. Consider the linear system Ax = b and the perturbed system $(A + \delta A)\hat{x} = b + \delta b$. Let $\delta x = \hat{x} - x$. Show that

$$\frac{\|\delta x\|_2}{\|\hat{x}\|_2} \le \|A\|_2 \|A^{-1}\|_2 \cdot \left(\frac{\|\delta A\|_2}{\|A\|_2} + \frac{\|\delta b\|_2}{\|A\|_2 \|\hat{x}\|_2}\right).$$

Also show that there exist δA and $\delta b = 0$ such that the above is an equality.

2. (25 points) Let $A = (a_{ij}) \in \mathbb{R}^{m \times n}$. Write an algorithm for computing orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that the product $B := U^T A V$ is an *m*-by-*n* upper bidiagonal matrix, i.e., $B_{ij} = 0$ if either i > j or j > i + 1. 3. (25 points) Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$. Show that the Jacobi iterative method for solving the linear system Ax = b converges for all initial points $x_0 \in \mathbb{R}^n$ if A is strictly row diagonally dominant.

4. (25 points) Let $n \ge 1$ be an integer and $f(x) = x^{n+2}$ for all $x \in [-1, 1]$. Find the best uniform approximation of f in \mathcal{P}_n (the class of real polynomials of degree $\le n$) with respect to the C([-1, 1])-norm. (You need to find an explicit formula of the approximation and justify your answer.)

- 5. (25 points) Let $f \in C^3([0,1])$. Let $n \ge 2$ be an integer and $x_i = i/n$ (i = 0, 1, ..., n). Define $I_n f : [0,1] \to \mathbb{R}$ as follows: on the *i*th interval $[x_{i-1}, x_i]$ $(1 \le i \le n)$, $I_n f$ is the Lagrange interpolation polynomial of degree ≤ 2 that interpolates f at $x_{i-1}, (x_{i-1} + x_i)/2, x_i$. Denote $M_3 = \max_{x \in [0,1]} |f^{(3)}(x)|$.
 - (1) Prove that $I_n f \in C([0,1])$ and that $\max_{x \in [0,1]} |I_n f(x) f(x)| \le \frac{M_3}{6n^3}$.
 - (2) Can you improve the above bound by replacing 1/6 by a smaller number, as smaller as possible?

6. (25 points) Let $n \ge 1$ be an integer, $x_1, \ldots, x_n \in [-1, 1]$ be n distinct points, and w_1, \ldots, w_n be n real numbers. Denote by d_n the degree of precision of the numerical quadrature

$$\int_{-1}^{1} f(x) \, dx \approx \sum_{k=1}^{n} w_k f(x_k).$$

- (1) Prove that $d_n \leq 2n 1$.
- (2) Define $l_k(x) = \prod_{1 \le j \le n, j \ne k} (x x_j) / (x_k x_j)$ (k = 1, ..., n). Assume further that the numbers w_1, \ldots, w_n are given by $w_k = \int_{-1}^1 l_k(x) dx$ $(k = 1, \ldots, n)$. Prove that $d_n \ge n - 1$. (3) Assume further that $\omega_n(x) = (x - x_1) \cdots (x - x_n)$ is an *n*th orthogonal polynomial on [-1, 1],
- i.e., $\int_{-1}^{1} \omega_n(x) q(x) dx = 0$ for any polynomial of q(x) of degree $\leq n-1$. Prove that $d_n = 2n-1$.

7. (25 points) Consider the initial value problem with ODE $\,$

$$y' = f(t, y)$$

and initial value $y(t_0) = y_0$.

- (a) Briefly describe the steps involved to generate the difference formula for the k-step Adams-Bashforth method, where $k \ge 1$.
- (b) Use this to derive the actual difference formula for the 2-step Adams-Bashforth method.

8. (25 points) Consider the Runge-Kutta method with Butcher tableau

$$\begin{array}{c|cccc} 0 & 0 & 0 \\ 1 & 1/2 & 1/2 \\ \hline & 1/2 & 1/2 \end{array}$$

for solving the initial value problem with ODE

$$y' = f(t, y)$$

and initial value $y(t_0) = y_0$. Determine whether this method is A-stable. Be sure to justify your conclusion.