Homework problems that will be graded (P1 - P6, 30pts in total):

P1. (This is similar to exercise 5.2.17 from the textbook)
Let \(A \in \mathbb{R}^{m \times n} \) have SVD \(A = U \Sigma V^T \). Show that the columns \(v_1, \ldots, v_n \) of \(V \) are linearly independent eigenvectors of \(A^T A \) and that the columns \(u_1, \ldots, u_m \) of \(U \) are linearly independent eigenvectors of \(AA^T \), corresponding to the eigenvalues \(\sigma_1^2, \ldots, \sigma_r^2, 0, \ldots, 0 \), where \(r \) is the rank of the matrix \(A \).

P2. Work the following problem by hand. Find the SVD of
\[
A = \begin{bmatrix}
3 & 2 & 2 \\
2 & 3 & -2
\end{bmatrix}.
\]

Hint: Use P1. Remember that you can check your result with MATLAB’s svd command.

P3. (This is similar to exercise 5.2.20 from the textbook)
Let \(A \in \mathbb{C}^{n \times n} \) be a block-triangular matrix
\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
0 & A_{22}
\end{bmatrix},
\]
where \(A_{11} \in \mathbb{C}^{j \times j} \) and \(A_{22} \in \mathbb{C}^{k \times k} \), \(j + k = n \).

a) Let \(\lambda \) be an eigenvalue of \(A_{11} \) with eigenvector \(v \). Show that \([v,0]^T\) is an eigenvector of \(A \) with eigenvalue \(\lambda \), where the 0 here is a vector of 0s of length \(k \).

b) Suppose now that \(\lambda \) is not an eigenvalue of \(A_{11} \), but is an eigenvalue of \(A \). Let \([v, w]^T\) be the associated eigenvector for \(A \), with \(w \) of length \(k \) and \(v \) of length \(j \). Show that \(w \) is an eigenvector of \(A_{22} \) with eigenvalue \(\lambda \).

c) Let \(\lambda \) be an eigenvalue of \(A \) with eigenvector \([v, w]^T\), where \(v \) has length \(j \) and \(w \) has length \(k \). Show that either \(v \) is an eigenvector of \(A_{11} \), or \(w \) is an eigenvector of \(A_{22} \) (Hint: consider the cases \(w = 0 \) and \(w \neq 0 \)).

d) Using a), b), c), explain what an eigenpair \((\lambda, v)\) of \(A \) looks like.

P4. (This is similar to exercise 5.3.8 from the textbook)
Work this problem by hand. Let
\[
A = \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}.
\]
Carry out the power method with starting vector \(q_0 = [a, b]^T \), where \(a, b \geq 0 \) and \(a \neq b \). Explain why the sequence fails to converge. What is the problem with the convergence argument we had in the lecture?
P5. (This is similar to exercise 5.4.47 from the textbook)

A matrix \(A \in \mathbb{C}^{n \times n} \) is called \textit{normal} if \(AA^* = A^*A \). Here \(A^* \) denotes the complex conjugate transpose of \(A \): \(A^* = \overline{A^T} \).

Suppose \(A \) is normal, with eigenvalues \(\lambda_1, \ldots, \lambda_n \) ordered by \(|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n| \) and singular values \(\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n \geq 0 \).

Show that \(\sigma_j = |\lambda_j| \) for all \(1 \leq j \leq n \). What are the eigenvectors of \(A \)?

P6. (MATLAB problem) Run the sni.m code provided. The first 4 lines construct a random matrix \(B \) with prescribed eigenvalues. The fifth line inverts \(B \) and names the inverse \(C \), and the remainder of the code applies the power method to the matrix \(C \). Run the code and examine it closely, then answer the following questions.

a) What are the eigenvalues of \(B \) and \(C \)? Your answer should be in terms of the eigenvalues of \(A \).

b) Use reasoning, not MATLAB, to answer this question, and show your reasoning.

\(q \) is a very good approximation for an eigenvector of \(A \). What is the corresponding eigenvalue \(\lambda \)?

c) How would the answer in b) change if we replaced 0.25 with 1.5 in line 4 of the script? Explain your answer.

d) Show how good the approximation vector \(q \) is by typing in MATLAB

\[
\text{norm}((A-\lambda*\text{eye}(5))*q),
\]

where \(\lambda \) is the number you obtained in b). This computes the 2-norm of the vector in parentheses; if it is small, the vector \(q \) is a good approximation.