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There are lots of approaches to defining infinity categories. In this talk, I will give the
necessary background for explaining one such construction, namely quasicategories.

1. From simplicial complexes to simplicial sets

(Ordered) Simplicial complexes. Simplicial complexes are basically things you can build
by gluing together standard ordered n-simplices along their faces.
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Figure 1. Standard n-simplices

For example, this

v0 v1

v2

v3

is a simplicial complex. (Note that for the purposes of this talk, simplicial complexes will be
ordered – that is, there is an ordering on the vertices.) You can specify a simplicial complex
by labelling the vertices {v1, v2, · · · , vn} and specifying several sets:

X0 = { vertices }
X1 = { edges }
X2 = { faces } etc.

So if we label the simplicial complex above as
a b

c

d
then X0 = {a, b, c, d}, X1 =

{(a, b), (b, c), (c, a), (b, d)}, and X2 is the set containing just the one 2-dimensional face (a, b, c).
Note that all higher Xi are empty.

This kind of description has a lot of redundancy. For every n, and 0 ≤ i ≤ n, you can form
maps of sets di : Xn+1 → Xn, called face maps, that take an n-simplex to the ith face. It is
not hard to check that these satisfy the identity

(1.1) didj = dj−1di for i < j.
1



2

Delta complexes. You can think of delta complexes as the same as simplicial complexes,
only you allow multigraphs. More formally, a delta complex is a collection of sets X0, X1, X2, · · ·
as before, and face maps di : Xn+1 → Xn satisfying (1.1). For example, simplicial complexes
are delta complexes, and so is anything made by taking a simplicial complex and gluing some

of its simplices to each other. For example, we can take
a b

c

and glue a to b to

get a cone. For another example, consider

a b
e1

e2 , where the only nonempty sets are
X0 = {a, b} and X1 = {e1, e2}.

Another way to describe a delta complex is as a functor X : ∆̂op → Set, where ∆̂ is a
category where the objects are

n = 0→ 1→ · · · → n

for every n. On objects, this sends n 7→ Xn, and morphisms are strictly order-preserving
maps. So a morphism 1→ 2 might look like

0 //

��
1
��

0 // 1 // 2

and there can be no morphisms 2 → 1 (because then two things in 2 would have to be sent
to one thing in 1). We can describe our face maps di in terms of this language: there is a
morphism di : n→ n + 1

· · · // i− 1

��

// i //

��

i + 1

((

// i + 2

((

//// · · ·

· · · // i− 1 // i // i + 1 // i + 2 // i + 3 // · · ·

which is sent to the face map di : Xn → Xn+1 under X : ∆̂op → Set. In this reformulation,
you can again check that (1.1) holds.

Simplicial sets. Simplicial sets are like delta complexes, except the morphisms are only
order-preserving, not necessarily strictly order-preserving. So we have a new category ∆,
where the objects are n as before, and the morphisms are order-preserving maps. Now we
have degeneracies si : n + 1→ n as follows:

· · · // i− 1

��

// i //

��

i + 1

xx

// i + 2

vv

//// i + 3 //

vv

· · ·

· · · // i− 1 // i // i + 1 // i + 2 // · · ·

The functor X : ∆op → Set sends si to a map si : Xn → Xn+1 satisfying

sisj = sj+1 for i ≤ j

disj =


1 if i = j or i = j + 1

sj−1di if i < j

sjdi−1 if i > j + 1.

Let’s take a look at what happens to the most basic geometric notions under the categorical
lens. For every n the analogue of the standard n-simplex (as in Figure 1) is a simplicial set
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∆n = Hom∆(−, n) (that is, (∆n)k = Hom(k, n)). So (∆n)0 is the set Hom(0, n), which cor-
responds to picking an element i in 0→ · · · → n. Similarly, (∆n)1 = Hom(1, n) corresponds
to picking a pair (i, j) for i ≤ j – that is, picking a path vi → vj .

By the Yoneda lemma, there is a correspondence {∆n → X} ↔ Xn. If X is a simplicial set
that came from a simplicial complex, then we may think of Xn as the set of (combinatorial) n-
simplices in the simplicial complex (including degeneracies). This also motivates the following
definition.

Definition 1.1. The n-simplices of X are simplicial maps ∆n → X.

Example 1.2. The simplicial complex

e0

e
1e 2

a b

c

corresponds to a simplicial set X : ∆op → Set where X0 = {a, b, c}, X1 =
{e0, e1, e2, s0(a), s0(b), s0(c)}, and X100 contains s0(a), s0(b), s0(c) (maps [0, · · · , 100] 7→ a
etc.), si(e1), si(e2), si(e3) (maps [0, · · · , i] 7→ a and [i + 1, · · · , 100 7→ b] etc.).

Example 1.3. Let W be a topological space. Then we will define a simplicial set SingW as:

(SingW )n = {|∆n| →W}
where |∆n| is the geometric n-simplex – the figure in Rn with vertices vi =
(0, · · · , 0

i

, 1, 0, · · · , 0), for 0 ≤ i ≤ n. The face maps and degeneracies are what you’d ex-

pect geometrically.

Example 1.4 (Nerve). Let C be an arbitrary category. We will define a simplicial set BC
called the nerve.

(BC)0 = { objects of C }
(BC)1 = { morphisms of C }

(BC)2 =

{
commutative diagrams

z

x

??

// y

OO }

(BC)3 =

{
commutative tetrahedrons

z

y

w

x }
(BC)4 = etc.

2. Kan condition

Definition 2.1 (Horn). For all k ≤ n, form the simplicial set Λn
k , called the “(n, k) horn”

by taking ∆n and removing the n-simplex and its kth face.



4

For example, Λ2
0 is 0 2

1

.

Definition 2.2. A simplicial set X has the Kan condition if, for every diagram

(2.1) Λn
k

//

��

X

∆n

there is an extension ∆n → X making the diagram commute. (The Kan condition is infor-
mally summarized as “every horn has a filler”.)

Example 2.3. SingW satisfies the Kan condition. We can illustrate this in the case n = 2:
the diagram (2.1) looks like

//

��

X

and the filler → X is given by contracting → → before mapping
that to X.

Example 2.4 (∆1). We will show that ∆1 doesn’t have the Kan condition by constructing
a horn diagram (2.1) that doesn’t have a filler. Consider

Λ2
0 =

1 2

0

0 7→0, 17→1, 27→0 //

��

∆1 =
0 1

1 2

0

(along the top row we’re mapping the edge (0, 1) to (0, 1) and the edge (0, 2) to the degenerate
edge (1, 1)).

Example 2.5. Let’s check if the nerve BC satisfies the Kan condition. First suppose the
top row of (2.1) looks like Λ2

1 → BC; this corresponds to picking objects c0, c1, c2 in BC with
morphisms c0 → c1 and c1 → c2. A map ∆2 → BC would be a collection of three objects
c0, c1, c2 with morphisms c0 → c1, c1 → c2, c0 → c2 that form a commutative triangle. So
given the data c0 → c1 → c2 of a map Λ2

1 → BC, we can form a commutative triangle by
defining c0 → c2 to be the composition of c0 → c1 → c2. So, any embedding of the horn Λ2

1

has a filler.

However, now let’s try to get a filler for an embedding of the horn Λ2
0. A map Λ2

0 → BC is
equivalent to picking objects c0, c1, c2 and morphisms c0 → c1 and c0 → c2. In order to get a
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“filler” ∆2 → BC we’d need to get another morphism c1 → c2 making c1

��
c0

//

@@

c2

commute.

Such a morphism might not necessarily exist, and so BC does not satisfy the Kan condition.

Note that this does work if C is a groupoid – that is, if all morphisms are invertible.

To get a filler, we need to send the edge (1, 2) to some (possibly degenerate) edge. But there
is no way to do this in an order-preserving manner.

In fact, Λn
k → BC works when 0 < k < n. If 0 < k < n then Λn

k is called an inner horn.

Definition 2.6. A quasi-category is a simplicial set where every inner horn has a filler.

If C is a category then inner horn fillers for BC are unique: this is because compositions are
unique.

Proposition 2.7. If X has unique fillers of inner horns, then X = BC for some category C.

Proof. To construct C, let X0 be the set of objects of C, and X1 be the set of morphisms. We
can recover the source and destination of each morphism by the face maps: if e ∈ X1 then
we can think of e as a morphism from d0(e) to d1(e).

Identity morphisms: for v ∈ X0, the identity morphism is s0(v).

Compositions: suppose we have morphisms a : x → y and b : y → z. Then the composition
b ◦ a is the unique filler in the diagram

Λ2
1

//

��

X

∆2

??

where the top row embeds Λ2
1 as y

��
x

EE

z.

Associativity : a nuisance; use a similar idea with Λ3
2. �

What if fillers are not unique? The idea is that, in a quasicategory, all possible fillers are
“equivalent”.

Definition 2.8. If f, g : x→ y are 1-simplices, then we say that f is homotopic to g (f ∼ g)
if there is a 2-simplex whose boundary is

y
Id

��
x

f
??

g // y
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Proposition 2.9. If X is a quasicategory, then ∼ is an equivalence relation.

Proof. (Reflexivity) Let f : x → y and take the degenerate 2-simplex sending 0 7→ x, 1 7→
y, 2 7→ y:

y
Id

��
x

f //

f
??

y

This shows that f ∼ f .

(Symmetry) Suppose f ∼ g; this implies the front face in the following diagram commutes
(unlabelled arrows are the identity).

g

f
f

x y

y

y

Then the right and back faces commute by definition of the identity arrow. By the inner-horn-
filling condition, the entire tetrahedron commutes, and hence the bottom face commutes; now
by definition, g ∼ f .

(Transitivity) Suppose f ∼ g and g ∼ h. This implies that the front and bottom faces
commute, and the right face commutes by definition.

g

f
h

x y

y

y

By the inner-horn-filling condition, f ∼ h. �

Proposition 2.10. In a quasicategory, two inner-horn-fillers are homotopic.

Proof. Given two fillers

(2.2) y
b

��
x

a
??

c
//

c′ //
z

it suffices to show that the front face of

c′

c
1x

b

a

a
x z

x

y
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commutes. But the right and bottom faces commute because of our assumption (2.2), and
the back face commutes by definition. By the inner-horn-filling condition, the front face
commutes. �

So given a generic quasicategory X, we might not have X = BC for some C, but you can still
associate a category with it: define Ho(X) to be the category where the set of objects is X0,
and the morphisms are equivalence classes (up to homotopy) of elements in X1.
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