42. Fall 2023

Three-hour exam. Do as many questions as you can. Each is worth 4 marks. Please write clear maths and clear English which could be understood by one of your fellow students - pictures aid explanation but should not replace it! Include as much detail as is appropriate; you can use standard results and theorems in your answers provided you refer to them clearly.

1. Suppose that M is a closed connected m-manifold, that N is a closed connected n-manifold, and that M and N are homotopy-equivalent. Show that $m=n$ and that M is orientable if and only if N is orientable. What happens if M and N are merely compact manifolds-with-boundary - that is, they are not necessarily closed?
2. Let X be the space obtained by identifying the faces of a standard cube I^{3} in pairs, as shown below. Compute the integral homology groups $H_{*}(X ; \mathbb{Z})$.

3. The torus T, the Klein bottle K and the connect-sum $C=\mathbb{R} P^{2} \# \mathbb{R} P^{2}$ all have isomorphic mod-2 homology groups. Compute the intersection forms (on the first homology with mod-2 coefficients) of these three spaces; to what extent are they distinguishable using these intersection forms?
4. Show that a map $f: S^{n} \rightarrow S^{n}$ which has no fixed points must be homotopic to the antipodal map. Use this to deduce that a non-trivial finite group acting freely on $S^{2 n}$ must be isomorphic to \mathbb{Z}_{2}.
5. Let K be the Klein bottle. Compute the homology groups $H_{*}(K \times K ; \mathbb{Z})$ and cohomology groups $H^{*}(K \times K ; \mathbb{Z})$ (you don't need to work out the ring structure on the cohomology).
6. Show that for any $n \geq 1$ the natural quotient map $S^{n} \rightarrow \mathbb{R} P^{n}$ is not null-homotopic.
7. Suppose that $S^{3}=M \cup_{\Sigma} N$ is a decomposition of the 3 -sphere into two compact 3-manifolds-with-boundary, glued along their common boundary surface Σ. Prove that $H^{1}(N ; \mathbb{Z}) \cong H_{1}(M ; \mathbb{Z})$. Let X be the compact 3 -manifold-with-boundary obtained by removing the interior of a small ball from $\mathbb{R} P^{3}$. Conclude that X cannot be embedded in S^{3}.
8. Let G be a finite group of order d acting freely on a space X, so that we have a covering map $\pi: X \rightarrow Y=X / G$. By lifting singular simplexes, construct a chain map $\tau_{*}: C_{*}(Y ; \mathbb{Z}) \rightarrow C_{*}(X ; \mathbb{Z})$ such that the composite

$$
C_{*}(Y ; \mathbb{Z}) \xrightarrow{\tau_{*}} \mathbb{C}_{*}(X ; \mathbb{Z}) \xrightarrow{\pi_{*}} C_{*}(Y ; \mathbb{Z})
$$

is multiplication by d. Use this to show that we can identify the rational homology of Y with the G-invariant subspace of the rational homology of X :

$$
H_{*}(Y ; \mathbb{Q}) \cong H_{*}(X ; \mathbb{Q})^{G}
$$

