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Abstract

Motivated by the dimensionality reduction abilities of encoder neural networks, we present
a new hypothesis test for high-dimensional data, such as images, for which a low-dimensional
latent space is an appropriate choice. An approximation with similar capability to the proposed
test using an anisotropic kernel is available. We also describe the test’s behavior as the number
of datapoints approaches infinity and relate its spectrum to that of the anisotropic kernel by
proving a more general fact about the spectra of two kernel integral operators when those kernels
are uniformly close. By experiments on image data, we validate our constructions’ abilities to
distinguish images of different labels.

1 Introduction

The conventional paradigm of computer programming requires that the programmer prescribe actions,
expressed to the computer as a sequence of simple tasks, for every possible case that the computer
may encounter. For example, matrix multiplication in its simplest form merely asks the computer to
calculate the dot product between the rows of one matrix and the columns of another. This paradigm
has enabled the automation of tasks whose main effort lies in the sheer number of simple sub-tasks
that must be performed. However, automation of other tasks, such as image classification and text
generation, is much more difficult, because although humans find their abilities in these fields to be
perfectly natural, explicitly describing how humans perform these tasks, as the conventional paradigm
of programming requires, is almost impossible. Machine learning provides a solution; rather than the
programmer instructing how a computer ought to approach such a task, it is instead given a large
dataset, from which it is instructed to learn how to perform the task.

While image generation may be easy for artists, it is a task whose decomposition into a sequence
of computer-understandable sub-tasks is more difficult. To approach this task, the architecture of
generative adversarial networks [9] proposes to train two neural networks – a generator that produces
images, and a critic that returns a score of how well the generator’s output resembles the dataset.
After training, the generator should be able to produce realistic images. The critic’s objective is
quite similar to hypothesis testing, for its goal is to discriminate between two datasets, one of actual
images and one of generated images, each of which may be considered as a set of samples from an
underlying distribution. Therefore, a choice for the critic may be an integral probability metric,
which is a metric on the space of probability distributions 1.

1Note that in the original GAN formulation, a critic maps from images to the real line, while in the IPM formulation,
a critic maps from probability distributions over images to the real line.
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In particular, a critic can be implemented as the maximum mean discrepancy, which is a particular
integral probability metric that returns the maximum difference that a function in a reproducing
kernel Hilbert space achieves between two probability distributions. A modification of this idea
was proposed in the paper MMD GAN [5], which used a composition of a Gaussian kernel with an
encoder neural network as a critic in the GAN framework. Despite the success of the algorithm, the
paper did not attempt to characterize the properties of this encoder kernel after training, which is
related to the problem that we will try to address: we will use classical methods from hypothesis
testing [14] in order to characterize the behavior of a certain data-dependent kernel that averages the
encoder kernel of MMD GAN [5] across a reference distribution. Our contributions are as follows:

1. The methods in [14] are difficult to extend in their original form to high-dimensional data, such
as images; we present a generalization of their method by building a data-dependent kernel
based on an encoder neural network.

2. Based on the previous contribution, we propose a method for extending the ideas of [14] to
high-dimensional data by leveraging the dimensionality reduction capabilities of autoencoder
neural networks.

3. We establish that the bound on the difference between the eigenvalues of the integral operators
of two positive semi-definite kernels is the same as the bound on the absolute difference of
those kernels; i.e. the map from kernels to eigenvalues of their integral operators is continuous
in the supremum norm. In doing so, we relate the spectral properties of the kernel of [14] to
those of our data-dependent encoder kernel.

In Section 2, we cover some preliminaries on neural networks, reproducing kernel Hilbert spaces,
and the background for anisotropic kernels [14]. In Section 3, we relate the integral probability metric
induced by the anisotropic kernel to that induced by the encoder kernel. In Section 4, we relate the
spectrum of the anisotropic kernel to that of the encoder kernel by proving a more general fact about
the relation between the spectra of the integral operators of kernels whose absolute difference is
uniformly bounded. In Section 5, we state some asymptotic properties of the encoder kernel and the
anisotropic kernel. In Section 6, we outline the permutation test of the IPM of the encoder kernel,
and we discuss the extension of [14] to high dimensional data as well as how its method can grant
time complexity savings to our encoder kernel. In Section 7, we present experiments validating our
ideas.

2 Preliminaries

2.1 Notation

Let (Ω,B(Ω),P) be a probability space with Borel σ-algebra B(Ω) 2. Then L2 = L2(Ω,P) is the set
of square integrable functions f : Ω 7→ R such that ||f ||2P :=

∫
Ω
f2dP < ∞. We denote the square

summable (resp. summable) sequences on R as ℓ2 (resp. ℓ1); a sequence a = (a1, a2, ...) is in ℓ2

(resp. ℓ1) if
∑∞

n=1 a
2
n <∞ (resp.

∑∞
n=1 |an| <∞). We denote the set of continuously differentiable

functions as C1; for a C1 function f : Rn 7→ Rm, we denote its Jacobian at x as Jf (x). Finally, we
denote the normal distribution with mean µ and variance σ2 as N (µ, σ2).

2While we do not really discuss measure theory, we specify this for precision’s sake.
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2.2 Neural Networks

Definition 1. A feedforward neural network is a composition of functions

ϕL ◦ ϕL−1 ◦ ... ◦ ϕ1 : Rd1 7→ RdL+1 ,

where for i = 1, ..., L, ϕi : Rdi 7→ Rdi+1 is defined by ϕi(x) = σ(Wix + bi), Wi ∈ Rdi+1×di ,
bi ∈ Rdi+1 , and σ : R 7→ R is a nonlinear function that is applied element-wise. σ is called an
activation function, and ϕi is called a layer.

In the introduction, we also briefly discussed what role an ”encoder neural network” plays in MMD
GANs. In general, the range of an encoder neural network has much lower dimensionality than its
domain does, and when we require certain training objectives (reconstruction error, frequently set to
be mean-squared error), heuristically we may say that the encoder network learns a low-dimensional
representation of the data, i.e. it is a dimensionality reduction technique. Encoders generally are a
composition of layers whose domains gradually decrease in dimensionality, as will be shown in the
experiments; conversely, the layers of decoders, whose role is to reconstruct the encoder’s input given
the encoder’s low-dimensional representation, generally increase gradually in dimensionality.

2.3 Reproducing Kernel Hilbert Spaces and Maximum Mean Discrepancy

Definition 2. Let X be a (nonempty) set. A symmetric function k : X × X 7→ R is called a
positive semi-definite kernel if for any n ∈ Z+, c1, ..., cn ∈ R, and x1, ..., xn ∈ X , we have∑n,n

i,j=1 cicjk(xi, xj) ≥ 0. In other words, the matrix [k(xi, xj)]
n,n
i,j=1,1 is positive semi-definite.

Definition 3. [7] Let H be a Hilbert space of functions mapping from some set X to R with inner
product ⟨·, ·⟩H. Then k : X × X 7→ R is a reproducing kernel of the reproducing kernel Hilbert
space H if

1. ∀x ∈ X , k(·, x) ∈ H.

2. ∀x ∈ X and f ∈ H, f(x) = ⟨f, k(·, x)⟩H.

The second item is known as the reproducing property. A function ϕ : X 7→ H is called a feature
map if k(x, y) = ⟨ϕ(x), ϕ(y)⟩H. More than one such ϕ can exist, but k(x, ·) is always a valid feature
map.

A more intuitive description of the functions inhabiting Hk (the RKHS of a kernel k) is that
f ∈ Hk if there exist some x1, x2, ... ∈ X such that f =

∑∞
n=1 ank(xn, ·) for constants {an} ⊂ R.

Definition 4. Let P and Q be two (Borel) probability distributions on X . Given a reproducing kernel
Hilbert space H with kernel k : X × X 7→ R, [8] defines the maximum mean discrepancy between
P and Q as

γ2 (P,Q; k) = sup
f∈H

[Ex∼P[f(x)]− Ex∼Q[f(x)]]

Additionally, the mean embedding of P with respect to k is µk
P = µP = Ex∼Pk(x, ·).

Remark 5. By the reproducing property, we may write the squared MMD as

γ2(P,Q; k) =

∫
X

∫
X
k(x, y)d(P−Q)(x)d(P−Q)(y) = ||µP − µQ||2H
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by Lemmas 4 and 6 in [8], where || · ||H is the RKHS norm induced by ⟨·, ·⟩H. Its squared empirical
estimate, given i.i.d. {xi}n1

i=1 ∼ P and {yj}n2
j=1 ∼ Q, is

γ2
(
{xi}n1

i=1 , {yj}
n2

j=1 ; k
)
=

1

n21

n1,n1∑
i,j=1

k(xi, xj)−
2

n1n2

n1,n2∑
i,j=1

k(xi, yj) +
1

n22

n2,n2∑
i,j=1

k(yi, yj)

Definition 6. [10] A kernel k : X ×X 7→ R is called characteristic if for all probability distributions
P on X , the map P 7→ Et∼Pk(·, t) from the space of Borel probability measures on X to the RKHS of
k is injective. That is, the embedding of a probability distribution is unique. From [8], if a kernel is
characteristic, then γ2(P,Q; k) = 0 if and only if P = Q.

2.4 The Gaussian RKHS

In the next section, we will focus on a specific kernel, which is a modification of the Gaussian kernel,
a popular choice for use in kernel methods. This section characterizes the RKHS of the Gaussian
kernel and summarizes some of the justifications for its use.

Fix σ > 0 and d ∈ Z+. For f : Cd → C, define

||f ||σ =

(
2d

πdσ2d

∫
Cd

|f(z)|2e|z−z̄|2/σ2

dz

)1/2

and

Hσ = {f : Cd → C s.t. f holomorphic and ||f ||σ <∞}

Theorem 7. (Theorem 4.38 in [2].) Let σ > 0 and d ∈ Z+. Then Hσ is a RKHS and kσ : Cd 7→ C,
kσ(z, z

′) = exp (−|z − z̄′|2/σ2), is its reproducing kernel. Furthermore, define for n ∈ Z+

en(z) =

√
2n

σ2nn!
znez

2/σ2

and ⊗d
j=1 enj

(z1, ..., zd) =
d∏

j=1

enj
(zj)

Then {⊗d
j=1enj

: Cd 7→ C}n1,...,nd∈Z+ is an orthonormal basis for Hσ.

Remark 8. Note that the elements of this orthonormal basis rapidly decay at infinity and are
infinitely differentiable.

Remark 9. These results concern the Gaussian RKHS when the domain of the kernel is Cd; they
may be made specific to the case where the domain is a subset of Rd. See Chapter 4 of [2] for more
details.

Theorem 10. (Theorem 4.47 in [2].) Let µ be a finite measure on Rd or Lebesgue measure,
p ∈ (1,∞), and σ > 0. Then the operator Skσ

: Lp(µ) 7→ Hσ(Rd) is injective, where

Skσ
g =

∫
Rd

kσ(·, x)g(x)dµ(x)

Corollary 11. This implies that the Gaussian kernel is characteristic, and therefore the maximum
mean discrepancy induced by the Gaussian kernel is a metric on the space of probability distributions.
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2.5 Background for Anisotropic Kernels

This section follows [14] closely. Let P and Q be (Borel) probability measures with support on a
compact set Ω ⊂ Rd1 , with the former measure associated with the null hypothesis and the latter
associated with the alternative hypothesis, 0 < ρ1 < 1, ρ2 := 1− ρ1, and µR := ρ1P+ ρ2Q. µR is
called the reference distribution; while no proof relies on the fact that it is a mixture of the two
probability measures, in practice µR takes this form, so we may as well specify its form here. ρ1 and
ρ2 represent the (asymptotic) proportion of datapoints from P and Q respectively.

Definition 12. Let an invertible, symmetric, and positive semi-definite matrix Σr ∈ Rd1×d1 be
associated with each point in Ω, and define {Σ−1

r }r as the covariance field 3. The asymmetric
affinity kernel for some σ > 0 is defined as

a(r, x) = exp

(
− 1

2σ2
(x− r)TΣ−1

r (x− r)
)

While a is not symmetric and therefore not a kernel, we may still define an analogue of its mean
embedding of a probability measure P: µa

P = Ex∼Pa(·, x).

Additionally, we denote kL2(x, y) = Er∼µR
a(r, x)a(r, y) = ⟨a(·, x), a(·, y)⟩µR

, and we denote the
Gaussian kernel by kσ : Rd2 × Rd2 7→ R with some bandwidth σ > 0,

kσ(x, y) = exp

(
− 1

2σ2
|x− y|2

)
.

In kσ, a, and kL2 , the role of σ may be interpreted as controlling how much |x − y| affects
how similar each kernel considers some inputs x and y to be, since the same inputs x and y would
be considered less similar by a kernel with smaller bandwidth. Compare this to the role of σ2 in
parameterizing the normal distribution.

Remark 13. The maximum mean discrepancy corresponding to kL2 is

γ2(P,Q; kL2) =

∫
Ω

|µP − µQ|2dµR

i.e. the squared L2(µR) distance between the mean embeddings of P and Q.

3 Encoder-Defined Anisotropic Kernels

Definition 14. Let f : Rd1 7→ Rd2 . Suppose for all ε > 0, there exists a δ > 0 such that if |x−y| < δ,
then |f(x)− f(y)− Jf (y)(x− y)|/|x− y| < ε. Then f is called uniformly differentiable 4.

If the domain of f is restricted to the compact set Ω ⊂ Rd1 and if for all i and j ∂fi/∂xj is
continuous (i.e. f is C1), then the partial derivatives are also uniformly continuous, which is equivalent
to Jf being uniformly continuous. In the particular case where f is a feedforward neural network
with a C1 activation function, we may conclude that f is uniformly differentiable. In the following
theorems, we will show that for any function f : Rd1 7→ Rd2 (d1 ≫ d2) that satisfies a slightly stronger
form of uniform differentiability and that has a Holder continuous inverse (e.g. if f is an encoder
with latent space dimensionality d2 and if the decoder is Holder continuous), then the kernel kσ ◦ f

3Without loss of generality, the inverse may be replaced by a pseudoinverse.
4See Chapter 5 Exercise 8 in [11].
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5formed by composing the Gaussian kernel kσ : Rd2 × Rd2 7→ R with f is uniformly close to the
asymmetric affinity kernel a with covariance field {(Jf (r)

TJf (r))
−1}r, provided that both a and

kσ ◦ f have the same sufficiently small bandwidth.

Theorem 15. Let P be a probability distribution, q ∈ (0, 1], and f : Ω ⊂ Rd1 7→ Rd2 be an injective
function satisfying a slightly stronger form of uniform differentiability: r ∈ (0, 1) such that for

ε ∈ (0, 1), there exists δ with εr ≤ δ
2
q−1 6 and |x−r| < δ =⇒ |f(x)−f(r)−Jf (r)(x−r)|/|x−r| < ε.

Suppose f−1 : range(f) 7→ Ω is Holder continuous with Holder exponent q 7, and that there exists
some λd2

> 0 such that ∀r ∈ Ω, the smallest singular value of Jf (r) is at least λd2
. Then there exists

a bandwidth σ > 0 such that ∀r ∈ Ω,

|µa
P(r)− µ

kσ◦f
P (r)| < ε,

where a has covariance field {(JT
f (r)Jf (r))

−1}r∈Ω, is independent of P, and has the same bandwidth
as kσ.

Proof. Firstly, observe that the Holder condition on f−1 implies

|x− r| = |f−1(f(x))− f−1(f(r))| ≤ α|f(x)− f(r)|q.

Therefore,

m(δ) := inf
|x−r|≥δ

|f(x)− f(r)| ≥ α−1/q inf
|x−r|≥δ

|x− r|1/q = α−1/qδ1/q.

Let ε ∈ (0, 1), and suppose |x− r| ≥ δ. Then |Jf (r)(x− r)| ≥ λd2 |x− r| ≥ λd2δ
8, and we have

a(r, x) = exp

(
− 1

2σ2
|Jf (r)(x− r)|2

)
≤ exp

(
− 1

2σ2
λ2d2

δ2
)

From the above, observe that if we want to set σ > 0 such that a(r, x) ≤ ε, then σ must satisfy
− 1

2σ2 ≤ λ−2
d2
δ−2 log (ε). Now consider kσ ◦ f : since m(δ) ≥ α−1/qδ1/q, we get

(kσ ◦ f)(r, x) = exp

(
− 1

2σ2
|f(x)− f(r)|2

)
≤ exp

(
− 1

2σ2
m(δ)2

)
≤ exp

(
− 1

2σ2
α−2/qδ2/q

)
.

Similarly to the discussion of a, if we want to set σ such that (k ◦ f)(r, x) ≤ ε, then σ must satisfy
− 1

2σ2 ≤ α2/qδ−2/q log (ε). Set σ > 0 so that

− 1

2σ2
= δ−2/q max {λ−2

d2
, α2/q} log (ε) ≤ max {λ−2

d2
δ−2, α2/qδ−2/q} log (ε),

when δ ≤ 1. By the stronger form of uniform differentiability, there exists a δ such that

εr ≤ δ1−
2
q ≤ 1, so that for all x, r ∈ Rd1 with |x−r| < δ, we have |f(x)−f(r)−Jf (r)(x−r)|/|x−r| < ε.

Now let |x− r| < δ and L be the Lipschitz constant of x 7→ e−x2

(L < 1). Then

5That k ◦ f is a kernel is due to the fact that k(f(x), ·) is its feature map.

6The requirement that δ
2
q
−1 ≥ εr is much more interpretable if q = 1 (i.e. if f−1 is Lipschitz), since then it merely

reads δ ≥ εr. Also, the condition could be relaxed by setting a constant C > 0 so that εr ≤ Cδ
2
q
−1

, but we do not do
this for sake of simplicity.

7That is, there exists some q ∈ (0, 1] and α > 0 such that for all ε > 0, there exists δ > 0 such that for all
x, r ∈ range(f), we have |f−1(x)− f−1(y)| ≤ α|x− y|q .

8See this StackExchange answer for a review on SVD and lower bounds.
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|(kσ ◦ f)(r, x)− a(r, x)| =
∣∣∣∣exp(−|f(r)− f(x)|22σ2

)
− exp

(
−|Jf (r)(x− r)|2

2σ2

)∣∣∣∣
≤ L

2σ2
||f(x)− f(r)| − |Jf (r)(x− r)||

≤ L

2σ2
|f(x)− f(r)− Jf (r)(x− r)|

<
Lεδ

2σ2

= Lεδ · δ−2/q max {λ−2
d2
, α2/q} · − log (ε)

≤ Lεδδ−
2
q max {λ−2

d2
, α2/q} · − log (ε)

≤ Lmax {λ−2
d2
, α2/q}ε1−r · − log (ε)

Therefore with an appropriate setting of σ, on {x, r : |x− r| < δ} the absolute difference between
a and k ◦ f is bounded uniformly by ε1−r · − log (ε) multiplied by some constant, which approaches 0
as ε→ 0+, and on {x, r : |x− r| ≥ δ} both a and k ◦ f are less than ε. Hence

∣∣∣µa
P(r)− µ

kσ◦f
P (r)

∣∣∣ = ∣∣∣∣∫ a(r, x)dP(x)−
∫

(kσ ◦ f)(r, x)dP(x)
∣∣∣∣

≤
∫
|a(r, x)− (kσ ◦ f)(r, x)| dP(x)

≤
∫

max
{
Lmax {λ−2

d2
, α2/q}ε1−r · − log (ε), ε

}
dP(x)

= max {Lmax {λ−2
d2
, α2/q}ε1−r · − log (ε), ε}

Remark 16. We briefly comment on the requirement that there exists a λd2 > 0 such that ∀r ∈ Ω,
the smallest singular value of Jf (r) is bounded below by λd2

: if the smallest singular value of some
Jf (r) were 0, then there is a direction local to r that Jf (r) finds ”useless” and therefore along which
there is insufficient decay when |x − r| ≥ δ. This requirement may be replaced if one can tolerate
multiplying a by a mollified (continuous) indicator function for the set {x, r : |x − r| < δ} so that
sufficient decay is achieved.

The hypothesis in the above theorem that f is injective becomes clearer when f is an encoder neural
network, for the requirement of injectivity may be interpreted as barring two different datapoints from
having the same low-dimensional representation. The hypothesis that f−1 is Holder implies that f
separates {|x− r| < δ} from {|x− r| ≥ δ} quickly enough.

What the above theorem shows is that when the bandwidths of a and kσ ◦ f are small enough,
both kernels are more sensitive to the distance their inputs have in the ambient space Ω; in particular,
under the assumptions of the previous theorem (particularly the lower bound on the smallest singular
value), when |x− r| are even somewhat far apart and when σ is sufficiently large, the behavior of
both kernels is almost entirely determined by the local information provided by f at r, i.e. Jf (r).

This suggests that equipping kL2 with the covariance field {(JT
f (r)Jf (r))

−1}r is a valid choice, if one
wants to take advantage of the data pre-processing capabilities of f . Additionally, note that the
bound between kσ ◦ f and a when |x− r| < δ is made worse by smaller values for σ2, since the only
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Figure 1: f maps from the ambient space Ω to the latent space Rd2 . kσ ◦f first pre-processes data via
f and then applies a standard Gaussian kernel, while a simply computes a local linear transformation
based on Jf . However, since the preimage of a small symmetric ball in Rd2 is pulled back to the

covariance matrix Σ−1
r = (JT

f (r)Jf (r))
−1 in Ω, a(r, x) ≈ (kσ ◦ f)(r, x).

role of σ2 is to force decay when |x− r| ≥ δ; this implies that setting σ2 to be much smaller than
what ε forces it to be will substantially degrade the upper bound, and the behavior of these kernels
may diverge. The theorem also motivates the definition of a new kernel:

Definition 17. Let kσ : Rd2 × Rd2 7→ R denote the Gaussian kernel with bandwidth σ, and let
f : Ω 7→ Rd2 be an encoder. Denote ϕ(x) = (kσ ◦ f)(·, x), and define the encoder kernel as

kf (x, y) = ⟨ϕ(x), ϕ(y)⟩µR
=

∫
Ω

ϕ(x)ϕ(y)dµR

so that ϕ is a feature map for kf .

Remark 18. As with the MMD of kL2 , the maximum mean discrepancy of kf between probability
distributions P and Q may be written as the L2(µR) inner product between their mean embeddings by
ϕ, i.e.

γ2(P,Q; kf ) =

∫
Ω

|µP − µQ|2dµR = ||µϕ
P − µ

ϕ
Q||

2
µR
.

Because the encoder f is designed to be trained to discover clearer, low-dimensional latent
representations of data from Ω, an intuitive description of the role of ϕ = kσ ◦ f is that f first finds
the latent representations of inputs r and x, which is then followed by the Gaussian kernel computing
the similarity between their filtered representations. Following kL2 ’s tactic of taking advantage of
the L2(µR) inner product to employ a reference set and build a data-dependent kernel, we then
integrate ϕ(x)ϕ(y) against r ∼ µR to obtain kf , to which the above theorem shows that kL2 is an

approximation when its covariance field is {(JT
f (r)Jf (r))

−1}r.
To finish this section, we provide a short proof that if two feature maps are close, then their

maximum mean discrepancies are also close; in our situation, the feature maps are a and ϕ.

Theorem 19. Let P and Q be probability distributions, Ω ⊂ Rd1 be compact, f : Ω 7→ Rd2 be a
uniformly differentiable and injective function, ε > 0, and∣∣∣µa

P(r)− µ
ϕ
P(x)

∣∣∣ < ε,
∣∣∣µa

Q(r)− µ
ϕ
Q(r)

∣∣∣ < ε

for all r ∈ Ω. In particular, this requirement is satisfied when the asymmetric affinity kernel a
has the covariance field {(JT

f (r)Jf (r))
−1}r∈Ω and both ϕ and a have the same bandwidth as specified

in the previous theorem. Then
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∣∣γ2(P,Q; kf )− γ2(P,Q; kL2)
∣∣ < 6ε.

Proof. By the definition of γ2(P,Q; kL2) and γ2(P,Q; kf ), we have

∣∣γ2(P,Q; kL2)− γ2(P,Q; kf )
∣∣ = ∣∣∣∣∫ |µa

P − µa
Q|2dµR −

∫
|µϕ

P − µ
ϕ
Q|

2dµR

∣∣∣∣
≤

∫ ∣∣∣(µa
P)

2 − (µϕ
P)

2
∣∣∣+ ∣∣∣(µa

Q
)2 − (µϕ

Q)
2
∣∣∣+ 2

∣∣∣µϕ
Pµ

ϕ
Q − µ

a
Pµ

a
Q

∣∣∣ dµR

< 4ε+

∫ ∣∣∣µϕ
P

(
µϕ
Q − µ

a
Q

)
+ µa

Q

(
µϕ
P − µ

a
P

)∣∣∣ dµR

< 6ε.

4 Spectral Analysis

It may not be entirely clear how kL2 and kf are related to each other, especially in terms of their
spectra. In this section, we prove a general fact about the eigenvalues of kernel integral operators and
apply it to the spectra of kL2 and kf . Weyl’s inequality shows that the eigenvalues of a Hermitian
matrix are stable under perturbation, where the norm of the perturbation may be taken to be the
spectral norm of matrices. Since the Gram matrix of a kernel is Hermitian, one should expect this
fact to extend to kernel integral operators, and in fact this is what we prove in the following theorem.

Theorem 20. Let k, l: Rd × Rd 7→ R be two bounded positive semi-definite kernels, P a probability
measure, and suppose there exists some η > 0 such that for all x and y ∈ Rd, |k(x, y)− l(x, y)| < η.
Let Sk : L2(Rd,P) 7→ Hk and Sl : L2(Rd,P) 7→ Hl be the integral operators of k and l, where Hk is
the RKHS of k, Skg =

∫
k(x, ·)g(x)dP(x), and Sl and Hl are similarly defined. If λi and νi are the

i-th greatest eigenvalues of Sk and Sl respectively (which exist by Mercer’s theorem [2]) with respect
to P, then |λi − νi| < η.

Remark 21. In other words, for all i ∈ Z+, if K is the convex cone of bounded, positive semi-definite
kernels and if λi(k) is the i-th greatest eigenvalue of the integral operator of k, then k 7→ λi(k) : K 7→
R+ is continuous with respect to the supremum norm.

Proof. Let n ∈ Z+, δij be the Kronecker delta and {xi}ni=1 ⊂ Rd. Define the Gram matrices with
zero diagonal Kn = 1

n [(1 − δij)k(xi, xj)]
n
i,j=1 and Ln = 1

n [(1 − δij)l(xi, xj)]
n
i,j=1, and define the

perturbations εij = k(xi, xj) − l(xi, xj) that by assumption satisfy |εij | ≤ η for all i, j = 1, ..., n.
Define the hollow perturbation matrix Rn = 1

n [(1− δij)εij ]
n
i,j=1, so that Kn − Ln = Rn. Then for

all v ∈ Rn with |v| = 1,

|Rnv|2 <
∑
i

∑
j

εij
n
vj

2

≤
∑
i

∑
j

ε2ij
n2

∑
j

v2j

 =
1

n2

∑
ij

ε2ij =
1

n2

∑
ij

η2 = η2,

where the strict inequality comes from the zeroed diagonal of Rn, and the following inequality
comes from Cauchy-Schwartz. Therefore the spectral norm of Rn is (strictly) less than η.

9



Denote the spectrum of a linear operator T as λ(T ), so the spectrum of Kn may be written in
decreasing order as λ(Kn) = {λ̄1, ..., λ̄n} and those of Ln as λ(Ln) = {ν̄1, ..., ν̄n}. (The spectra may
be written in decreasing order since Kn and Ln are Hermitian, which is a consequence of their entries
being determined by (symmetric) kernels.) By a more specific form of Weyl’s inequality (Equation
13 in [12]), we have that for i, j = 1, ..., n, |λ̄i − ν̄i| < η.

Definition 22. [13] For x, y ∈ ℓ2(R), their rearrangement distance is

δ2(x, y) =

[
inf
σ

∞∑
i=1

(xi − yσ(i))2
]1/2

,

where σ is a permutation over Z+.

Let x, x′ ∼ P. By the boundedness of k and l, we have that Ex,x′k2(x, x′) <∞ and Ex,x′ l2(x, x′) <
∞. Therefore by Theorem 3.1 in [13], δ2(λ(Kn), λ(Sk))→ 0 and δ2(λ(Ln), λ(Sl))→ 0 as n→∞.

The following lemma was said to be ”clear” on page 117 in [13], but for the sake of completeness,
we include its proof here.

Lemma 23. Let a = (a1, a2, ...) and b = (b1, b2, ...) be sequences in ℓ2(R), such that a1 ≥ a2 ≥ ... ≥ 0
and b1 ≥ b2 ≥ ... ≥ 0. Then δ22(a, b) =

∑∞
i=1(ai − bi)2.

Proof. Firstly, let a1 ≥ a2 > 0, b1 ≥ b2 > 0. Then a1b1 + a2b2 = a1(b1 − b2) + b2(a2 + a1) ≥
a2(b1 − b2) + b2(a2 + a1) = a2b1 + a1b2. But this implies

a21 + a22 + b21 + b22 − 2a1b1 − 2a2b2 ≤ a21 + a22 + b21 + b22 − 2a2b1 − 2a1b2.

Thus (a1− b1)2 + (a2− b2)2 = LHS ≤ RHS = (a2− b1)2 + (a1− b2)2. For the proof of the lemma,
note that since a permutation is essentially an infinite number of swaps of the kind in the assumption,
for any permutation σ we have

∞∑
i=1

(ai − bi)2 ≤
∞∑
i=1

(ai − bσ(i))2,

and therefore the LHS is δ22(a, b).

By Theorem A.5.13 in [2], the eigenvalues of the integral operators Sk and Sl, which are nonnegative
by the positive semi-definiteness of k and l, may be sorted in descending order as λ(Sk) = {λ1, λ2, ...}
and λ(Sl) = {ν1, ν2, ...}. By the lemma, we get that δ22(λ(Kn), λ(Sk)) =

∑∞
i=1(λi − λ̄i)2 → 0 and

δ22(λ(Ln), λ(Sl)) =
∑∞

i=1(νi − ν̄i)2 → 0 (having padded λ(Kn) and λ(Ln) with infinitely many 0’s,
as convention dictates). Fix some i ∈ Z+ and ε > 0. Now there exists some N ∈ Z+, N > i, such
that n > N implies that both δ22(λ(Kn), λ(Sk)) and δ22(λ(Ln), λ(Sl)) are less than ε/2. Then we
have the following bound:

|λi − νi| ≤ |λi − λ̄i|+ |λ̄i − ν̄i|+ |ν̄i − νi|
≤ δ2(λ(Kn), λ(Sk)) + η + δ2(λ(Ln), λ(Sl))

<
ε

2
+ η +

ε

2
= η + ε,
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where the second inequality comes from the fact that |λi − λ̄i| ≤
√∑∞

j=1(λj − λ̄j)2 (likewise for

νi and ν̄i) and the earlier discussion using Weyl’s inequality. Since |λi − νi| < η + ε for arbitrary ε,
the theorem follows.

Remark 24. We should note that by Mercer’s theorem (Theorem 4.49 in [2]), λi → 0 and νi → 0,
so the above bound on the difference between eigenvalues of Sk and Sl is nontrivial for at least finitely
many eigenvalues when η is not too large.

During the proof bounding the difference between the mean embeddings of a and ϕ, we proved
that |a(·, x)− ϕ(x)| is uniformly bounded (say by some η > 0). Therefore, |kL2(x, y)− kf (x, y)| is
uniformly bounded by 2η, and the above theorem shows that the individual differences between their
eigenvalues is also bounded by 2η.

5 Analysis of Testing Power

5.1 Facts About the Kernel

Suppose k(x, y) =
∫
φ(s, x)φ(s, y)dµ(s), where µ is a probability measure and for all x ∈ Ω,

φ(·, x) ∈ L2(Ω, µ) is continuous. Then k is also continuous. Since kL2 and kf are the L2(µR) inner
products of a(·, x) with a(·, y) and ϕ(x) with ϕ(y) respectively, both of which are continuous and
square integrable, we see that both kernels are continuous. k ∈ {kL2 , kf} is positive semi-definite
and continuous, so by Mercer’s theorem, we have an expansion

k(x, y) =
∑
k

λkψk(x)ψk(y),

that converges absolutely and uniformly, and where {ψk} is an orthonormal set of functions with
respect to µR := ρ1P+ ρ2Q. We assume that when P ̸= Q, there exists l ∈ Z+ where λl > 0 and∫

ψl(x)d(P−Q)(x) ̸= 0.

Roughly speaking, because Mercer’s theorem shows that {ψk} is an orthonormal basis for L2(Ω,P),
we may interpret this assumption as saying that P and Q differ in a direction spanned by some ψk.

5.2 The Centered Kernel

From now on, we denote the maximum difference between the MMD’s as η (which was established in
Section 3); more explicitly, ∣∣γ2(P,Q; kf )− γ2(P,Q; kL2)

∣∣ < η

provided that the feature map a of kL2 has the form specified in Section 3 (covariance field given
by {(JT

f (r)Jf (r))
−1}r and with small enough σ). With {xi}n1

i=1 and {yj}n2

j=1 as i.i.d. samples from P
and Q respectively, for convenience denote

γ2n(kL2) := γ2
(
{xi}n1

i=1 , {yj}
n2

j=1 ; kL2

)
and γ2n(kf ) := γ2

(
{xi}n1

i=1 , {yj}
n2

j=1 ; kf

)
to be the empirical MMDs of kL2 and kf between {xi} and {yj}. Note that the previous bound

η also holds for MMDs between empirical distributions, so having finished the approximation of
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γ2(P,Q; kf ) with γ
2(P,Q; kL2), we may start relating the behavior of γ2n(kf ) to that of γ2n(kL2), using

the results of [14].

Definition 25. Let P be the probability measure associated with the null hypothesis. With k = kL2

or k = kf , define the centered kernel k̃ as

k̃(x, y) = k(x, y)− µP(x)− µP(y) + E(s,t)∼P⊗Pk(s, t)

Remark 26. It may be shown that γ2(P,Q; k) = γ2(P,Q; k̃) and so γ2n(k) = γ2n(kf ).

Proposition 27. k̃ ∈ {k̃L2 , k̃f} is positive semi-definite on (Ω,P). Additionally, if k ∈ {kL2 , kf} is
continuous, then the following hold:

1) k̃ is continuous, and ∀x, y ∈ Ω, 0 ≤ k̃(x, x) ≤ 4 and |k̃(x, y)| ≤ 4.
2) k̃ has the spectral expansion

k̃(x, y) =
∑
k

λ̃kψ̃k(x)ψ̃k(y)

where λ̃k > 0 for all k, EPψ̃k = 0, {ψ̃k} is an orthonormal set of continuous functions on L2(Ω,P),
{λ̃k} ∈ ℓ1 ∩ ℓ2, and the expansion converges absolutely and uniformly.

3) The eigenfunctions {ψ̃k} are (square) integrable with respect to the alternative hypothesis Q.
Furthermore,

∑
k λ̃EQψ̃

2
k ≤ 4.

Proof. We make the simple observation that this is Proposition 3.3 in [14], whose proof makes no
use of the particular form of kL2(x, y) =

∫
a(r, x)a(r, y)dµR(r), and so their proof works for kf as

well.

5.3 Limiting Distribution of MMD and Asymptotic Consistency

Let us place some restrictions on P and Q: we assume that the probability density function of Q is
qτ = p+ τg, where p is the density of P, g is some function such that qτ is a density, and τ ∈ [0, 1].
Define ck = Egψ̃k, where ψ̃k is an eigenfunction of the integral operator of k̃ with respect to P.

Theorem 28. Suppose k ∈ {kL2 , kf}, n1, n2 →∞ such that n1/n→ ρ1, n2/n→ ρ2 := 1− ρ1, and
n := n1 + n2.

1) If τ
n−1/2 → a for a ∈ [0,∞) (with τ potentially depending on n), then

n · γ2n(k)
d−→

∑
k

λ̃k(−ack + ξk)
2,

where ξk ∼ N
(
0, 1

ρ1
+ 1

ρ2

)
.

2) If τ = 1, then with T =
∑

k λ̃kc
2
k,

√
n
(
γ2n(k)− T

) d−→ N (0, σ2)

where σ2 = 4
(

1
ρ1

∑
k λ̃kc

2
k + 1

ρ2

∑
kl λ̃kλ̃lckclSkl

)
, Skl = Eqψ̃kψ̃l − ckcl.

Proof. We make the simple observation that the proof of Theorem 3.4 in [14] makes no use of the
fact that kL2(x, y) =

∫
a(r, x)a(r, y)dµR(r). Therefore, the theorem works for kf as well.
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Corollary 29. From (1), if τ = 0, then

n · γ2n(k)
d−→

∑
k

λ̃kξ
2
k

Corollary 30. Suppose |kL2 − kf | < η. Then the limiting distributions of γ2n(kL2) and γ2n(kf ) when
τ = 1 differ in mean by at most η.

Proof. Using Mercer’s theorem, we can get the expansions

k̃L2(x, y) =
∑
k

λ̃kψ̃k(x)ψ̃k(y) k̃f (x, y) =
∑
k

ν̃kφ̃k(x)φ̃k(y)

so that we may define ck = Egψ̃k, dk = Egφ̃k, T1 =
∑

k λ̃kc
2
k, and T2 =

∑
k ν̃kd

2
k. Then

∑
k

λ̃kc
2
k =

∑
k

λ̃k

(∫
ψ̃k(x)g(x)dx

)(∫
ψ̃k(y)g(y)dy

)
=

∑
k

λ̃k

∫ ∫
ψ̃k(x)ψ̃k(y)g(x)g(y)dxdy

=

∫ ∫ [∑
k

λ̃kψ̃k(x)ψ̃k(y)

]
g(x)g(y)dxdy

=

∫ ∫
k̃L2(x, y)g(x)g(y)dxdy

where the first line is by definition, the second line and third lines are by Fubini’s theorem, and
the fourth is by the expansion given by Mercer’s theorem. Similarly T2 =

∫ ∫
k̃f (x, y)g(x)g(y)dxdy.

Therefore, if we apply the previous theorem’s second part to get

√
n
(
γ2n(kL2)− T1

) d−→ N (0, σ2
1) and

√
n
(
γ2n(kf )− T2

) d−→ N (0, σ2
2),

where σ1 and σ2 are determined by the formula for σ in part 2, then the corollary follows.

We now relate the cumulative distribution functions of γ2n(kL2) and γ2n(kf ) using the previous
bound η on their absolute difference and simple arguments.

Corollary 31. Denote Z =
∑

k λ̃k(−ack + ξk)
2, the limiting distribution of γ2n(kL2) under the null

hypothesis. With the assumptions of Theorem 28 and |γ2n(kL2)− γ2n(kf )| < η, and with F denoting
the cumulative distribution function, we have for t ∈ R:

FZ(t) < lim inf
n→∞

Fγ2
n(kf )

(
t

n
+ η

)
.

Proof. Firstly, Theorem 12 from [8] proves the existence of the limiting random variable (in the
sense of convergence in distribution) to which γ2n(kf ) converges as n → ∞. For n ∈ Z+, since
|γ2n(kL2) − γ2n(kf )| < η and the MMD is nonnegative, we have that γ2n(kL2) ∈

[
0, t

n

]
implies

γ2n(kf ) ∈
[
0, t

n + η
]
, and therefore

Fγ2
n(kL2 )

(
t

n

)
≤ Fγ2

n(kf )

(
t

n
+ η

)
.
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But from Theorem 29, we know

lim
n→∞

Fγ2
n(kL2 )

(
t

n

)
= FZ(t)

and therefore, if we fix ε > 0, then there exists N with n ≥ N =⇒ |FZ(t) − Fγ2
n(kL2 )(t)| < ε.

Combining this with the previous statements, we get

FZ(t)− ε < Fγ2
n(kL2 )

(
t

n

)
≤ Fγ2

n(kf )

(
t

n
+ η

)
implying

FZ(t) < lim inf
n→∞

Fγ2
n(kf )

(
t

n
+ η

)
.

6 Permutation Tests

Here we present an algorithm for the use of the maximum mean discrepancy of k ∈ {kL2 , kf}
in a permutation test. The first algorithm computes the empirical MMD between two datasets
X = {xk}n1

k=1 ∼ P and Y = {yl}n2

l=1 ∼ Q; the second algorithm is a standard permutation test. Of
course, a significance level α > 0 must be set before the test; if the empirical p-value returned by the
second algorithm is less than α, then we reject the null hypothesis (i.e. P ̸= Q); otherwise, we fail to
reject the null. To compute k, we must first select a reference set R = {rj}nR

j=1, which is a subset of
the data. The algorithms here are modified from [14].

6.1 High-Dimensional Covariance Field Selection

[14] proposed a different method to select the covariance field of kL2 , which was by local PCA,
i.e. pick a neighborhood for each datapoint and perform PCA only on datapoints within that
neighborhood. However, this is infeasible for high-dimensional data because 1) the time complexity of
PCA is O(d2n+ d3) (where n is the number of datapoints and d is the number of features), although
admittedly the SVD method can yield time complexity of O(ndk) where k is the number of the
selected principal components 9 2) more importantly, in high dimensions, local PCA requires much
more data in order to be accurate. Rather, we propose to leverage the dimensionality reduction
capabilities of autoencoders by instead selecting as the covariance field {(JT

f (r)Jf (r))
−1}r for some

encoder f at every reference point r. (Of course, this is only sensible when there is reason to
suspect that low-dimensional structure is hiding in the high-dimensional data.) This yields an
approximation to the kernel kf , which may have superior performance due to its theoretical capability
of incorporating nonlinear information during its dimensionality reduction.

6.2 Time Complexity Improvements on γ2
n(kf )

Notice that by the construction of kf , each evaluation of kf requires many matrix multiplications,
which is exacerbated by the fact that modern neural networks frequently involve tens or hundreds
of matrix multiplications per evaluation of each input due to their depth. On the other hand,

9Link to a lecture on the time complexity of PCA
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when kL2 is equipped with the covariance field {(JT
f (r)Jf (r))

−1}r, it can still take advantage of the
dimensionality reduction abilities of the encoder yet only require one matrix-vector multiplication
per evaluation on a pair of datapoints.

Algorithm 1 Compute the empirical MMD between X = {xk}n1

k=1 and Y = {yl}n2

l=1 with reference
set R = {rj}nR

j=1 using the kernel kL2 or kf . If kL2 , then φ = a; if kf , then φ = ϕ.

1: function EmpiricalMMD(X,Y,R, φ)
2: φ(R,X)← [φ(rj , xk)]

nR,n1

j,k=1,1 ▷ evaluate the image of R and X under φ

3: φ(R, Y )← [φ(rj , yl)]
nR,n2

j,l=1,1 ▷ evaluate the image of R and Y under φ

4: µ̄X ←
[

1
n1

∑n1

k=1 φ(R,X)jk

]nR

j=1
▷ evaluate the mean embedding of X on R

5: µ̄Y ←
[

1
n2

∑n2

l=1 φ(R, Y )jl

]nR

j=1
▷ evaluate the mean embedding of Y on R

6: return 1
nR

∑nR

j=1 ((µ̄X)j − (µ̄Y )j)
2

▷ compute the L2 distance between µ̄X and µ̄Y

7: end function

Algorithm 2 Permutation test for kL2 or kf (φ is as in Algorithm 1); nperms ∈ Z+ is the number of
permutations. Returns the empirical p-value.

1: z ← EmpiricalMMD({xk}n1

k=1, {yl}
n2

l=1, R, φ)

2: m⃗← 0⃗ ∈ Rnperms

3: for n = 1, 2, ..., nperms do

4: {zi}n1+n2

i=1 ← shuffle ({xk}n1

k=1 ∪ {yl}
n2

l=1)
5: m⃗n ← EmpiricalMMD

(
{zi}n1

i=1, {zi}
n1+n2
i=n1+1, R, φ

)
6: end for
7: return 1

nperms

∑nperms

l=1 1[m⃗l ≥ z] ▷ i.e. the average number of times m⃗l > z

7 Experiments

On the dataset MNIST [15], a database of 28 x 28 grayscale images of 70,000 handwritten digits,
we train a convolutional autoencoder with encoder f and decoder h: f = fθ : R28×28 7→ R6 has
parameters θ, and h = hϕ : R6 7→ R28×28 has parameters ϕ. They are trained to to minimize mean
squared loss:

inf
θ,ϕ

Ex∼ν |x− h(f(x))|2

where ν is the distribution generating all MNIST images 10. Training was run over 50 epochs,
with 0.001 initial learning rate, and using the Adam optimizer [6]. The dataset was split into 60,000
training examples and 10,000 test examples. The details of f and h are described below; while the
results of the experiment do not seem to depend significantly on the choices of activation functions,
we pick C1 functions for consistency.

Define the exponential linear unit activation function ELU 11:

10The loss is 0 if h = f−1, which would satisfy the requirement of injectivity of f in the proof bounding the difference
between the mean embedding of a and k ◦ f .

11ELU documentation
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ELU(x) =

{
x x > 0

ex − 1 x ≤ 0

Let Conv1 denote a 2D convolutional layer 12 producing 8 channels from 1, Conv2 produce 16
from 8, and Conv3 produce 32 from 16. Let W1 be a matrix mapping from R3×3×32 to R128, and
let W2 be a matrix mapping from R128 to R6. Then the architecture of f is

f = W2 ◦ ELU ◦ W1 ◦ ELU ◦ Conv3 ◦ ELU ◦ Conv2 ◦ ELU ◦ Conv1.

Let ConvT
3 denote a 2D transposed convolutional layer 13 producing 16 channels from 32, ConvT

2

produce 8 from 16, and ConvT
1 produce 1 from 8. Let W2 be a matrix mapping R6 to R128, and let

W1 be a matrix mapping R128 to R3×3×32. Let σ(z) : R 7→ R denote the sigmoid function. Then the
architecture of h is

h = σ ◦ ConvT
1 ◦ ELU ◦ ConvT

2 ◦ ELU ◦ ConvT
3 ◦ W1 ◦ ELU ◦ W2

As usual, the activation functions ELU and σ are applied elementwise. In f and h, each Convi

and ConvT
i (i = 1, 2, 3) has kernel side-length 3, stride 2, and padding 1. All code is available on

GitHub and was written in PyTorch [1] and NumPy [4]. Other than the choice of activation function,
many of the details of f and h were sourced from [3].

For all experiments, we set α = 0.05 as usual. kL2 has the covariance field {(JT
f (r)Jf (r))

−1}r∈R,
and kf remains as before. We compare the performance of γ2n(kL2) and γ2n(kf ) to γ2n(kσ), where
kσ : R28×28 × R28×28 7→ R is the original Gaussian kernel. Permutation tests with kσ are done with
the same procedure as in Algorithm 2 but with EmpiricalMMD calling the squared empirical
estimate of MMD, not Algorithm 1. We tested bandwidths σ ∈ {2i}3i=−3 and present the results of
the test where σ2 = 21. Graphs of other bandwidths are included in the appendix, including the
bandwidth σ2

auto = 28−2 14 for the Gaussian kernel. Both kL2 and kf generally outperform kσ.

7.1 P ̸= Q
Let P to be the probability distribution of 8’s in MNIST, from which we draw the dataset X of 224
images, and Q to be the distribution of 3’s, from which we draw the dataset Y of 237 images. We
chose P and Q based on how difficult the encoder found separating each class’s latent representations.
To be more specific, let Sn (n = 0, 1, ..., 9) represent the set of images from MNIST with label n,
f(Sn) ⊂ R6 be the image of Sn under f , and

x̄n = |Sn|−1

[ ∑
x∈Sn

xj

]6

j=1

.

We picked 8 and 3 to compare because |x̄8− x̄3| = minn̸=m |x̄n − x̄m|. That is, among all pairs of
(different) digits, on average f mapped images of 8’s and images of 3’s the closest in the latent space
R6. In hindsight, this pair is the obvious choice since 8’s and 3’s are visually somewhat similar. We
plot the histograms produced by the permutation tests, which were ran with 250 permutations. kL2

and kf are estimated using a reference set R, which is a mixture of 51 images sampled from P and Q.

12Conv2d documentation
13ConvTranspose2d documentation
14See the ”gamma” keyword argument in sklearn’s support vector classifier.
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(a) γ2
n(kL2); p=0.0; time: 16s. (b) γ2

n(kf ); p=0.0; time: 28s. (c) γ2
n(kσ); p=0.0; time: 3s.

Figure 2: Histograms from permutation tests when P ̸= Q. For each kernel, we list the empirical
p-value p and the time needed to run the test. The location of p on each graph is the vertical line.

7.2 P = Q
Set P to be as before, from which we draw the datasets X1 of 347 images and X2 of 289 images.
We chose P to be the distribution on which we test the performance of the kernels under the null
hypothesis because 8 has the highest mean-squared reconstruction error. We plot the histograms
produced by the permutation tests, which were ran with 250 permutations. kL2 and kf are estimated
using the reference set R, which is a set of 144 images also sampled from P.

(a) γ2
n(kL2); p=0.120; time: 44s. (b) γ2

n(kf ); p=0.868; time: 59s. (c) γ2
n(kσ); p=0.224; time: 5s

Figure 3: Histograms from permutation tests when P = Q.

7.3 Discussion of Experiments

Even after setting random seeds, the permutation test results are not deterministic. However, whether
the tests based on kf or kL2 reject or fail to reject the null hypothesis rarely changes; code for
verifying this is in our GitHub repository. Also, even though in theory f finds 8’s and 3’s to be
the most difficult to distinguish, the experiments based on distinguishing 5’s from 8’s suggest that
the truth is more complicated; in those, kL2 sometimes outperforms kf . Finally, since kf generally
produced distributions with extremely pronounced peaks when σ2 ≤ 1, it seems that kf is more
sensitive to bandwidth selection than does kL2 , whose performance did not depend greatly on σ2;
however, we did observe that for σ2 ≥ 1, kf had consistently good performance.
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Contrasting the performance of kL2 when P ≠ Q, it appears that kL2 is particularly sensitive to
differences in the datasets being compared, even when they are drawn from the same distribution.
Illustrating this is our experience running experiments for the case where P = Q, in which we
previously ran experiments with X1 having 299 images, X2 having 289 images, and R having 67
images. In those experiments, the empirical p-values of kL2 fluctuated across the decision boundary.
This suggests that in this experiment, the sample sizes, including the size of R, are slightly more
than the number of samples that kL2 needs to reliably reject or fail to reject the null hypothesis. Last
but not least, we note that the performance of kσ with σ2 = σ2

auto does not separate the datasets as
much as kL2 does when P = Q, but at the cost of worse separation when P ̸= Q.

8 Conclusion

We proposed a new hypothesis test for high dimensional data using a data-dependent encoder kernel
kf . We extended the concepts of [14] to high dimensional data by proposing a method for choosing
their covariance field: taking the ”squared” Jacobian of a trained encoder f at each reference point.
We extend the analysis of the theoretical behavior of γ2n(kL2) to the behavior of γ2n(kf ), and we also
relate their behaviors via bounds on the difference of γ2n(kf ) and γ

2
n(kL2). Additionally, we proved

how the spectrum of kL2 is related to that of kf . Finally, rather than using potentially expensive
evaluations of a pre-trained encoder neural network f to conduct an accurate hypothesis test with
kf , we can use kL2 to conduct a hypothesis test with similar accuracy.
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10 Appendix

10.1 P ̸= Q

(a) γ2
n(kL2); p=0.0; time: 16s. (b) γ2

n(kf ); p=0.0; time: 26s. (c) γ2
n(kσ); p=0.0; time: 3s.

Figure 4: σ2 = 2−3
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(a) γ2
n(kL2); p=0.0; time: 19s. (b) γ2

n(kf ); p=0.0; time: 29s. (c) γ2
n(kσ); p=0.0; time: 3s.

Figure 5: σ2 = 2−2

(a) γ2
n(kL2); p=0.0; time: 16s. (b) γ2

n(kf ); p=0.0; time: 29s. (c) γ2
n(kσ); p=0.0; time: 4s.

Figure 6: σ2 = 2−1

(a) γ2
n(kL2); p=0.0; time: 16s. (b) γ2

n(kf ); p=0.0; time: 28s. (c) γ2
n(kσ); p=0.0; time: 3s.

Figure 7: σ2 = 20
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(a) γ2
n(kL2); p=0.0; time: 16s. (b) γ2

n(kf ); p=0.0; time: 28s. (c) γ2
n(kσ); p=0.0; time: 3s.

Figure 8: σ2 = 21

(a) γ2
n(kL2); p=0.0; time: 16s. (b) γ2

n(kf ); p=0.0; time: 29s. (c) γ2
n(kσ); p=0.0; time: 4s.

Figure 9: σ2 = 22

(a) γ2
n(kL2); p=0.0; time: 15s. (b) γ2

n(kf ); p=0.0; time: 29s. (c) γ2
n(kσ); p=0.0; time: 4s.

Figure 10: σ2 = 23
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Figure 11: γ2n(kσ); p=0.0; time: 4s; σ2 = σ2
auto

10.2 P = Q

(a) γ2
n(kL2); p=0.26; time: 43s. (b) γ2

n(kf ); p=0.564; time: 42s. (c) γ2
n(kσ); p=0.0; time: 5s.

Figure 12: σ2 = 2−3

(a) γ2
n(kL2); p=0.168; time: 44s. (b) γ2

n(kf ); p=0.528; time: 55s. (c) γ2
n(kσ); p=0.0; time: 5s.

Figure 13: σ2 = 2−2
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(a) γ2
n(kL2); p=0.104; time: 44s. (b) γ2

n(kf ); p=0.512; time: 55s. (c) γ2
n(kσ); p=0.300; time: 5s.

Figure 14: σ2 = 2−1

(a) γ2
n(kL2); p=0.064; time: 41s. (b) γ2

n(kf ); p=0.776; time: 56s. (c) γ2
n(kσ); p=0.352; time: 5s.

Figure 15: σ2 = 20

(a) γ2
n(kL2); p=0.120; time: 44s. (b) γ2

n(kf ); p=0.868; time: 59s. (c) γ2
n(kσ); p=0.224; time: 5s.

Figure 16: σ2 = 21
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(a) γ2
n(kL2); p=0.108; time: 43s. (b) γ2

n(kf ); p=0.492; time: 59s. (c) γ2
n(kσ); p=0.004; time: 5s.

Figure 17: σ2 = 22

(a) γ2
n(kL2); p=0.100; time: 41s. (b) γ2

n(kf ); p=0.196; time: 56s. (c) γ2
n(kσ); p=0.0; time: 5s.

Figure 18: σ2 = 23

Figure 19: γ2n(kσ); p=0.356; time: 5s; σ2 = σ2
auto
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