Name:
Student \#:

Some notations and identities you may use

1. $\tau_{y} f(x)=f(x-y), f * g(x)=\int f(x-y) g(y) d y$
2. For $f \in L^{1}\left(\mathbb{R}^{n}, m\right), \hat{f}(\xi)=\int_{\mathbb{R}^{n}} e^{-2 \pi \sqrt{-1}\langle\xi, y\rangle} f(y) d y$
3. m and $d y$ denote the Lebesgue measure, $\check{f}(x)=\hat{f}(-x)$
4. For $\lambda>0, g^{\lambda}(x)=e^{-\pi \lambda|x|^{2}}, \hat{g}^{\lambda}(\xi)=\lambda^{-n / 2} e^{-\pi|\xi|^{2} / \lambda}$
5. You may quote a result from the book or lecture by stating the result clearly or by the name (such as the monotone convergence theorem).

Problem	Points
Page 2	
$(30$ points $)$	
Page 3	
$(10$ points $)$	
Page 4	
(10 points)	
Page 5	
(30 points)	
Page 6	
$(15$ points $)$	
Page 7	
$(15$ points $)$	
Page 8	
$(20$ points $)$	
Total	
$(130$ points $)$	

(1) $(10+10+10 \mathrm{pts})$ TRUE or FALSE: If true, prove it. If false, disprove it. (a) If f is a linear functional of a normed vector space $\mathcal{X}, f^{-1}(0)$ is closed.
(b) In a Hilbert space, if $\left\{x_{n}\right\}$ converges to x weakly and $\left\|x_{n}\right\| \rightarrow\|x\|$, then $\left\{x_{n}\right\}$ converges to x strongly, namely $\left\|x_{n}-x\right\| \rightarrow 0$.
(c) Let $E \subset \mathbb{R}$ be Lebesgue measurable set and assume that there exists $0<\alpha<1$ such that $m(E \cap I) \leq \alpha m(I)$ for all open intervals I. Then, $m(E)=0$.
(2) (3+7) Assume that $\mu(X)<\infty$. Let $\left\{f_{n}\right\}$ be a bounded sequence of complex functions. Assume that $f_{n} \rightarrow f$ uniformly as $n \rightarrow \infty$. Prove that $\int_{X} f_{n} d \mu \rightarrow$ $\int_{X} f d \mu$. Show by an example that the assumption $\mu(X)<\infty$ can not be dropped.
(3) (10 pts) Let $\mathbb{R}_{+}=[0, \infty), f, g \in L^{1}\left(\mathbb{R}_{+}, m\right)$, and consider

$$
h(x)=\int_{0}^{\infty} f(y) g\left(\frac{x}{y}\right) \frac{d y}{y} .
$$

Show that h is well-defined (i.e., $y \rightarrow f(y) g(x / y) / y$ is in $L^{1}\left(\mathbb{R}_{+}, m\right)$) for a.e. $x \in \mathbb{R}_{+}, h \in L^{1}\left(\mathbb{R}_{+}\right)$, and

$$
\|h\|_{L^{1}} \leq\|f\|_{L^{1}}\|g\|_{L^{1}}
$$

Comment: You may use without proof that $g(x / y)$ is Lebesgue measurable on \mathbb{R}_{+}^{2}.
(4) $(7+3+5+15 \mathrm{pts})$ Define the distance function between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ for two points (where x_{i}, y_{i} are real numbers) in the plane to be

$$
\left|y_{1}-y_{2}\right| \text { if } x_{1}=x_{2} ; \quad 1+\left|y_{1}-y_{2}\right| \text { if } x_{1} \neq x_{2} .
$$

(i) Prove that this is indeed a metric.
(ii) The corresponding metric space (X, d) so defined is locally compact.
(iii) For any $f \in C_{c}(X)$, Let F be the set of x such that there exists a y with $f(x, y) \neq 0$. Prove that F is a finite set $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$.
(iv) For f in (iii) define $I(f)=\sum_{i=1}^{n} \int_{-\infty}^{\infty} f\left(x_{i}, y\right) d y$. Then $I(f)$ induces a Radon measure μ on X. Is μ inner regular for all Borel set? If answer is a 'Yes' prove it. if the answer is a 'No' find a Borel set which is not inner regular.
(5) ($8+7 \mathrm{pts}$) Let ℓ^{∞} denote the vector space of sequence of complex numbers $x=$ $\left(x_{1}, x_{2}, \cdots, x_{n}, \cdots\right)$ with $\|x\|_{\infty}:=\sup _{n}\left|x_{n}\right|<\infty$. Define $\phi_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} x_{k}$. Prove that (i) $\phi_{n} \in\left(\ell^{\infty}\right)^{*}$ and $\left\{\phi_{n}\right\}$ has a weak* cluster point ϕ; (ii) ϕ is an element of $\left(\ell^{\infty}\right)^{*}$ which does not arise from an element of ℓ^{1}. Here ℓ^{1} denotes the normed vector space of sequence $x=\left(x_{1}, x_{2}, \cdots, x_{n}, \cdots\right)$ with $\|x\|_{1}=\sum_{k=1}^{\infty}\left|x_{k}\right|$.
(6) (15 pts) Let $1 \leq p<\infty$. Recall that $\lambda_{g}(\alpha)=\mu(\{x| | g(x) \mid>\alpha\})$. Assume that T is a linear operator from L^{p} into $L^{q_{1}}$ and $L^{q_{2}}$ with $1 \leq q_{1}<q_{2}$ such that $\lambda_{T f}(\alpha) \leq\left(C_{1}\|f\|_{p} / \alpha\right)^{q_{1}}$ and $\lambda_{T f}(\alpha) \leq\left(C_{2}\|f\|_{p} / \alpha\right)^{q_{2}}$. Prove that for any $q_{1}<q<q_{2},\|T f\|_{q} \leq C_{q}\|f\|_{p}$. Here C_{q} depends on q, q_{1}, q_{2} and C_{1}, C_{2}.
(7) (20 pts) Let $\Gamma(z)$ be the gamma function which is defined by

$$
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t
$$

for z with $\Re(z)>0$. For a compact support function ϕ prove that for any $0<$ $\alpha<n$

$$
\frac{\Gamma((n-\alpha) / 2)}{\pi^{(n-\alpha) / 2}} \int_{\mathbb{R}^{n}}|x|^{\alpha-n} \hat{\phi}(x) d x=\frac{\Gamma(\alpha / 2)}{\pi^{\alpha / 2}} \int_{\mathbb{R}^{n}}|\xi|^{-\alpha} \phi(\xi) d \xi
$$

The $d x, d \xi$ are all with respect to the Lebesgue measure of the corresponding Euclidean spaces.

Hint: Use the Fourier transform of the Gaussian (on the covering page), the identify $\int \hat{f} g=\int f \hat{g}$ for L^{1} functions and the change of variables for integral in the definition of Γ function.

