Math 10B Formula Sheet

Derivative formulas:

$\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x}(\ln |x|)=\frac{1}{x}$
$\frac{d}{d x}(\sec x)=\sec x \tan x$
$\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
$\frac{d}{d x}(\sin x)=\cos x$
$\frac{d}{d x}(\cot x)=-\csc ^{2} x$
$\frac{d}{d x}\left(b^{x}\right)=b^{x} \ln b$
$\frac{d}{d x}(\cos x)=-\sin x$
$\frac{d}{d x}(\csc x)=-\csc x \cot x$

Unit circle:

p-test:
$\int_{1}^{\infty} \frac{1}{x^{p}} d x$

- if $p>1$, convergent
- if $p \leq 1$, divergent
$\int_{0}^{1} \frac{1}{x^{p}} d x$
- if $p<1$, convergent
- if $p \geq 1$, divergent

Geometric series: $\sum_{n=0}^{\infty} a r^{n}$

- $|r| \geq 1$: diverges
$n^{\text {th }}$ partial sum $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
- $|r|<1$: converges to $\frac{a}{1-r}$
(for any r except $r=1$)

Riemann sum definition of definite integral (written here with right endpoints):
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x, \quad$ where $\quad x_{i}=a+i \Delta x \quad$ and $\Delta x=\frac{b-a}{n}$

Average value of a function over an interval: $f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

The Mean Value Theorem for integrals:
If f is continuous on $[a, b]$, there is at least one c in $[a, b]$ with $f(c)=f_{\text {ave }}$

Doubling time: $2=e^{k t} \quad$ Half-life: $\frac{1}{2}=e^{-k t}$
Newton's Law of Cooling: $T=\left(T_{0}-T_{a}\right) e^{-k t}+T_{a}$

Integration by Parts: Split the integrand into u and $\frac{d v}{d x}$. Good in several cases:

- A polynomial times a function.
- A function whose derivative is simpler.
- The product of two functions whose derivatives loop around.

Partial Fractions: Used when you have a rational function. Remember that long-division might be needed.

Disk method - volumes by slicing:

$$
\int_{a}^{b} \pi[f(x)]^{2} d x
$$

Washer method - volumes by slicing:
$\int_{a}^{b} \pi\left[(f(x))^{2}-(g(x))^{2}\right] d x$

