41. Summer 2023

Three-hour exam. Do as many questions as you can. Each is worth 4 marks. Please write clear maths and clear English which could be understood by one of your fellow students - pictures aid explanation but should not replace it! Include as much detail as is appropriate; you can use standard results and theorems in your answers provided you refer to them clearly.

1. Let $p: S^{3} \rightarrow S^{2}$ be the Hopf mapping, defined by sending $(Z, W) \in S^{3} \subseteq \mathbb{C}^{2}$ to $Z / W \in \mathbb{C} \cup\{\infty\}$. Show that there does not exist a section, that is a map $s: S^{2} \rightarrow S^{3}$ satisfying $p \circ s=\mathrm{id}_{S^{2}}$.
2. Let X be the space obtained by gluing the boundary of a disc to the curve in the torus shown below. Compute the second homotopy group $\pi_{2}(X)$.

3. Let $F_{2}=\langle a, b\rangle$ be the free group on 2 letters and let S_{3} be the symmetric group. Let K be the kernel of the homomorphism $F_{2} \rightarrow S_{3}$ given by sending $a \mapsto(12), b \mapsto(23)$. To which well-known group is K isomorphic?
4. Let M^{3} be a closed path-connected non-orientable 3-manifold. Show that its Euler characteristic is 0 and that its fundamental group is infinite.
5. Let X be the space obtained from a solid ball B^{3} by identifying pairs of antipodal points on its boundary sphere S^{2}. Decompose X as a CW-complex and compute its homology $H_{*}(X ; \mathbb{Z})$.
6. Let M^{n} be a path-connected closed orientable manifold such that there exists a map $f: S^{n} \rightarrow M$ of degree ± 1. Show that $H^{*}(M ; \mathbb{F})=H^{*}\left(S^{n} ; \mathbb{F}\right)$ whenever \mathbb{F} is a field, and hence that $H^{*}(M ; \mathbb{Z}) \cong$ $H^{*}\left(S^{n} ; \mathbb{Z}\right)$.
7. Let $f: S^{2 n+1} \rightarrow S^{2 n+1}$ be a map satisfying $f(-x)=-f(x)$. Show that the degree of f must be odd.
8. Let $\mathbb{C} P^{2}$ be the complex projective plane with its usual orientation, and $\overline{\mathbb{C}}^{2}$ be the same manifold with the opposite orientation. Let $M^{4}=\mathbb{C} P^{2} \# \overline{\mathbb{C}}^{2}$ be the connect-sum of the two manifolds, obtained by removing an open 4 -ball from each one and identifying the resulting 3spheres so that the result is oriented. By working out the cohomology ring $H^{*}(M ; \mathbb{Z})$, show that M is not homotopy-equivalent to $S^{2} \times S^{2}$.
