The following are a set of questions that are similar to questions that will be on the Final.

Q1. a) Let p be a permutation of $1, 2, \ldots, n$, and P be the permutation matrix defined by p. That means that each entry of P is either 0 or 1, with the property that for every row i, $1 \leq i \leq n$, $P(i, p(i)) = 1$ and $P(i, j) = 0$ for all $j \neq p(i)$. Show that $P^TP = I$.

b) Let A be an $n \times n$, symmetric matrix and let B be the result of A after just one step of Gaussian elimination (so B satisfies $b_{i1} = 0$ for all $i = 2, 3, \ldots, n$). Prove that $b_{ij} = b_{ji}$, for all $2 \leq i, j \leq n$. Be sure to label exactly where you use the symmetry of A.

Q2. Consider an iterative method for solving $Ax = b$ defined by a “splitting” $A = M - N$, and the iterating equation

$$Mx^{(k+1)} = Nx^{(k)} + b,$$

for $M = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$, and $N = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$.

Assuming that x^* is the true solution for $Ax = b$, let $e^{(k)} = x^{(k)} - x^*$ for all k. Use the iterating equation $Mx^{(k+1)} = Nx^{(k)} + b$ to obtain a simpler iterating equation for $e^{(k)}$ (you will need the facts that $Ax^* = b$ and $A = M - N$).

Given M, N above, will this iterative method converge for any initial condition $x^{(0)}$?

Q3. Let $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & -1 \\ 2 & 0 & 3 \end{bmatrix}$. Will the Gauss Seidel iteration converge regardless of the initial guess $x^{(0)}$? Explain your answer.

Q4. Write a MATLAB function that takes as input a matrix A, a vector b, an initial guess $x^{(0)}$, and a maximal number of iterations k, and then uses the Gauss Seidel method to solve $Ax = b$ with initial guess $x^{(0)}$. Your function should stop when the maximal number k of iterations is reached.

Q5. Find the $PA = LU$ factorization of the matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ 4 & 2 & 4 \\ -2 & 4 & -1 \end{bmatrix}$ using Gauss elimination with partial pivoting. Make sure you write out the matrices P, L, U. Remember that you can always check your answer by computing $A = \text{PT}LU$.

Q6. To answer the questions below, you may assume that the following holds (you don’t need to prove this):

$$\|x\|_\infty \leq \|x\|_2 \leq \|x\|_1 \leq \sqrt{n}\|x\|_2 \leq n\|x\|_\infty.$$
a) Show that \(\|A\|_1 \leq n \|A\|_\infty \).

b) Find an example of a matrix for \(n = 2 \) such that \(\|A\|_1 = 2 \|A\|_\infty \). You must compute both norms to show that your example works.

Hint: It may help to first find an example of a length 2 vector \(x \) for which \(\|x\|_1 = 2 \|x\|_\infty \) first.

c) Let \(Q \) be an orthogonal matrix. Show that \(\|Qx\|_2 = \|x\|_2 \) for every vector \(x \).

Q7. Let \(u \) be a unit-norm vector (\(\|u\|_2 = 1 \)) and let \(Q_u \) be the Householder reflector \(Q_u = I - 2uu^T \). What are the eigenvalues and determinant of \(Q_u \)? (Hint: recall that \(P = uu^T \) is a rank-one matrix for which \(Pu = u \).)

Q8. Consider the positive definite matrix \(A \in \mathbb{R}^{n \times n} \), and let \(A = R^T R \) be its Cholesky decomposition.

a) Show that \(\kappa_2(A) = (\kappa_2(R))^2 \), where \(\kappa_2 \) stands for “condition number in norm 2”.

b) Show that the right singular vectors of \(A \) are also right singular vectors for \(R \).

Q9. Suppose that the matrix \(A \in \mathbb{C}^{4 \times 4} \) has eigenvalues \(\{2, -2, 1.5, 0.5\} \), with eigenvectors \(v_1, v_2, v_3, v_4 \). Let \(q = v_3 + 2v_4 \). Will the power method started with \(q_0 = q \) converge, and if so, to what? (Hint: without normalizing the vectors, try writing out \(q_1, q_2, q_3, q_4, \ldots \))

Q10. Let

\[
\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}, \quad
\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}, \quad
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\]

a) Perform the Gram-Schmidt process on \(\{v_1, v_2, v_3\} \) to obtain three orthonormal vectors \(q_1, q_2, q_3 \).

b) Let \(A = [v_1, v_2, v_3] \); use a) to find the minimizer \(x \) for the least squares problem involving \(A \) and \(b = [1, 1, 1, 1]^T \).

Q11. The following is an excerpt from a MATLAB code:

\[
[U, S, V] = svd(A);
S = diag(S);
r = rank(A);
S1 = S(1:r,1:r);
S2 = diag(ones(r,1)./S(1:r));
X = V(:,1:r)*S2*U(:,1:r)';
Y = U(:,1:r)*S1*V(:,1:r)';
\]

Read and understand the code, then answer the following questions:
a) What is X?

b) In exact arithmetic, what is $\text{norm}(A-Y)$?

Q12. Let $A \in \mathbb{C}^{2 \times 2}$ be a defective matrix. Show that A is similar to a matrix

$$B = \begin{bmatrix} \lambda & \alpha \\ 0 & \lambda \end{bmatrix},$$

for some particular choices of λ and $\alpha \neq 0$ in \mathbb{C}^2.