Finishing 1.2. Last time we talked about numerically solving ODEs by writing the associated linear system and solving it. A few more things about the system are worth saying (and even repeating).

What does the matrix in that system look like? Recall that the ODE is
\[u''(x) + au'(x) + bu(x) = f(x), \text{ for every } x \in [0,1], \text{ and } u(0) = u(1) = 0. \]

We have constructed an equipartition of \([0,1]\) into \(m\) equal intervals of length \(h = 1/m\), and \(u_i\) is designed to approximate \(u(x_i) = u(i \cdot h);\) we write \(f_i = f(x_i)\). The \(i\)th equation of the linear system will look like this:
\[\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} + a \frac{u_{i+1} - u_{i-1}}{2h} + bu_i = f_i. \]

Note \(u_0 = u_m = 0\).

From the \(i\)th equation we see that the only non-zero coefficients are those of \(u_{i-1}, u_i,\) and \(u_{i+1}\). This means that the matrix is **banded**, that is, it only has non-zero entries in a band around the main diagonal (any system arising from a homogeneous, constant-coefficient ODE is going to be banded; in this case the band length is 3, as the system is tridiagonal). Rewrite the equation:
\[\left(\frac{1}{h^2} - \frac{a}{h} \right) u_{i-1} + \left(-\frac{2}{h^2} + b \right) u_i + \left(\frac{1}{h^2} + \frac{a}{2h} \right) u_{i+1} = f_i; \]

now we see that the matrix looks like
\[
A_h = \begin{bmatrix}
\left(\frac{1}{h^2} - \frac{a}{h} \right) & \left(-\frac{2}{h^2} + b \right) & 0 & \cdots & 0 & 0 \\
\left(\frac{1}{h^2} - \frac{a}{h} \right) & \left(\frac{1}{h^2} + \frac{a}{2h} \right) & \left(\frac{1}{h^2} + \frac{a}{2h} \right) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \left(-\frac{2}{h^2} + b \right) & \left(\frac{1}{h^2} + \frac{a}{2h} \right)
\end{bmatrix},
\]

The rows of this matrix are independent, and a very well-known theorem from linear algebra tells us that the system will have exactly one solution for each right hand side.

Theorem 1. Let \(A\) be an \(n \times n\) matrix with real (or complex) entries. The following are equivalent:

1. \(A^{-1}\) exists (the matrix is invertible or non-singular);
2. there is no \(y \neq 0\) such that \(Ay = 0\) (meaning, if \(Ay = 0\) then \(y = 0\));
3. the columns of \(A\) are linearly independent;
4. the rows of \(A\) are linearly independent;
5. for any column vector \(b\) of length \(n\), there exists precisely one column vector \(y\) such that \(Ay = b\).
For Homework 1 you will have to set up, or to set up and solve, systems of linear equations (the former for an ODE, the latter for a mass-spring system, which you can also read more about in Section 1.2 of the textbook).

Section 1.3. We will now start talking about how one may approach solving linear systems; one of the simplest systems to solve is a triangular one, so called because the 0-structure of the matrix makes it look like a triangle (if all entries above the main diagonal are 0, we call it lower-triangular, and if all entries below the main diagonal are 0, we call it upper-triangular).

Let \(G y = b \) be an example of a lower-triangular system (the awful notation simply reflects the textbook notation); the system looks like

\[
\begin{align*}
g_{11} y_1 & = b_1 \\
g_{12} y_1 + g_{22} y_2 & = b_2 \\
& \quad \vdots \\
g_{n1} y_1 + g_{n2} y_2 + \ldots + g_{nn} y_n & = b_n
\end{align*}
\]

The obvious strategy is to do **forward substitution**; solve for \(y_1 \) from the first equation, substitute into the second equation and solve for \(y_2 \), then substitute the values you have found for \(y_1, y_2 \) in the third equation and solve for \(y_3 \), and continue this way down until you solved all the equations.

This relies on the following formula for \(y_i \), with \(i = 1, 2, \ldots, n \), which can be evaluated sequentially from 1 through \(n \), using the values we have already found:

\[
y_i = \frac{b_i - g_{i1} y_1 - g_{i2} y_2 - \cdots - g_{i(i-1)} y_{i-1}}{g_{ii}}.
\]

A simple way to code forward substitution into MATLAB can be seen below.

```matlab
function y = lowtriangsolve1(G,b);
y = b;
for i = 1 : n
    for j = 1 : (i - 1)
        y_i = y_i - g_ij * y_j;
    end
    if g_ii = 0, error('matrix is singular'), end
    y_i = y_i / g_ii;
end
```

NOTE: recall that the determinant of a triangular matrix is the product of the diagonal entries (Exercise: try to think why). So if the matrix is non-singular, none of the diagonal entries can be 0. Conversely, if any diagonal entry is 0, the matrix must be singular (and the system cannot be uniquely solved).

Often, once \(y \) is found, \(b \) is no longer needed and so it is overwritten. In the textbook, the pseudocode algorithms for triangular solve overwrite \(b \). This helps with space-saving if the matrices are huge, but it will not impact things much for the kinds of matrices we will be dealing with in this class.

Flop count. Consider the floating point operations (a.k.a. *flop*) (+, −, *, /) count for forward substitution. The inner loop effectuates 2 flops each time it is run, and it is run \((i - 1)\) times, for
a total of $2i - 2$ flops. The division at the end adds one more flop. So for each i from 1 to n, the work done inside the first for loop is proportional to $2i - 1$.

The flop count is

$$\sum_{i=1}^{n} (2i - 1) = 2 \sum_{i=1}^{n} i - \sum_{i=1}^{n} 1 = n(n + 1) - n = n^2.$$

Each time we double n, the algorithm will take 4 times as long to run.

Backward Substitution. So far we have seen how to solve lower triangular systems, but what if the system is upper triangular, i.e., looks like

$$u_{11}x_1 + u_{12}x_2 + \ldots + u_{1n}x_n = b_1$$
$$u_{22}x_2 + \ldots + u_{2n}x_n = b_2$$
$$\vdots$$
$$u_{nn}x_n = b_n,$$

how does the strategy change? Answer: we start from the bottom, from x_n, and work our way backwards to x_1. All the rest is similar; the strategy is named *backward substitution*. You can work out the new algorithm on your own; it is very similar to the old one and you should expect to see the same flop count as before.