
COMBINATORIAL REPRESENTATION THEORY

ROHAN PUTHUKUDY

Abstract. In this paper, we explore representation theory from a combinatorial perspec-
tive. In particular, we first review basic concepts from representation theory and then use
these to develop an understanding of the representations of certain objects that have a com-
binatorial flavor to them. More specifically, we will determine the representations of the
symmetric group Sn.
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1. Basics of Representation Theory

1.1. Representations and Modules.

Our focus will be towards representations of finite groups as we will later apply this theory
to the case of the symmetric group on n letters, which we denote bySn. As mentioned earlier,
representations allow us to view algebraic structures, like groups, under a more concrete lens.
Namely, we can view their elements as linear transformations of a vector space. This act of
“viewing” is captured formally in the following.

Definition 1.1. Suppose G is a finite group and V is a vector space over the field C. Then
a linear representation of G in V is a homomorphism

ρ : G→ GL(V )

Moreover, we say that V is a representation space of G or G-module and together they form
a representation, (ρ, V ).

Note that because group homomorphisms from G to GL(V ) and linear group actions of
G on V are in one-to-one correspondence, we can define G-modules in general, to be vectors
spaces over the field C that are acted on by G linearly.

1



2 ROHAN PUTHUKUDY

Although we present representations as a tuple containing both the linear map and the
G-module, we may abuse the term representation to refer either one of its components
individually. This is because each component uniquely determines the other due to the
general definition of G-modules.

In the above definition, GL(V ) denotes the general linear group or set of linear trans-
formations of V . In the course of this paper, we will assume that V is finite-dimensional.
This is a useful assumption as in this case, each element of GL(V ) can be expressed as an
invertible n × n matrix with complex entries, where n = dim(V ). Linear representations
with this view of GL(V ) are called matrix representations. Moreover, we say that the degree
of the representation, denoted deg V , is n.

Definition 1.2. Let G be a finite group. Suppose ϕ and ψ are linear representations of G
with corresponding representation spaces V and W . Then ϕ and ψ are isomorphic, denoted
ϕ ∼= ψ, if there exists a linear isomorphism τ : V → W that satisfies

τ ◦ ϕ(g) = ψ(g) ◦ τ
for all g ∈ G.

Note that if ϕ ∼= ψ as defined above, then clearly V ∼= W as vector spaces. However,
the other direction does not necessarily hold. This is because G-modules have additional
structure beyond being vector spaces. So when we discuss the isomorphism of G-modules, we
need to ensure a kind of compatibility between their G-actions. We will formally specify this
when G-homomorphisms are introduced in the next section. Before we proceed, however,
we will first discuss a few important examples of representations.

Example 1.2.1 (Trivial Representation). Let V be any 1-dimensional vector space over C.
For example, take V = C. Now let G be any finite group. Then let us define 1G : G→ GL(V )
as the map 1G(g) := idV for every g ∈ G.

It follows that this is a linear representation of degree 1 and we refer to it as the trivial rep-
resentation of G. Note that such a representation exists for any finite group and corresponds
to trivially viewing the elements of the group as elements of C, hence the name. □

As we see in the following example, there are also non-trivial representations of degree 1.

Example 1.2.2 (Sign Representation). Let G = Sn and V be a 1-dimensional vector space
over C, such as C. Note that GL(V ) ∼= C. So the sign map, sgn: Sn → C, constitutes a
linear representation of Sn.
To see why, first recall that if π ∈ Sn, then sgn(π) := (−1)k where π can be decomposed

into k transpositions. Note that sgn is well-defined and so it follows that it is indeed a
homomorphism.

Thus sgn is a degree 1 linear representation ofSn, which we call the sign representation □

These two representations will be used later when we discuss characters and character
tables.

Example 1.2.3 (Regular Representation). Let G be any finite group and suppose that
k = |G|. Then let V be a k-dimensional vector space over C and let (vg)g∈G be a basis of V ,
indexed by the elements of G. Then we can construct a linear representation ρ : G→ GL(V )
as ρ(g) := ρg ∈ GL(V ) for each g ∈ G. It now suffices to define ρg for each g.
Let us fix some g ∈ G. Then note that because ρg ∈ GL(V ), it suffices to define ρg’s

behavior on each vh. In particular, we define ρg(vh) := vgh.
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Hence ρ is a degree k linear representation of G, which we call the regular representation.
□

Notice that in defining the regular representation, we used the multiplicative structure of
the group to permute the basis vectors of V . This is strongly connected to the fact that left
multiplication by a fixed element of a group constitutes a group action of the group on itself,
leading to the following generalization.

Example 1.2.4 (Permutation Representation). Let G be any finite group. Moreover, let
X be a finite set with k = |X|, such that G acts on X via the action g · x. Now let V be
a k-dimensional vector space over C and let (vx)x∈X be a basis of V indexed by X. Then
we construct the linear representation ρ : G → GL(V ) as ρ(g) := ρg for each g ∈ G. It now
suffices to define ρg for each g.

Let us fix g ∈ G. Then recall that it suffices to define ρg’s behavior on each basis vector
vx. In particular, we define ρg(vx) := vg·x.

Hence ρ is a degree k linear representation of G that generalizes the regular representation,
and we call it the permutation representation. □

Earlier we mentioned how we can equivalently view representations as either linear repre-
sentations or as the spaces themselves. This raises a question concerning the substructure
of representations. Since our representation spaces aren’t just vector spaces, but are also
associated with a homomorphism that maps the group to automorphisms of our space (i.e.,
the associated linear representation), do vector subspaces constitute “subrepresentations”?
As our intuition may tell us, being a vector subspace of a representation is not sufficient to
constitute a representation space, but instead we also require the notion of G-invariance.

Definition 1.3. Suppose ρ : G → GL(V ) is a linear representation and W is a subspace of
V . Then we say that W is a subrepresentation (space) if it is G-invariant.

We say that W is G-invariant if it is invariant under the action of G, where the action is
specified by ρ. Concretely, W is G-invariant if for all w ∈ W , we have ρ(g)(w) ∈ W holds
for all g ∈ G.

In this setting, the restriction of ρ(g) to W , ρ(g)W , belongs to GL(W ) and ρ(gh)W =
ρ(g)W · ρ(h)W . So ρW : G → GL(W ) is a linear representation of G in W making the term
“subrepresentation” meaningful.

Example 1.3.1 (Trivial Subrepresentation). Let (ρ, V ) be a representation of a finite group
G. Then consider the following subspace of V .

W := {v ∈ V | ρ(g)(v) = v,∀g ∈ G}
Note that W is a subrepresentation of V because it is G-invariant, by definition. More
explicitly, let us fix some g ∈ G and w ∈ W . Then we have ρ(g)(w) = w ∈ W . Hence W is
G-invariant.

Now before we proceed we will recall some important constructions from linear algebra.

Definition 1.4. If we are given two vector spaces, say V1 and V2, then we can form a new
vector space called their direct sum, defined as

V = V1 ⊕ V2 := {(v1,v2) | v1 ∈ V1,v2 ∈ V2}
Moreover, we have a mapping that sends every vector v ∈ V to its component v1 ∈ V1. This
mapping is called the projection of V onto V1. Importantly, the kernel of this map is V2.
There exists a similar projection onto V2.
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This construction lifts itself to representations in a natural way. For G-modules, V1 and V2,
their direct sum is also a G-module by defining our G-action component-wise. In particular,
if (v1, v2) ∈ V1 ⊕ V2 and g ∈ G, then our action is defined to be

g · (v1, v2) := (g · v1, g · v2)

Hence, the direct sum, V1 ⊕ V2, is also a G-module when V1 and V2 are G-modules. In this
case, we say that V1 and V2 are complements.
Additionally, this G-module also has an associated linear representation. This is because

every group action induces a homomorphism from the group to the group of transforma-
tions on the object acted upon. In this context, our group action from before induces a
homomorphism ρ : G→ GL(V1 ⊕ V2). This is a linear representation by definition.
This notion of a direct sum will prove pivotal in our study of representations. As we will

see later, we can decompose any representation into a direct sum of finitely many subrepre-
sentations, much like how we can factor positive integers into products of prime numbers.
Before we can even state this result however, we will begin with a more modest claim.
Namely, we see that we can split any representation into a direct sum if provided with a
subrepresentation.

Theorem 1.5. Suppose ρ : G→ GL(V ) is a linear representation and letW be a G-invariant
subspace of V . Then there exists a complement W 0 of W in V which is also G-invariant.

Proof. There are actually two approaches to this proof. We will present one way involving
averaging a projection map, but we remark that there is an alternate approach that uses a
Hermitian inner product on V to construct an orthogonal complement of V .
We begin with an arbitrary complement 1, W ′, of W in V . Associated with this comple-

ment, is a projection π : V → W . Consider the following averaged map.

π0 :=
1

|G|
∑
g∈G

ρ(g) ◦ π ◦ ρ(g)−1

First we note that π0 is in fact a projection of V onto W . This is because ρ(g) preserves W
for all g ∈ G by G-invariance and π is a projection. In particular, we have that π ◦ ρ(g)−1 =
ρ(g)−1 for all g ∈ G, giving us (ρ(g) ◦ π ◦ ρ(g)−1)(w) = (ρ(g) ◦ ρ(g)−1)(w) = w for all g ∈ G
and w ∈ W .

Since π0 is a projection, it induces a complement, say W 0, of W in V . Now it suffices for
us to show that W 0 is G-invariant. To this end, let w ∈ W 0 and h ∈ G. We then want
to show that ρ(h)(w) ∈ W 0. Recall that W 0 = kerπ0. This means if suffices to show that
π0(ρ(h)(w)) = 0. It also tells us that π0(w) = 0. Before we use this fact, note that we have

1Recall from linear algebra that we can always construct a complement given any subspace and parent
vector space through a recursive selection of linearly independent vectors until their span is a complement.
An alternate argument using Zorn’s lemma exists when we lack finite dimensionality, but we assume finite-
dimensionality in this paper.
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the following property of π0 because any element of G permutes the rest of the group.

ρ(h) ◦ π0 ◦ ρ(h)−1 =
1

|G|
∑
g∈G

ρ(h) ◦ ρ(g) ◦ π ◦ ρ(g)−1 ◦ ρ(h)−1

=
1

|G|
∑
g∈G

ρ(hg) ◦ π ◦ ρ(hg)−1

=
1

|G|
∑
k∈G

ρ(k) ◦ π ◦ ρ(k)−1

= π0

This gives us our desired equality as follows.

(π0 ◦ ρ(h))(w) = (ρ(h) ◦ π0)(w) = ρ(h)(w) = 0

Hence W 0 is a G-invariant complement of W in V and we are finished. □

1.2. Reducibility and Schur’s Lemma.

We will now work towards the result mentioned earlier. We begin by defining our “building
blocks” for representations.

Definition 1.6. Let ρ : G → GL(V ) be a linear representation. Then we say that it is
irreducible if V is not 0 and the only G-invariant subspaces of V are 0 and V itself.

Example 1.6.1. Let V be a 1-dimensional representation. Then it is trivially irreducible
as its only subspaces, let alone submodules, are 0 and V itself.

Note that by Theorem 2.5, a G-module, V , is irreducible precisely when it cannot be
written as a direct sum of subrepresentations. This leads us to our first major result in the
representation theory of finite groups.

Theorem 1.7 (Maschke’s Theorem). Every representation is the direct sum of irreducible
representations.

Proof. Let ρ : G→ GL(V ) be a linear representation of a finite group G and let n = dim(V ).
We will prove the theorem via induction on n.

Base Case: Let n = 1. Then V is trivially irreducible as the only subspaces, let alone
G-invariant subspaces, of V are 0 and V itself. So we are finished as V = W1 ⊕ · · · ⊕Wk

with k = 1 and W1 = V .
Induction Step: Suppose that the theorem holds for all G-modules of dimension less than

n. Now it suffices to show that it holds for an arbitrary G-module of dimension n. Let V be
such a G-module as above. Then if V is itself irreducible, then we are finished. So suppose
that V is not irreducible. This implies that there exists some subrepresentation W of V that
is not 0, nor V . So by Theorem 2.5, we have that V = W ⊕W 0. Moreover, we have that
0 < dimW, dimW 0 < n. So by the inductive hypothesis, there exists irreducible G-modules
W1, . . . ,Wk,W

′
1, . . . ,W

′
ℓ such that W = W1 ⊕ · · · ⊕Wk and W 0 = W ′

1 ⊕ · · · ⊕W ′
ℓ. Hence we

obtain

V = W1 ⊕ · · · ⊕Wk ⊕W ′
1 ⊕ · · · ⊕W ′

ℓ

so V is the direct sum of irreducible representations of G. □
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This is a crucial result in the study of representations as the task of understanding all
the representations of a given group can now be simplified into understanding all of its
irreducible representations. This is considerably simpler for two reasons. First, irreducible
representations are more specific due to their property of being irreducible. Second, every
group has finitely many irreducible representations.

We remark that this result holds due to some of our underlying assumptions. Namely,
that our groups are finite and our vector spaces are over C. This result can be generalized
to a broader scope, but it does not hold in full generality.

A natural question that may arise now is “Is this decomposition unique?” We will see
that the answer to this is indeed yes2, but in order to answer this question, we will finally
formally define what it means for two G-modules to be isomorphic.

Definition 1.8. Let V andW be representations of a finite groupG. Then aG-homomorphism
is a linear transformation θ : V → W such that

θ(g · v) = g · θ(v)
for all g ∈ G and v ∈ V . Moreover, we say that θ is a G-isomorphism if it is bijective and
can then write V ∼= W .

Now that we have defined isomorphisms of representations, we present the following result
which helps us better understand when two representations are isomorphic.

Lemma 1.9 (Schur’s Lemma). Let V and W be two irreducible representations of a finite
group G. If θ : V → W is a G-homomorphism, then either

(1) θ is a G-isomorphism
(2) θ is the zero map

This is a crucial result because it provides us with uniqueness (up to isomorphism and
with multiplicity) for the decompositions obtained via Maschke’s Theorem (Theorem 2.7).
More specifically, given a G-module V , there exists distinct, irreducible G-modules V1, . . . , Vk
and multiplicities m1, . . . ,mk such that V = V ⊕m1

1 ⊕ · · · ⊕ V ⊕mk
k and this decomposition is

unique. With that said, the proof of Schur’s lemma is as follows.

Proof. Let V and W be irreducible G-modules and let θ : V → W be a G-homomorphism.
We will first argue that ker θ is a submodule of V and Im θ is a submodule of W . This is
sufficient to show our claim, as the irreducibility of V and W means that this implies that
ker θ is either 0 or V . So θ is either the zero map or injective. Similarly, we have that Im θ
is either 0 or W . So θ is either the zero map or surjective. Combining these, we obtain that
θ is either the zero map or an isomorphism.

We will begin by showing that ker θ is a submodule of V . Note that it is a subspace as
θ is a linear transformation, so it suffices to show that it is G-invariant. To that end, let
v ∈ ker θ. Then for all g ∈ G, we have θ(g · v)) = g · (θ(v)) = g · 0 = 0. Hence g · v ∈ ker θ.
So ker θ is indeed a submodule of V .

Now we will consider Im θ. Let w ∈ Im θ and g ∈ G. Let us pick some v ∈ V such that
w = θ(v). Then by the definition of G-homomorphisms, we have

g ·w = g · θ(v) = θ(g · v) ∈ Im θ

2The decompositions are not unique in a strict sense, but they are unique up to isomorphism and with
certain multiplicities.
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Hence Im θ is G-invariant and thus a submodule of W as it is clearly also a subspace of
W . □

1.3. Characters.
As we now understand that representations have unique decompositions into irreducible
parts, we would like to be able to find these decompositions when given a representation.
More specifically, if we are given a G-module, V , we would like to determine the distinct
irreducible subrepresentationsW1, . . . ,Wk of V such that V = W⊕m1

1 ⊕· · ·⊕W⊕mk
k . In order

to do this, we will need to develop tools to answer the following questions.

• How many distinct irreducible subrepresentations appear in a given representation’s
decomposition? (Determine k)

• Can we develop a criterion for determining if a subrepresentation is irreducible?
(Determine W1, . . . ,Wk)

• If we are given a representation, say V , and one of its irreducible subrepresentations,
say W , how many times does W occur in V ? (Determine m1, . . . ,mk)

In order to answer these questions, we will shift our focus towards the trace of linear
representations, as we will see that this characterizes a representation up to isomorphism
and the theory of these so-called characters will contain our the tools to answer our desired
questions.

First, we recall the notion of a trace from linear algebra.

Definition 1.10. Let V be a finite dimensional vector space over C and a : V → V be
a linear transformation with matrix form (aij). Then we define the trace of a to be the
following.

Tr(a) :=
∑
i

aii

In addition to this definition, we can also view the Tr(a) as the sum of the eigenvalues of
a, due to the existence of the Jordan canonical form.

Now recall that we assume that our G-modules are finite dimensional so we can extend
the notion of trace to linear representations, motivating the following definition.

Definition 1.11. Let ρ : G → GL(V ) be a linear representation. Then we define the char-
acter of ρ to be the function χρ : G→ C defined by

χρ(g) := Tr(ρ(g))

for each g ∈ G.

Alongside this definition, we let characters inherit much of the terminology from their
associated representation. I.e., irreducible characters are characters of irreducible represen-
tations.

Immediately from this definition, we already obtain some important properties of charac-
ters.

Proposition 1.12. Let V be a representation of a finite group G, of degree n and with
character χ. Then

(1) χ(ϵ) = n.

(2) χ(g−1) = χ(g).
(3) χ(hgh−1) = χ(g).
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(4) If K is a conjugacy class of G, then

g, h ∈ K =⇒ χ(g) = χ(h)

where z is the complex conjugate of z ∈ C.

Proof. Let V be a G-module with character χ, where dimV = n. Moreover, let ρ : G →
GL(V ) be the linear representation associated with V .

(1) Note that ρ(ϵ)(v) = v for all v ∈ V , so the matrix form of ρ(ϵ) is the identity matrix
In. It follows from this that χ(ϵ) = Tr(In) = n.

(2) Let g ∈ G and let us denote ρ(g) as ρg. Note that ρg has finite order because g has
finite order. Thus, so do its eigenvalues, λ1, . . . , λn. Hence, they must be roots of
unity, implying that 1 = |λi| = λiλi. So we have

χ(g) = Tr(ρg) =
∑

λi =
∑

λ−1
i = Tr(ρ−1

g ) = Tr(ρg−1) = χ(g−1)

(3) We have this property due to the fact that ρ(h−1) = ρ(h)−1 and Tr(AB) = Tr(BA)
as follows.

χ(hgh−1) = Tr(ρ(h)ρ(g)ρ(h)−1) = Tr(ρ(g)) = χ(g)

(4) This follows from part (3).

□

Property (4) is can be generalized to arbitrary functions on groups as illustrated in the
following definition.

Definition 1.13. A class function on a group G is a function f : G → C that is constant
over conjugacy classes. I.e., g ≡ h =⇒ f(g) = f(h). We denote the set of all class functions
on G by R(G) and note that this is actually a vector space over C with dimension equal to
the number of conjugacy classes of G.

Since characters are class functions and finite groups have finitely many conjugacy classes,
we can completely describe a character by its value on each conjugacy class. We typically
depict this information in a tabular format, ranging over every irreducible character of a
group.

Definition 1.14. Let G be a group. Then the character table of G is a table containing the
values of each irreducible character of G’s value on each of G’s conjugacy classes, denoted
χK where χ is an irreducible character and K is a conjugacy class of G.

. . . K . . .
...

...
χ . . . χK . . .
...

...

Computing character tables by hand is indeed possible, see Sagan. There are also com-
putational techniques for determining the character tables for small size groups (they also
work for large groups, but will take longer).

Example 1.14.1. Here we use GAP to compute the character table of S3. GAP contains
a character table library (ctbllib) which can compute irreducible character tables using the
Dixon-Schneider algorithm.
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gap> LoadPackage("ctbllib");

true

gap> S3:= SymmetricGroup (3);; SetName(S3, "S3");

gap> Irr(CharacterTable(S3));

[ Character( CharacterTable( S3 ), [ 1, -1, 1 ] ),

Character( CharacterTable( S3 ), [ 2, 0, -1 ] ),

Character( CharacterTable( S3 ), [ 1, 1, 1 ] ) ]

This tell us that the character table of S3 is

K1 K2 K3

χ1 1 -1 1
χ2 1 1 1
χ3 2 0 -1

Remark: When displaying the character table, observe that GAP does not tell us which
conjugacy classes each of the characters’ values corresponds to. This is because in performing
this computation, GAP does not necessarily determine conjugacy classes explicitly. However,
we can ask GAP for the conjugacy classes of a group as follows.

gap> ConjugacyClasses(S3);

[ ()^G, (1 ,2)^G, (1,2,3)^G ]

Note: the order of these conjugacy classes does not necessarily correspond to their order
in the character table from earlier. However, the values of the character table uniquely
determine both the characters themselves, as well as which conjugacy class corresponds to
each Ki for each i.
In particular, we have that χ2 is the trivial representation (Example 2.2.1), χ1 is the sign

representation and χ3 is the regular representation.

In the above example and in the definition of character tables, we focused on irreducible
characters. It turns out we can use Maschke’s theorem to determine the character of a
reducible representation because the characters of direct sums behave naturally.

Proposition 1.15. Let G be a finite group with representations V1 and V2, and let χ1 and
χ2 be their respective characters. Then

(1) The character χ of the direct sum V1 ⊕ V2 is equal to χ1 + χ2.
(2) The character χ of the tensor product V1 ⊗ V2 is equal to χ1 · χ2.

Proof. Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be two finite dimensional linear represen-
tations of G. Since ρ1 and ρ2 are finite dimensional, for each g ∈ G, we can associate ρi(g)
with a matrix M g

i .

(1) Note we have that the representation ρ1⊕ ρ2 is associated with the following matrix,
for each g ∈ G. [

M g
1 0
0 M g

2

]



10 ROHAN PUTHUKUDY

From this, we directly obtain

χ(g) = Tr((ρ1 ⊕ ρ2)(g))

= Tr(M g
1 ) + Tr(M g

2 )

= Tr(ρ1(g)) + Tr(ρ2(g))

= χ1(g) + χ2(g)

(2) By definition we have that

χ1(g) =
∑
i

mg
1,i and χ2(g) =

∑
i

mg
2,i

where mg
j,k denotes the k-th diagonal entry of M g

j . Then we have

χ(g) =
∑
i,j

mg
1,i ·m

g
2,j = χ1(g) · χ2(g)

from the definition of tensor products.

□

We will now define an inner and scalar product for class functions and see that they are
actually equivalent when we restrict to characters. This product will be important as it
will be used to define a criterion for the irreducibility of characters and consequently of
representations.

Definition 1.16. Let G be a finite group. We define the inner product of R(G) to be

⟨ϕ, ψ⟩ := 1

|G|
∑
g∈G

ϕ(g)ψ(g−1)

where ϕ, ψ ∈ R(G).

Note that we have ⟨ϕ, ψ⟩ = ⟨ψ, ϕ⟩ and this product is linear in both ϕ and ψ. This product
is equivalent to the following orthogonality relation for characters.

Definition 1.17. Let G be a finite group. We can then define the following scalar product
of R(G).

(ϕ|ψ) := 1

|G|
∑
g∈G

ϕ(g)ψ(g)

where ϕ, ψ ∈ R(G).

The equivalence of ⟨ϕ, ψ⟩ and (ϕ|ψ) comes from Proposition 2.12 part (2). Namely, that

ψ(g−1) = ψ(g) when ψ is a character.

Proposition 1.18. Let G be a finite group and ϕ, ψ ∈ R(G). Then let ψ̂ be defined by

ψ̂(g) = ψ(g−1). Then we have

(ϕ|ψ) = 1

|G|
∑
g∈G

ϕ(g)ψ̂(g−1) = ⟨ϕ, ψ̂⟩

Proof. □
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In particular, if ϕ and ψ are characters, then we have ψ = ψ̂ by Proposition 2.12. So it
follows that ⟨ϕ, ψ⟩ = (ϕ|ψ) in this setting.
Before we proceed, we will present an important corollary of Schur’s lemma in the context

of character theory.

Corollary 1.19. Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be two linear representations
of a group G, let h be a linear mapping of V1 into V2, and

h0 :=
1

|G|
∑
g∈G

ρ2(g)
−1hρ1(g)

Then we have

(1) If ρ1 ̸≃ ρ2, then h
0 = 0

(2) If ρ1 ≃ ρ2, then h
0 = (1/ dim(V1))Tr(h)id.

Proof. Note that ρ2(s)h
0 = h0ρ1(s) for any s ∈ G as

ρ2(s)
−1h0ρ1(s) =

1

|G|
∑
g∈G

ρ2(s)
−1ρ2(g)

−1hρ1(g)ρ1(s)

=
1

|G|
∑
g∈G

ρ2(gs)
−1hρ1(gs)

= h0

By Schur’s lemma applied to h0, if ρ1 ̸≃ ρ2, then h0 must be the zero map. Otherwise, it
will have to be some scalar multiple of the identity, say λ. In this latter case, we have

Tr(h0) =
1

|G|
∑
g∈G

Tr(ρ−1
2 hρ1) = Tr(h)

Note that Tr(λIn) = n · λ, so we obtain λ = 1
n
Tr(h), where n = dim(V1). □

Now we can use this corollary to prove that our scalar product (ϕ|ψ) is indeed an orthog-
onality relation for characters.

Lemma 1.20. Let ϕ and ψ be irreducible characters of a finite group G. Then

(ϕ|ψ) = δϕ,ψ

Proof. Let ϕ and ψ be two irreducible characters of a finite group G. First suppose that they
are equal and our underlying representation is associated to the matrix M g with entries mi,j

for each g ∈ G. Then we have ϕ(g) = ψ(g) =
∑

imi,i(g). This implies that

(ϕ|ψ) = (ϕ|ϕ) = ⟨ϕ, ϕ⟩ =
∑
i,j

⟨mi,i,mj,j⟩

By Corollary 2.19, with the linear representations being replaced by their matrix forms, we
have that ⟨mi,i,mj,j⟩ = δi,j/n where n is the degree of the representation associated with ϕ.
So we have

(ϕ|ψ) = (ϕ|ϕ) = 1

In the case where ϕ and ψ are not equal, we can apply Corollary 2.19 in a similar way to
obtain that (ϕ|ψ) = 0, completing the proof. □
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We can now use what we have developed in character theory to answer one of our repre-
sentation theory questions. In particular, we are now able to determine the “multiplicities”
of irreducible subrepresentations in the decompostions given by Maschke’s theorem.

Lemma 1.21. Let V be a representation of a finite group G, with character ϕ. Suppose that
V decomposes into the following direct sum of irreducible representations.

V = W1 ⊕ · · · ⊕Wk

Moreover, let W be an irreducible representation of G with character χ. Then the number of
Wi’s that are isomorphic to W is equal to (ϕ|χ). We call this number “the number of times
that W occurs in V ”

Proof. Note that
ϕ = χ1 + · · ·+ χk

by Proposition 2.15. Thus we have (ϕ|χ) = (χ1|χ) + · · · + (χk|χ). Finally, by the previous
lemma, we know that (χi|χ) = 1 precisely when Wi ≃ W . □

This lemma helps justify the name of characters for these class functions as we can now
prove that they do indeed characterize representations.

Corollary 1.22. Two representations with the same character are isomorphic

Proof. By Lemma 2.21, we know that if two representations have the same character, then
they contain the same number of copies of W , for all irreducible representations W . Hence,
they must have the same decomposition, up to isomorphism, and thus are isomorphic. □

Finally, we obtain the following irreducibility criterion for representations.

Corollary 1.23. Let V be a representation of a finite group G, with character χ. Then V
is irreducible if and only if (χ|χ) = 1.

Proof. Suppose V = a1W1 ⊕ . . . akWk, where the Wi are irreducible subrepresentations with
characters χi. Then we have χ =

∑
i aiχi. Recall from Lemma 2.21 that ai = (χ|χi). This

implies

(χ|χ) =
∑
i

m2
i

Note that this is only equal to 1 in the case that one of the mi’s equals 1 and all the
others equal 0. In other words, (χ|χ) = 1 precisely when V ≃ Wi for some i and is thus
irreducible. □

2. The Symmetric Group

We will now begin the combinatorial part of this paper, by focusing our attention on
the symmetric group. Specifically, we want to fully understand the representations of the
symmetric group. As we have seen through Maschke’s Theorem (Theorem 2.7) and character
theory, this amounts to understanding the irreducible representations of Sn.

Recall that the number of irreducible representations is precisely the number of conjugacy
classes of the group. Moreover, for Sn this is just the number of partitions of n. This
observation motivates the approach that we take in this chapter. Specifically, we will try to
associate an irreducible representation of Sn with each partition of n. To do this, we will
first construct subgroups for each partition and then construct a representation of Sn from
one on each of these subgroups.
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2.1. Young Tableaux, Subgroups, and Tabloids.

We begin by recalling the definition of a partition of an integer.

Definition 2.1. Suppose λ = (λ1, . . . , λk) ∈ Nk satisfies λ1+ · · ·+λk = n and λ1 ≥ · · · ≥ λk,
then we say that λ is a partition of n, written λ ⊢ n. Moreover, we use the notation
|λ| :=

∑k
i=1 λi.

Example 2.1.1. Let n = 3. Then all of the partitions of n are listed here:

• n = 1 + 1 + 1 =⇒ (1, 1, 1) ⊢ n
• n = 2 + 1 =⇒ (2, 1) ⊢ n
• n = 3 =⇒ (3) ⊢ n

Note that in general, we have that (n) ⊢ n and (1n) := (1, . . . , 1) ⊢ n where we use (an) to
denote the tuple of n copies of a.

There is a nice way to visualize each of these partitions called a Young diagram.

Definition 2.2. Suppose λ = (λ1, . . . , λk) ⊢ n. Then the Young diagram, or shape, of λ is
an array of boxes with k left-justified rows each containing λi boxes for 1 ≤ i ≤ k.

Example 2.2.1. Let n = 3 as in Example 3.1.1. Then the Young diagrams associated with
the partitions from earlier are below in the same order.

, ,

As mentioned earlier, we want to associate a subgroup of Sn with each of these partitions.
We typically view Sn as the group of permutations of a set of n elements. This motivates
the notation SA := S|A| for sets A.

Since a partition of n corresponds to a splitting of this implicit set, it is naturally associated
to the following subgroup of Sn

Definition 2.3. Suppose λ = (λ1, . . . , λk) ⊢ n. Then we define the Young subgroup of Sn,
associated with λ, to be the following.

Sλ := S{1,...,λ1} ×S{λ1+1,...,λ1+λ2} × · · · ×S{n−λk+1,...,n}

Note that

Sλ ∼= Sλ1 × · · · ×Sλk

Now that we have defined this subgroup, we will construct a representation of Sn asso-
ciated with this partition. In representation theoretic-terms, we will be inducting on the
trivial representation of Sλ to obtain a representation of Sn. However, here we present this
from a combinatorial perspective by directly defining this representation from a partition.

First, we define a class of objects that are obtained from a given partition that will be
used to generate our representation.

Definition 2.4. Suppose λ ⊢ n. Then we define a Young tableau of shape λ, or a λ-tableau,
to be a Young diagram where the numbers 1, . . . , n are written into the boxes bijectively.
Moreover we denote one as tλ where ti,j is the entry of t in position (i, j).
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Example 2.4.1. Let λ = (3, 1) ⊢ 4 = n. Then there are n! = 4! = 24 total Young tableaux
of shape λ = (3, 1). Here are a few.

t1 =
1 2 3

4
, t2 =

3 1 2

4
, t3 =

4 2 3

1

Note that in the above example, t1 and t2 have the same rows, just with their entries
permuted within them. Viewing tableaux in this way actually constitutes an equivalence
relation, leading us to the following definition.

Definition 2.5. Two λ-tableau, t1 and t2, are row-equivalent, denoted t1 ∼ t2, if each of the
corresponding rows share the same set of elements. A tabloid of shape λ, or λ-tabloid is then
defined to be

{t} := {t′ | t′ ∼ t}
where t has shape λ.

Example 2.5.1. As mentioned earlier, we have

1 2 3

4
∼

3 1 2

4

So these two tableaux belong to the same tabloid. Moreover, we know that this tabloid
contains 3! = 6 elements as each element is just a permutation of the top row. Visually, we
can draw this tabloid as

1 2 3

4

When depicting tabloids in this way, we typically order the entries of rows in increasing order
as a convention.

We remark that a similar notion can be developed for column equivalence, but the two
perspectives are ultimately the same as we can simply rotate column-equivalent tableaux by
90◦ clock-wise and reflect it by the vertical axis to obtain row-equivalent tableaux over the
same partition.

In the above example, we saw that the tabloid corresponding to λ = (3, 1) contained 3! = 6
elements. This idea can be generalized to arbitrary tabloids. Suppose we have a partition
λ = (λ1, . . . , λk) ⊢ n. Then every arbitrary λ-tabloid contains λ1! · · ·λk! many elements.
Since there are n! total λ-tableaux of n, this implies that there are n!/(λ1! · · ·λk!) λ-tabloids.
Now we make a key observation about tabloids and the symmetric group. Suppose λ ⊢ n.

Notice that since every λ-tableau contains the integers from 1 to n in specific entries of the
Young diagram corresponding to λ, we can let Sn act on the set of λ-tableaux by permuting
the location of these integers in the λ-tableau’s Young diagram.

Example 2.5.2. As an example, let λ = (3, 1) ⊢ 4 = n and note that (123) ∈ Sn. By the
group action defined above, we have

(123) ·
1 2 3

4
=

2 3 1

4
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Note that (123) preserves the tabloid

t =
1 2 3

4

However, (14) does not. Notice, however, that (14) sends every element of t to an element
of

t′ =
2 3 4

1

In general, we have for all g ∈ Sn that g · t1 ∼ g · t2 whenever t1 ∼ t2. So we can extend our
group action from the level of tableaux to the level of tabloids in a natural way.

This new group action ofSn on the set of tabloids gives rise to aSn-module (as in Example
2.2.4) which we define formally as follows.

Definition 2.6. Suppose λ ⊢ n. Then we define the permutation module corresponding to
λ as

Mλ := C{{t1}, . . . ,{tk}}
where {t1}, . . . , {tk} are all the λ-tabloids.
Note: Recall that we use the boldface to denote vectors as here we are defining a k-

dimensional vector space over C.

Example 2.6.1. Let us take λ = (3, 1) ⊢ 4 = n as we have been doing. Then we should have
that Mλ is a representation of S3. First recall that there are 4!/(3!1!) = 4 total λ-tabloids.
By the nature of λ we can quickly observe that each tabloid simply corresponds to which
number is in the bottom most row. Let ti denote the tabloid with i in the bottom-most row
for i = 1, . . . , 4. More explicitly, we have

{t1} =
2 3 4

1
,{t2} =

1 3 4

2
,{t3} =

1 2 4

3
,{t4} =

1 2 3

4

So our definition from above tells us that

Mλ = C {{t1},{t2},{t3},{t4}} ∼= C4

This is indeed a representation of S4 as S4 acts on it linearly by the definition of a permu-
tation representation.

For a concrete example of this group action, consider v = 3{t1} − 2{t3} ∈ Mλ and let
g = (123) ∈ S4. Then we have

g · v = g · (3{t1}− 2{t3})
= 3(g · {t1})− 2(g · {t3})
= 3{t2}− 2{t1} ∈Mλ

An important property of these permutation modules is that they are cyclic.

Definition 2.7. A G-module, M , is said to be cyclic if there exists v ∈M such that

M = C(Gv)

where Gv = {gv | g ∈ G}. In this case, we say that M is generated by v.
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For a permutation module Mλ, any of the tabloids will suffice as a candidate for this
v. This is because for any tabloids {t1} and {t2}, there exists some g ∈ Sn such that
{t1} = g · {t2}.

At the beginning of this chapter, we stated that we are interested in producing representa-
tions of the symmetric group by inducting on the trivial representation of Young subgroups,
Sλ. In constructing these Mλ, we have actually arrived at these representations in an alter-
nate way. We capture this formally via the following.

Lemma 2.8. Let V λ = 1 ↑Sn
Sλ

. Then we have that Mλ ∼= V λ.

Proof. Let {π1, . . . , πk} be a transversal for Sλ. I.e., we have

Sn =
⋃
·
i

πiSλ

We can now define a map θ : V λ →Mλ on each element of the transversal as θ(πiSλ) := {πitλ}
for each i = 1, . . . , k. Moreover, suppose θ extends linearly. Then one can verify that θ is
indeed a Sn isomorphism. □

2.2. Ordering Tableaux.

Now that we have representations associated with each partition of n, it would be ideal if
these were all irreducible. This, however, is not always the case. Our goal in the subsequent
sections is to use these Mλ to arrive at the set of irreducible representations in the following
way.

First we will order the partitions of n as λ1, λ2, . . . , such that we obtain the following
property. We will have that Mλ1 is irreducible and we denote it as Sλ1 . Then for all i > 1,
we have that Mλi will be decomposable into a direct sum of Sλj ’s for 1 ≤ j < i and a new
irreducible module which we will denote by Sλi .
Once we have this ordering, then we have that the irreducible representations of Sn are

simply the set of all of these Sλi .
In this section, we focus on defining this ordering and in the later sections we will describe

the ireducibles more explicitly.
We begin with an ordering of partitions.

Definition 2.9. Let λ = (λ1, . . . , λk) and µ = (µ1, . . . , µℓ) be two partitions of n. Then λ
dominates µ, written as λ ⊵ µ, if

λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi

for all i. Note: if i > k, then we define λi = 0. Similarly, if i > ℓ, then µi = 0.

Example 2.9.1. Let λ = (3, 1), µ = (2, 2), ν = (2, 1, 1) be partitions of n. Then visually, we
have

λ = , µ = , ν =

Note that λ1 = 3 ≥ 2 = µ1 and λ1 + λ2 = 4 ≥ 4 = µ1 + µ2. So λ ⊵ µ. Similarly,
µ1 = 2 ≥ 2 = ν1, µ1 + µ2 = 4 ≥ 3 = ν1 + ν2, and µ1 + µ2 + µ3 = 4 ≥ 4 = ν1 + ν2 + ν3. So
µ ⊵ ν.
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Note that λ ⊵ ν because the transitivity of ≥ and the way we defined ⊵ imply that ⊵ is
also transitive.

So visually, we have the following ordering.

⊵ ⊵

Observe that the wider and shorter Young diagrams appear to dominate the skinnier and
taller ones. This is a general phenomenon that captures the nature of this ordering in a
visual way.

Now that we have defined this ordering for partitions, we can establish an important
connection between tableaux and dominance.

Lemma 2.10 (Dominance Lemma). Let tλ and sµ be tableaux. If, for each index i, every
element in the i-th row of sµ is in a different column of tλ, then λ ⊵ µ

Proof. Fix some arbitrary i. Then let us assume, by way of the hypothesis, that the elements
of the j-th row of sµ are in different columns of tλ for j = 1, . . . , i. Then we can sort the
entries of each column of tλ such that the elements of the first i rows of sµ all occur in the
first i rows of tλ. Then we have

λ1 + · · ·+ λi = the number of elements in the first i rows of tλ

≥ the number of elements of sµ in the first i rows of tλ

= µ1 + · · ·+ µi

Since i was arbitrary, this implies that λ ⊵ µ. □

This will be the ordering that we will use for our permutation modules, but we remark
that there are “finer” orderings that will also allow for the same result3.

In particular, this implies that our first irreducible module will be M (n). We easily verify
that this is indeed irreducible as there is only one tabloid of this shape, so this module has
dimension 1 and thus must be irreducible.

2.3. Polytabloids and Specht Modules.

We now intend to more explicitly describe these irreducible modules, which we will do
through the development of more combinatorial objects.

Definition 2.11. Let t be a tableau with rows R1, . . . , Ra and columns C1, . . . , Cb. Then
we define

Rt := SR1 × · · · ×SRa

to be the row-stabilizer and
Ct := SC1 × · · · ×SCa

to be the column-stabilizer of t.

3More specifically, we can define a lexicographic ordering, say ≥, and then we would be able to establish
the same result by listing the permutation modules in dual lexicographic order. However, we have that if
λ ⊵ µ, then λ ≥ µ (lexicographic ordering is a refinement of dominance ordering) so our approach that uses
dominance ordering leads to a stronger conclusion.
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Note that these are both subgroups of Sn when t is a tableau with n boxes. Note that the
row-stabilizer provides another way for us to understand tabloids as we have {t} = Rtt. For
the other subgroup, we use the column-stabilizer to define our next combinatorial object.

Definition 2.12. Let t be a tableau. Then its associated polytabloid is given by

et := κt{t}

where κt :=
∑

π∈Ct
sgn(π)π.

Example 2.12.1. Let λ = (3, 2) ⊢ 5 = n and let us define the following λ-tableau.

t =
1 2 3

4 5

Then the column stabilizer of t is Ct = {(), (14), (25), (14)(25)}. So the polytabloid associated
with t expands into the following vector in Mλ.

et = κt ·
1 2 3

4 5

=

(∑
π∈Ct

sgn(π)π

)
·

1 2 3

4 5

=
∑
π∈Ct

sgn(π)

(
π ·

1 2 3

4 5

)

=
1 2 3

4 5
−

4 2 3

1 5
−

1 5 3

4 2
+

4 5 3

1 2

These objects interact with the symmetric group in some important ways, captured in the
following lemma.

Lemma 2.13. Let t be a tableau and π be a permutation. Then

(1) Rπt = πRtπ
−1

(2) Cπt = πCtπ
−1

(3) κπt = πκtπ
−1

(4) eπt = πet

Proof.

(1) We have

σ ∈ Rπt ⇐⇒ σ{πt} = {πt}
⇐⇒ π−1σπ{t} = {t}
⇐⇒ π−1σπ ∈ Rt

⇐⇒ σ ∈ πRtπ
−1
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(2) Let [t] denote the equivalence class containing t, with respect to the equivalence
relation of column similarity. Then similarly to (1), we have

σ ∈ Cπt ⇐⇒ σ[πt] = [πt]

⇐⇒ π−1σπ[t] = [t]

⇐⇒ π−1σπ ∈ Ct

⇐⇒ σ ∈ πCtπ
−1

(3) Recall that κt =
∑

π∈Ct
sgn(π)π. So by (2), we have

κπt =
∑
σ∈Cπt

sgn(σ)σ

=
∑
σ∈Ct

sgn(πσπ−1)πσπ−1

= π

(∑
σ∈Ct

sgn(σ)σ

)
π−1

= πκtπ
−1

(4) We have
eπt = κπt{πt}

= πκtπ
−1{πt}

= πκt{t}
= πet

□

We can now define the irreducible representations of Sn.

Definition 2.14. Let λ ⊢ n. Then the submodule of Mλ spanned by the polytabloids et

(where t has shape λ) is called a Specht module and denoted by Sλ.

We are left now with two tasks. First we must verify that these constructed modules are
indeed irreducible. Next, we show that they form all of the irreducible representations of
Sn.

2.4. The Submodule Theorem.

Before we prove the irreducibility of Specht modules, we present some important properties
of alternating groups sums. Note that ifH ⩽ Sn is a subgroup, then we define the alternating
group sum of H to be H− =

∑
h∈H sgn(h)h. We are interested in these sums because they

are a generalization of the κt term we used to define polytabloids.
In order to fully state the following lemma, we will also make use of an inner product on

Mλ. Namely,
⟨{t},{s}⟩ := δ{t},{s}

Lemma 2.15 (The Sign Lemma). Let H ⩽ Sn be a subgroup.

(1) If π ∈ H, then
πH− = H−π = sgn(π)H−
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(2) For any u,v ∈Mµ,

⟨H−u,v⟩ = ⟨u, H−v⟩
(3) If (b, c) ∈ H, then there exists k ∈ C[Sn] such that

H− = k(ϵ− (b, c))

(4) If (b, c) ∈ H and t is a tableau with b and c in the same row, then

H−{t} = 0

Proof.

(1) Let π ∈ H. Then we have the following.

πH− =
∑
σ∈H

sgn(σ)πσ

=
∑
τ∈H

sgn(π)sgn(τ)τ

= sgn(π)H−

We have that H−π = sgn(π)H− by a similar argument where σπ is substituted by
an arbitrary τ .

(2) Since the sign of a permutation is the same as that of its inverse, we have the following.

⟨H−u,v⟩ =
∑
π∈H

⟨(sgnπ)πu,v⟩

=
∑
π∈H

⟨u, (sgnπ)π−1v⟩

=
∑
π∈H

⟨u, (sgnπ)πv⟩

= ⟨u, H−v⟩

(3) Let K = {ϵ, (b, c)} be a subgroup of H. Then there is a transversal such that we can
express H = ∪ikiK. Then we have that H− = (

∑
i k

−
i )(ϵ− (b, c)).

(4) Let t be a tableau with b and c in the same row. Then (b, c){t} = {t}. So by (3),
we have

H−{t} = k(ϵ− (b− c)){t} = k{t}− k{t} = 0

□

We are now able to prove the important submodule theorem which will be used to complete
our study of the representations of the symmetric group.

Theorem 2.16 (The Submodule Theorem). Let U be a submodule of Mµ, then

U ⊇ Sµ or U ⊆ Sµ⊥

In particular, the Sµ are irreducible when we work over C.

Proof. Let u ∈ U and let t be a µ-tableau. First we argue that if s is a µ-tableau, then

κt{s} = ±et
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This holds because we have that {s} = π{t}, which implies

κt{s} = κtπ{t} = sgn(π)κt{t} = ±et

From this result, we obtain that κtu is a multiple of et because u =
∑

i ci{si} where the si
are µ-tableaux. So we can write κtu = fet. We now have two cases for our submodule U .

For the first case, suppose there exists u ∈ U and a tableau t such that f ̸= 0. Then there
exists f−1 so we have et = f−1κtu ∈ U . Thus, Sµ ⊂ U .

Now let us consider the other case, where we always have κtu = 0. Then we have the
following by part (2) of the sign lemma.

⟨u, et⟩ = ⟨u, κt{t}⟩ = ⟨κtu,{t}⟩ = ⟨0,{t}⟩ = 0

Since the et span S
µ, we obtain that u ∈ Sµ⊥. □

As a consequence to this theorem, we obtain a complete description of all the irreducible
representations of the symmetric group.

Theorem 2.17. The set {Sλ : λ ⊢ n} constitutes a complete set of irreducible representations
of Sn over C.

Proof. These modules are irreducible by the submodule theorem and because Sλ ∩Sλ⊥ = 0.
Moreover, we have the maximal number of irreducible modules so this is indeed the full set
of irreducibles. □
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