QUALIFYING EXAMS

September 9 2020
5PM-8PM (Pacific Time)

Three-hour exam. Do as many questions as you can. **No book or notes allowed.** Each is worth 4 marks. Please write clear maths and clear English which could be understood by one of your fellow students! Include as much detail as is appropriate; you can use standard results and theorems in your answers provided you refer to them clearly. **Even if you can not solve the whole problem, you still need to write your partial answer to receive partial credit.**

1. Show that there does not exist a continuous map \(f : S^1 \times S^1 \to S^1 \) that satisfies both of the following conditions:
 - \(f(x, x) = x \) for any \(x \in S^1 \);
 - \(f(x, y) = f(y, x) \) for any \(x, y \in S^1 \).

2. Let \(X \) be a path connected CW complex whose fundamental group is finite. Show that any continuous map \(f : X \to T^n \) is null homotopic. (Here \(T^n = S^1 \times \cdots \times S^1 \) is the n-dimensional torus.)

3. Compute the homology group \(H_k(\mathbb{R}P^2 \times \mathbb{R}P^2; \mathbb{Z}) \) for all \(k \geq 0 \). (You need to show your computation of \(H_k(\mathbb{R}P^2; \mathbb{Z}) \).)

4. For \(n \geq 1 \), show that one can not cover the complex projective space \(\mathbb{C}P^n \) by \(n \) open subsets \(U_1, U_2, \cdots, U_n \) such that each \(U_i \) is contractible. (You may assume the ring structure of \(H^*(\mathbb{C}P^n; \mathbb{Z}) \).)

5. For \(n \geq 1 \), take a point \(p \in S^n \) and consider the following subspace of \(S^n \times S^n \)
 \[A = \{(x, y) \in S^n \times S^n \mid x = p \text{ or } y = p \}. \]
 Show that there does not exist a retraction of \(S^n \times S^n \) to \(A \). (Namely, show that there does not exist a continuous map \(r : S^n \times S^n \to A \) that fixes \(A \) pointwisely.)

6. Let \(M, N \) be two connected, closed, oriented \(n \)-dimensional manifolds \((n \geq 1)\). Consider a continuous map \(f : M \to N \) that has nonzero mapping degree. Show that the induced map \(f^* : H^k(N; \mathbb{Q}) \to H^k(M; \mathbb{Q}) \) is injective for any \(k \). (Recall: the mapping degree of \(f \) equals \(d \) if \(f_*[M] = d[N] \), where \([M], [N] \) denote the fundamental classes.)

7. Let \(M \) be a closed, orientable \(n \)-dimensional manifold with **nonzero Euler characteristic**. Consider the map \(f : M \times M \to M \times M \) defined by \(f(x, y) = (y, x) \) for any \(x, y \in M \). Show that any map \(g : M \times M \to M \times M \) that is **homotopic** to \(f \) has a fixed point.

8. Let \(X \) be a connected CW complex such that \(\pi_1(X) \) is a nontrivial finite group and \(\pi_k(X) = 0 \) for any \(k \geq 2 \). Show that \(X \) can not be a finite CW complex. (Namely, \(X \) must have infinitely many cells.) **Hint:** Compute the Euler characteristic of the universal covering space.