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ABSTRACT

COMPLETE POSITIVITY IN OPERATOR ALGEBRAS

Ali Şamil KAVRUK

M.S. in Mathematics

Supervisor: Assoc. Prof. Aurelian Gheondea

July 2006

In this thesis we survey positive and completely positive maps defined on oper-

ator systems. In Chapter 3 we study the properties of positive maps as well as

construction of positive maps under certain conditions. In Chapter 4 we focus

on completely positive maps. We give some conditions on domain and range

under which positivity implies complete positivity. The last chapter consists of

Stinespring’s dilation theorem and its applications to various areas.

Keywords: C∗-Algebras , Operator systems, Completely positive maps, Stine-

spring representation.
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ÖZET

OPERATÖR CEBİRLERİ VE TAMAMEN POZİTİF
OPERATÖRLER

Ali Şamil KAVRUK

Matematik, Yüksek Lisans

Tez Yöneticisi: Doc. Dr. Aurelian Gheondea

Temmuz 2006

Bu tezde operatör sistemleri üzerinde tanımlı pozitif ve tamamen pozitif ope-

ratörleri inceledik. 3. bölümde pozitif operatörlerin özelliklerini ve belli koşullar

altında bunların nasıl elde edilebileceğini çalıştık. 4. bölümde tamamen pozi-

tif operatörleri inceledik. Pozitifliğin tamamen pozitifliği verebilmesi için tanım

ve görüntü kümesi üzerindeki bazı koşulları verdik. Son kısımda Stinespring

genleşme (dilation) teoremini sunduk ve bu teoremi çesitleri alanlara uyguladık.

Anahtar sözcükler : C∗-Cebirleri, Operatör sistemleri, Tamamen pozitif opera-

törler, Stinespring temsili.
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Preface

In 1943, M.A. Naimark published two apparently unrelated results: the first

was concerning the possibility of dilation of a positive operator valued measure

to a spectral measure [14] while the second was concerning a characterization of

certain operator valued positive functions on groups in terms of representations on

a larger space [15]. A few years later, B. Sz.-Nagy obtained a theorem of unitary

dilations of contractions on a Hilbert space [18], whose importance turned out

to open a new and vast field of investigations of models of linear operators on

Hilbert space in terms of a generalized Fourier analysis [19]. In addition, Sz.-

Nagy Dilation Theorem turned out to be intimately connected with a celebrated

inequality of J. von Nuemann [16], in this way revealing its spectral character.

Later on, it turned out that the Sz.-Nagy Dilation Theorem was only a particular

case of the Naimark Dilation Theorem for groups.

In 1955, W.F. Stinespring [17] obtained a theorem characterizing certain op-

erator valued positive maps on C∗-algebras in terms of representations of those

C∗-algebras, what nowadays is called Stinespring Representation, which was rec-

ognized as a dilation theorem as well that contains as particular cases both of

the Naimark Dilation Theorems and, of course, the Sz.-Nagy Dilation Theorem.

The Stinespring Dilation Theorem opened a large field of investigations on a new

concept in operator algebra that is now called complete positivity, mainly due to

the pioneering work of M.D. Choi [9, 10, 11]. An exposition of the most recent

developments in this theory can be found in the monograph of E.G. Effros and

Z.J. Ruan [12].

The aim of this work is to present in modern terms the above mentioned

dilations theorems, starting from the Stinespring Dilation Theorem. In this en-

terprise we follow closely our weekly expositions in the Graduate Seminar on

Functional Analysis and Operator Theory at the Department of Mathematics of

Bilkent University, under the supervision of Aurelian Gheondea. For these pre-

sentations we have used mainly the monograph of V.I. Paulsen [4], while for the

prerequisites on C∗-algebras we have used the textbooks of W.B. Arveson [1, 2].
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In this presentation we tried to be as accurate and complete as possible, work-

ing out many examples and proving auxiliary results that have been left out by

V.I. Paulsen as exercises. Therefore, for a few technicalities in operator theory

we used the textbook of J.B. Conway [3] and the monograph of K.E. Gustafson

and D.K.M. Rao [8], as well as the monograph of P. Koosis [6] on Hardy spaces.

We now briefly describe the contents of this work. The first chapter is a

review of basic definitions and results on C∗-algebras, spectrum, positiveness

in C∗-algebras, adjoining a unit to a nonunital C∗-algebras, as well as tensor

products (for which we have used the monograph of A.Ya. Helemeskii [7]).

In the second chapter, we present the basics on the C∗-algebra structures on

the algebra of complex n × n matrices, the tensor products of C∗-algebras and

in particular, C∗-algebras of matrices with entries in a C∗-algebra, and a certain

technical aspect related to the so-called canonical shuffle.

The core of our work starts with the third chapter which is dedicated to

operator systems and positive maps on operator systems. Roughly speaking, an

operator system is a subspace of a unital C∗-algebra, that is stable under the

involution and contains the unit. The main interest here is in connection with

estimations of the norms for positive maps on operator systems, a proof of the von

Neumann Inequality based on the technique of positive maps and the Fejer-Riesz

Lemma of representation of positive trigonometric polynomials.

Chapter four can be viewed as a preparation for the Stinespring Dilation

Theorem, due to the fact that it provides the background for the understanding

of completely positive maps on operator systems. The idea of complete positivity

in operator algebras comes from the positivity on the tensor products of a C∗-

algebras with the chain of C∗-algebras of square complex matrices of larger and

larger size. This notion is closely connected with that of complete boundedness,

but here we only present a few aspects related to our goal; this subject is vast by

itself and under rapid development during the last twenty years, as reflected in the

monograph [12]. In this respect, we first clarify the connection between positivity

and complete positivity: completely positivity always implies positivity, while the

converse holds only in special cases, related mainly with the commutativity of the
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domain or of the range.

In the last chapter we prove the Stinespring Dilation Theorem and show how

many other dilation theorems can be obtained from here; we get from it the

Sz.-Nagy Dilation Theorem and the von Neumann Inequality, we indicate the

connection with the more general concept of spectral set (due to C. Foiaş

[13]), and finally prove the two Naimark Dilation Theorems, for operator valued

measures and for operator valued positive definite maps on groups, as applications

of Stinespring Dilation Theorem.



Chapter 1

C∗-Algebras

C∗-algebras are closely related with operators on a Hilbert space. As a concrete

model, B(H) is a C∗-algebra for any Hilbert space H. One first defines abstract

C∗-algebras and then, by a celebrated theorem of Gelfand-Naimark-Segal, it can

be proven that any abstract C∗-algebra is isometric ∗-isomorphic with a norm-

closed, selfadjoint subalgebra of B(H) for some Hilbert space H, which can be

defined as concrete C∗-algebra. Defining abstract C∗-algebras has the advantage

of allowing many operations like quotient, direct sum and product, as well as

tensor products.

1.1 Definitions and Examples

Definition 1.1. A complex algebra A is a vector space A over C with a vector

multiplication a, b ∈ A 7→ ab ∈ A satisfying

(1) (αa+ βb)c = α ac+ β bc and c(αa+ βb) = α ca+ β cb;

(2) a(bc) = (ab)c

for all a, b, c in A and α, β in C.

Definition 1.2. A Banach algebra A is a Banach space (A, ‖ · ‖) where A is also

a complex algebra and norm ‖ · ‖ satisfies ‖ab‖ ≤ ‖a‖‖b‖ for all a and b in A.

1



CHAPTER 1. C∗-ALGEBRAS 2

Definition 1.3. Let A be a complex algebra. A map a 7→ a∗ is called an invo-

lution on A if it satisfies

(1) (a∗)∗ = a;

(2) (ab)∗ = b∗a∗;

(3) (αa+ βb)∗ = ᾱa∗ + β̄b∗

for all a and b in A, and all α, β in C. A complex algebra with an involution ∗
on it is called ∗-algebra.

Definition 1.4. A C∗-algebra A is a Banach algebra A with an involution ∗
satisfying ‖a∗a‖ = ‖a‖2 for all a in A.

If A is a C∗-algebra then we have ‖a∗‖ = ‖a‖ for all a in A.

A complex algebra A is said to have a unit if it has an element, denoted by 1,

satisfying 1a = a1 = a for all a in A. Existence of such unit leads to the notion of

unital ∗-algebra, unital Banach algebra and unital C∗ algebra. A complex algebra

A is said to be commutative if ab = ba for all a and b in A. In the following we

recall some related definitions.

Definition 1.5. A C∗-algebra A is said to be unital or have unit 1 if it has an

element, denoted by 1, satisfying 1a = a1 = a for all a in A.

If A is a nontrivial C∗-algebra with unit 1, then 1∗ = 1 and ‖1‖ = 1.

Definition 1.6. A C∗-algebra A is said to be commutative if ab = ba for all a

and b in A.

We briefly recall basic examples of C∗-algebras.

Example 1.7. Let H be a Hilbert space. Then B(H) is a C∗-algebra with its

usual operator norm and adjoint operation. Indeed, it is easy to show that adjoint

operation T 7→ T ∗ is an involution. We will use the usual notation, I for the unit.

B(H) is not commutative when dim(H) > 1.

Example 1.8. Let H be Hilbert space. A subalgebra of B(H) which is closed

under norm and under adjoint operation is a C∗-algebra. We will see that such
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C∗-algebras are universal. For example K(H), the set of all compact operators

on H, is a C∗-algebra and it has no unit when H is infinite dimensional.

Example 1.9. Let X be a compact Hausdorff space. Then C(X), the space

of continuous functions from X to C, is a commutative unital C∗-algebra with

sup-norm and involution f ∗(x) = f(x). We will see that this type of C∗-algebras

are universal for commutative unital C∗-algebras.

Example 1.10. Let X be a locally compact Hausdorff space which is not com-

pact. Then C0(X), the space of continuous functions vanishing at infinity, is a

commutative non-unital C∗-algebra with sup-norm and involution f ∗(x) = f(x).

Such C∗-algebras are universal for commutative non-unital C∗-algebras, e.g. see

[2]).

Definition 1.11. Let H be a Hilbert space. A subalgebra of B(H) which is

closed under norm and under adjoint is called a concrete C∗-algebra.

As we see in Example 1.8 any concrete C∗-algebra is a C∗-algebra. In section

1.3 we can see that the converse is also true by the theorem of Gelfand-Naimark-

Segal.

Definition 1.12. Let A and B be two C∗-algebras. A mapping π : A → B is

called ∗-homomorphism if π is an algebra homomorphism and π(a∗) = π(a)∗ for

all a in A. A mapping ϕ : A → B is called isometric ∗-isomorphism if ϕ is a

bijective ∗-homomorphism and preserves norms. In this case A and B are said

to be isometric ∗-isomorphic.

Two isometric ∗-isomorphic C∗-algebras can be considered as the same C∗-

algebra, since the isometric ∗-isomorphism preserves every possible operations

bijectively.

Definition 1.13. Let A be a C∗-algebra with unit 1. An element a of A is

said to be invertible if there exists an element b such that ab = ba = 1. Such b

(necessarily unique) is said to be the inverse of a and denoted by a−1. The set

of all invertible elements of A is denoted by A−1.
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Definition 1.14. Let A be a C∗-algebra. An element a of A is said to be

selfadjoint if a = a∗, and normal if aa∗ = a∗a. If A has unit 1, then a is called

unitary if aa∗ = a∗a = 1.

1.2 Spectrum

In this section we recall the notion of spectrum of an element and state basic

theorems about this. Finding spectrum of an element of a C∗-algebra (or B(H))

is still a continuing part of researches. For proofs we have used [1]).

Definition 1.15. Let A be a C∗-algebra with unit 1 and a ∈ A. We define the

spectrum of a by

σ(a) = {λ ∈ C : a− λ1 /∈ A−1}.

Theorem 1.16 (Spectrum). Let A be a C∗-algebra with unit and a ∈ A. Then

σ(a) is a nonempty compact subset of {z : |z| ≤ ‖a‖}.

Definition 1.17. Let A be a C∗-algebra with unit and a ∈ A. We define the

spectral radius of a by

r(a) = sup{|λ| : λ ∈ σ(a)}.

Theorem 1.18 (Spectral radius). Let A be a C∗-algebra with unit and a ∈ A,

then

r(a) = lim
n→∞

‖an‖1/n.

A subset of a C∗-algebra is called C∗-subalgebra if it is C∗-algebra with in-

herited operations, involution and norm. The following theorem states that the

spectrum of an operator does not change by considering the spectrum in a C∗-

subalgebra.

Theorem 1.19 (Spectral permanence for C∗-algebras). Let A be a unital

C∗-algebra and B be a C∗-subalgebra of A with 1A = 1B. Then for any b ∈ B

σB(b) = σA(b).
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Now we recall one of main result in the theory, the spectral theorem for normal

operators. First we need the following remarks. By C∗{1, a} we mean the smallest

C∗-subalgebra containing 1 and a. It can be characterized as the closure of the

set of all polynomials in 1, a and a∗. Also notice that if X is a compact subset

of C then polynomials in z and z̄ are dense in C(X), by the Stone-Weierstrass

Theorem.

Theorem 1.20 (Spectral theorem for normal operators). Let A be a C∗-

algebra with unit 1 and a ∈ A be normal. Then C(σ(a)) and C∗{1, a} are iso-

metric ∗-isomorphic via the map uniquely determined by

N∑
n,k=0

cnkz
nz̄k 7−→

N∑
n,k=0

cnka
n(a∗)k.

Another result about C∗-algebras is the uniqueness of norm, that is:

Remark 1.21 (Uniqueness of the norm of a C∗-algebra). Given a ∗-algebra

there exists at most one norm on it so that it is a C∗-algebra. The proof of this

result can be seen in [1]). We should also notice that C(R) the ∗-algebra of

continuous functions from R to C cannot be a C∗-algebra with a norm. Indeed

if f(x) = ex than σ(f) = (0,∞) which is not possible in a C∗-algebra.

1.3 Fundamental Results, Positiveness

In this section we recall some basic results on positive elements. The first result

states that commutative unital C∗-algebras have a special shape and the next

result (GNS) shows that concrete C∗-algebras are universal.

Theorem 1.22. Let A be a commutative unital C∗-algebra. Then A is isometric

∗-isomorphic to a C(X) for some compact Hausdorff space X.

Theorem 1.23 (Gelfand-Naimark-Segal). Let A be a C∗-algebra. Then A is

isometric ∗-isomorphic to a concrete C∗-algebra.

This simply means that a C∗-algebra A is a C∗-subalgebra of B(H) for some

Hilbert space H. We will write A ↪→ B(H) if this representation is necessary.
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Definition 1.24. Let A be a unital C∗-algebra and a ∈ A. We say a is positive

if a is selfadjoint and σ(a) ⊂ [0,∞). We will write a ≥ 0 when a is positive.

Remark 1.25 (Partial order on selfadjoints). Let A be a unital C∗-algebra.

We write a ≥ b when a and b are selfadjoint and a− b ≥ 0. Then ≥ is a partial

order on selfadjoint elements of A. Also we will use notation a ≥ b ≥ 0 to

emphasize a and b are also positive.

Definition 1.26. Let A be a unital C∗-algebra. Then the set of all positive

elements of A is denoted by A+.

Theorem 1.27. A+ is a closed cone in A. That is, for any a, b in A+ and

nonnegative real numbers α, β, αa+ βb ∈ A+ and A+ is closed.

The following theorem gives other characterizations of positive elements.

Theorem 1.28 (Positiveness criteria). Let A be a C∗-algebra with unit 1 and

a ∈ A. The following assertions are equivalent.

(1) a ≥ 0.

(2) a = c∗c for some c ∈ A.

(3) 〈ax, x〉 ≥ 0 for all x ∈ H (if A ↪→ B(H) ).

Theorem 1.29 (nth root). Let A be a C∗-algebra with 1 and a ∈ A+. Then for

any positive integer n there exists unique c ∈ A+ such that a = cn.

Let T ∈ B(H). Then numerical radius of T is defined by

w(T ) = sup
‖x‖=1

{|〈Tx, x〉|}.

If T is normal then ‖T‖ = w(T ) ([8])). By using this result and Theorem 1.28

we can obtain the following,

Remark 1.30. Let A be a C∗-algebra with unit 1 and let a, b ∈ A.

(1) If a is selfadjoint then a ≤ ‖a‖ · 1.

(2) If 0 ≤ a ≤ b then ‖a‖ ≤ ‖b‖.
(3) If a, b ∈ A+ then ‖a− b‖ ≤ max(‖a‖, ‖b‖).
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Proof. By GNS we may assume that A is a concrete C∗-algebra in B(H). It is

easy to see that a is selfadjoint if and only if 〈ax, x〉 ∈ R for all x ∈ H. Since

〈(‖a‖ · 1 − a)x, x〉 ≥ 0 we obtain (1). To see (2), by Theorem 1.28, we have

0 ≤ 〈ax, x〉 ≤ 〈bx, x〉 for all x ∈ H. This means that w(a) ≤ w(b) and so

‖a‖ ≤ ‖b‖. For (3), notice that a− b is selfadjoint. For any ‖x‖ = 1,

|〈(a− b)x, x〉| = | 〈ax, x〉︸ ︷︷ ︸
≥0

−〈bx, x〉︸ ︷︷ ︸
≥0

| ≤ max(〈ax, x〉, 〈bx, x〉) ≤ max(‖a‖, ‖b‖).

So the result follows if take supremum over such x.

1.4 Adjoining a Unit to a C∗-Algebra

Assume that the C∗-algebra A does not have a unit. It is possible to add a unit

to A, which is denoted by A1 and A is a two sided ideal in A1 with dimA1/A=1.

For a in A, define La : A → A by b 7→ ab. Clearly La is a bounded linear operator

on A. We define

A1 = {La + λ1 : a ∈ A, λ ∈ C}

where 1 is identity operator on A. Then A1 becomes a unital complex algebra.

If we define involution by (La + λ1)∗ = La∗ + λ̄1 and norm by

||La + λ1||1 = sup{‖ab+ λb‖ : b ∈ A, ‖b‖ ≤ 1}

(the usual operator norm) then A1 becomes a C∗-algebra ([1] pg. 75). It is easy

to see that {La : a ∈ A} is a selfadjoint two sided ideal in A1 of codimension 1.

π : A → A1 by a 7→  La is an isometry so its image {La : a ∈ A} is closed in A1.

This means that {La : a ∈ A} is a C∗-subalgebra of A1. It is easy to see that π

is isometric ∗-isomorphism. So A and {La : a ∈ A} are isometric ∗-isomorphic.

Notice also that if La + λ1 = Lb + α1 then we necessarily have a = b and λ = α.

1.5 Tensor Products

In this section we recall tensor products of vector spaces, algebras, ∗-algebras,

Hilbert spaces and C∗-algebras. We used [7]) for the proofs.



CHAPTER 1. C∗-ALGEBRAS 8

Let A and B be two vector spaces over C. Define A ◦ B as the vector space

spanned by elements of A × B. Consider the subspace N of A ◦ B spanned by

the elements of the form

(a+ a′, b)− (a, b)− (a′, b), (a, b+ b′)− (a, b)− (a, b′),

(λa, b)− λ(a, b) and (a, λb)− λ(a, b).

We define the tensor product of A and B, A⊗B, as the quotient space A ◦B/N
and define elementary tensors by

a⊗ b = (a, b) +N.

It is easy to show that tensors satisfy the following relations.

(a+ a′)⊗ b = a⊗ b+ a′ ⊗ b

a⊗ (b+ b′) = a⊗ b+ a⊗ b′ (1.1)

(λa)⊗ b = a⊗ (λb) = λ(a⊗ b).

So we obtain the following definition.

Definition 1.31 (Tensor products of vector spaces). Let A and B be two

vector spaces over C. The tensor product of A and B, denoted by A⊗ B, is the

vector space spanned by the elemetary tensors a⊗b satisfying the equations (1.1).

Third relation implies that 0⊗ b = a⊗ 0 = 0.

Remark 1.32 (Tensor products of complex algebras). Let A and B be two

complex algebras. Then the vector space A⊗B becomes a complex algebra if we

define

(a⊗ b) · (a′ ⊗ b′) = aa′ ⊗ bb′

and extend linearly to A⊗ B.

Remark 1.33 (Tensor products of ∗-algebras). Let A and B be two ∗-
algebras. Then the complex algebra A⊗ B becomes a ∗-algebra if we define

(
∑

i

ai ⊗ bi)∗ =
∑

i

a∗i ⊗ b∗i .
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Remark 1.34 (Tensor products of Hilbert spaces). Let H and K be Hilbert

spaces. Then the vector space H⊗K becomes an inner product space if we define〈∑
i

xi ⊗ zi,
∑

j

yj ⊗ wj

〉
=
∑
i,j

〈xi, yj〉〈zi, wj〉.

By tensor products of Hilbert spaces we mean the completion of this space.

Remark 1.35 (Tensor products of C∗-algebras). Let A and B be C∗-

algebras. Let A ↪→ B(H) and A ↪→ B(K). Then an element
∑

i ai ⊗ bi of

the ∗-algebra A ⊗ B can be viewed as an operator on the inner product space

H⊗K if we set

(
∑

i

ai ⊗ bi)(
∑

j

xj ⊗ yj) =
∑
i,j

aixj ⊗ biyj.

With respect to the operator norm on B(H ⊗ K), A ⊗ B becomes a ∗-algebra

with norm satisfying

‖uv‖ ≤ ‖u‖‖v‖ and ‖u∗u‖ = ‖u‖2.

Hence the completion of A⊗ B becomes a C∗-algebra.



Chapter 2

Introduction

2.1 Matrices of C∗-algebras

Let A be a C∗-algebra (with or without unit). For a positive integer n we define

Mn(A) as follows

Mn(A) = {
[
aij

]n

i,j=1
: aij ∈ A for 1 ≤ i, j ≤ n}.

Sometimes we will use the following notations for the elements of Mn(A)

[
aij

]n

i,j=1
= [aij] =


a11 · · · a1n

...
. . .

...

an1 · · · ann

 .
It is easy to show that Mn(A) is a vector space over C if we define

α[aij] = [αaij] and [aij] + [bij] = [aij + bij].

Also by defining vector multiplication and involution by

[aij][bij] =

[
n∑

k=1

aikbkj

]
and [aij]

∗ = [a∗ji]

we obtain a ∗-algebra. From the previous chapter we know that the ∗-algebra

Mn(A) can have at most one norm on it in order to be a C∗-algebra. Now we

will show that such a norm always exists.

10
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Let H, 〈·, ·〉 be a Hilbert space. By H(n) we mean the direct sum of n copies

of H (with elements in column matrices) with inner product defined by

〈
x1

...

xn

 ,

y1

...

yn


〉

= 〈x1, y1〉+ · · ·+ 〈xn, yn〉.

It is easy to show that H(n) is also a Hilbert space. Notice that the norm of an

element of H(n) is given by∥∥∥∥∥∥∥∥

x1

...

xn


∥∥∥∥∥∥∥∥ = ( ‖x1‖2 + · · ·+ ‖xn‖2 )1/2.

Let Tij be bounded linear operators on H for 1 ≤ i, j ≤ n. We define (Tij) =

(Tij)
n
i,j=1 : H(n) → H(n) by

(Tij)
n
i,j=1


x1

...

xn

 =



n∑
k=1

T1kxk

...
n∑

k=1

Tnkxk

 .

Clearly (Tij) is also linear. We show that it is bounded. Let x = (x1, ..., xn)τ ,

where τ means the matrix transpose, then

‖(Tij)x‖2 = ‖
n∑

k=1

T1kxk‖2 + · · ·+ ‖
n∑

k=1

Tnkxk‖2

≤
( n∑

k=1

‖T1k‖2
)( n∑

k=1

‖xk‖2
)

+ · · ·+
( n∑

k=1

‖Tnk‖2
)( n∑

k=1

‖xk‖2
)

=
( n∑

i,j=1

‖Tij‖2
)
‖x‖2.

So we obtain ‖(Tij)‖ ≤ (
∑n

i,j=1 ‖Tij‖2 )1/2 which simply means that (Tij) is

bounded. Conversely, we can show that any bounded linear operator on Hn is of

this form. Let T ∈ B(H(n)). Define, for j = 1, ..., n, Pi : H → H(n) by Pix is

the column where ith row is x and 0 elsewhere. So P ∗i : H(n) → H is the map
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(x1, ..., xn)τ 7→ xi. Set Tij : H → H by Tij = P ∗i TPj. Clearly Tij ∈ B(H). We

claim that T = (Tij). Letting x = (x1, ..., xn)τ and y = (y1, ..., yn)τ we obtain

〈Tx, y〉 = 〈T (P1x1 + · · ·Pnxn), P1y1 + · · ·Pnyn〉

=
n∑

i,j=1

〈TPjxj, Piyi〉

=
n∑

i,j=1

〈P ∗i TPjxj, yi〉

= 〈(Tij)x, y〉.

We also have the inequality ‖Tij‖ ≤ ‖(Tij)‖ for any 1 ≤ i, j ≤ n. This is

easy to show if we consider the elements of the form x = (0, .., xj, ..0)τ and

y = (0, .., yi, ..0)τ .

Finally, it can be easily verified that (Tij)(Uij) = (
∑

k TikUkj) and (Tij)
∗ = (T ∗ji).

Hence Mn(B(H)) and B(H(n)) are ∗-isomorphic ∗-algebras via [Tij]↔ (Tij). This

means that Mn(B(H)) is a C∗-algebra if we define the norm on it by considering

the elements as operators on H(n).

Given an arbitrary C∗-algebra A, by GNS, we know that A is a closed selfad-

joint subalgebra of B(H) for some Hilbert space H. This means that Mn(A) is a

closed selfadjoint subalgebra of C∗-algebra Mn(B(H)), and hence a C∗-algebra.

Notation We will use notation diag(a) in Mn(A) for
a 0 · · · 0

0 a · · · 0
...

...
. . .

...

0 0 · · · a

 .
We should remark that if A is a C∗-algebra with unit 1 then Mn(A) is unital

with unit diag(1). Also the inequality ‖aij‖ ≤ ‖[aij]‖ ≤ (
∑n

i,j=1 ‖aij‖2 )1/2 holds

for any [aij] ∈ Mn(A). [aij] is called diagonal when aij = 0 for i 6= j. If [aij]

is diagonal then ‖[aij]‖ = maxk ‖akk‖. To see this, set A = [aij] then it can be

shown that σ(A∗A) = σ(a∗11a11)∪· · ·∪σ(a∗nnann). So ‖A‖2 = ‖A∗A‖ = r(A∗A) =

maxk ‖akk‖2. We recall some examples with description of the norms.
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Example 2.1. We use the notation Mn for the C∗-algebra Mn(C) = Mn(B(C)) =

B(Cn). The norm here is called Mn-norm and we will use ‖ · ‖Mn if necessary.

Remark 2.2. [ a b
c d ] ∈ M2 is positive if and only if a, d ≥ 0, c = b̄ and its deter-

minant is nonnegative.

Proof. Since any positive element is of the form[
x y

z w

][
x y

z w

]∗
=

[
|x|2 + |y|2 xz̄ + yw̄

zx̄+ wȳ |z|2 + |w|2

]

we have a, d ≥ 0, c = b̄ and determinant is nonnegative. Conversely let such

a, b, c and d are given. If a = 0 then necessarily b = c = 0 and clearly [ 0 0
0 d ] is

positive. If a > 0 then choosing

x =
√
a, y = 0, z =

b̄√
a

and w =

√
ad− bc√

a

implies that the above multiplication is [ a b
c d ].

Example 2.3. Let X be a compact Hausdorff space. We know that C(X) is a C∗-

algebra. We claim that the norm (which is unique) of the C∗-algebra Mn(C(X))

is

‖ [fij] ‖ = sup
x∈X
‖ [fij(x)] ‖Mn .

It is easy to verify that ‖ · ‖ is a complete norm on Mn(C(X)). We see that

Mn(C(X)) is a Banach algebra with this norm as follows:

‖ [fij][gij] ‖ = ‖ [
∑

k

fikgkj] ‖ = sup
x∈X
‖ [
∑

k

fik(x)gkj(x)] ‖

= sup
x∈X
‖ [fij(x)][gij(x)] ‖

= sup
x∈X
‖ [fij(x)] ‖ sup

x∈X
‖ [gij(x)] ‖

= ‖ [fij] ‖ ‖ [gij] ‖.

Similarly we can show that ‖[fij][fij]
∗‖ = ‖[fij]‖2. Hence Mn(C(X)) is a C∗-

algebra with the norm above.
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Remark 2.4. Let [fij] in Mn

(
C(X)

)
. Then [fij] is selfadjoint if and only if

[fij(x)] is selfadjoint for all x and we have

σ([fij]) =
⋃
x∈X

σ([fij(x)]).

Consequently, [fij] is positive if and only if
[
fij(x)

]
is positive for all x ∈ X.

Proof. Clearly we have that [fij] = [gij] if and only if [fij(x)] = [gij(x)] for all

x ∈ X. This means that

[fij] = [f ∗ji] if and only if [fij(x)] = [fji(x)] ∀x ∈ X.

This proves first part. For the second part it is enough to show that [fij] is

invertible if and only if [fij(x)] is invertible for all x ∈ X. Observe that [fij][gij] =

[hij] if and only if [fij(x)][gij(x)] = [hij(x)] for all x. This means that if [fij] is

invertible, with inverse [gij], then

[fij(x)][gij(x)] = [gij(x)][fij(x)] = I

for all x ∈ X. This shows one part. Conversely let [fij(x)] be invertible for all

x. Let [gij(x)] be its unique inverse. Define grs : X → C by x 7→ grs(x), the rs

entry of [gij(x)], for 1 ≤ r, s ≤ n. It is enough to show that grs is continuous since

this implies [gij] ∈ Mn(C(X)) and certainly it is inverse of [fij]. We will use the

following fact (see [1] pg. 15). If aλ and a are invertible elements of a C∗-algebra

such that aλ → a then a−1
λ → a−1. We have

|grs(x)−grs(y)| ≤ ‖[gij(x)−gij(y)]‖=‖[gij(x)]−[gij(y)]‖=‖[fij(x)]−1−[fij(y)]−1‖.

So when x→ y, we know that frs(x)→ frs(y) for all 1 ≤ r, s ≤ n, so [fij(x)]→
[fij(y)]. Hence the last term of the above inequality tends to 0 by the previous

argument and so grs is continuous.
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2.2 Tensor Products of C∗-Algebras

Let A be a C∗-algebra. In the previous section we defined the ∗-algebra Mn(A).

This ∗-algebra can be expressed by tensor products.

Claim: Mn(A) and A⊗Mn are ∗-isomorphic ∗-algebras via

[aij] 7−→
n∑

i,j=1

aij ⊗ Eij

where Eij’s are the matrix units of Mn.

Clearly the map is linear and it is multiplicative since

[aij][bij] = [
∑

k

aikbkj] 7→
∑
i,j

(
∑

k

aikbkj)⊗ Eij

=
∑
i,j

(
∑

k

aikbkj)⊗ EikEkj

=
∑
i,j,k,s

(aikbsj)⊗ EikEsj

= (
∑
i,j

aij ⊗ Eij)(
∑
i,j

bij ⊗ Eij).

We also have

[aij]
∗ = [a∗ji] 7→

∑
i,j

a∗ji ⊗ Eij =
∑
i,j

a∗ji ⊗ E∗
ji = (

∑
i,j

aij ⊗ Eij)
∗.

This means that the map is a ∗-homomorphism. Surjectivity follows from the

fact that any element of A ⊗Mn is of the form
∑

i,j aij ⊗ Eij for some aij ∈ A.

To see the injectivity let
∑

i,j aij ⊗ Eij = 0. Then

(b⊗ Ekr)(
∑
i,j

aij ⊗ Eij) (c⊗ Esm) = bakmc⊗ Ekm = 0

that is bakmc = 0 for all b, c ∈ A and 1 ≤ k,m ≤ n. Hence akm = 0 and so

[aij] = 0.

Particularly, Mn(B(H)), B(H(n)) and B(H)⊗Mn are all the same ∗-algebras

via the quite natural mappings that we introduced in previous and this section.
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2.3 Canonical Shuffle

For any C∗-algebra A, Mk

(
Mn(A)

)
is isometric ∗-isomorphic to Mkn(A) via re-

moving the additional brackets (See [4] pg.4). It follows that Mk

(
Mn(A)

) ∼=
Mn

(
Mk(A)

)
by just changing the brackets without touching the elements.

There is another identification of Mk

(
Mn(A)

)
and Mn

(
Mk(A)

)
which is called

canonical shift. We first deal with the case Mk(Mn) and Mn(Mk)

Let E
(n)
ij , i, j = 1, ..., n, denote the elementary unit matrix of Mn. Then

{E(n)
ij ⊗ E(m)

rs : i, j = 1, ..., n r, s = 1, ...,m}

is a basis for the ∗-algebra Mn ⊗ Mk. It is easy to show that Mn ⊗ Mk and

Mk ⊗Mn are ∗-isomorphic via∑
i,j,r,s

aijrsE
(n)
ij ⊗ E(m)

rs ←→
∑
i,j,r,s

aijrsE
(m)
rs ⊗ E

(n)
ij .

Now the result follows from the fact that Mk(Mn) and Mn ⊗Mk ∗-isomorphic

and the norm on a C∗-algebra is unique.

By this observation we conclude Mk(Mn(A)) ∼= Mn(Mk(A)). In fact,

Mk(Mn(A)) ∼= Mk(A⊗Mn) ∼= (A⊗Mn)⊗Mk

∼= A⊗ (Mn ⊗Mk)

∼= A⊗ (Mk ⊗Mn) ∼= ... ∼= Mn(Mk(A).

This process (an isometric ∗-isomorphism) is called canonical shuffle. As an

example consider M3(M2(A)) and M2(M3(A)). The correspondence is
[

a11 a12
a21 a22

] [
b11 b12

b21 b22

] [
c11 c12
c21 c22

][
d11 d12

d21 d22

] [
e11 e12
e21 e22

] [
f11 f12

f21 f22

][
g11 g12
g21 g22

] [
h11 h12

h21 h22

] [
j11 j12
j21 j22

]
↔


[

a11 b11 c11

d11 e11 f11

g11 h11 j11

] [
a12 b12 c12

d12 e12 f12

g12 h12 j12

]
[

a21 b21 c21

d21 e21 f21

g21 h21 j21

] [
a22 b22 c22

d22 e22 f22

g22 h22 j22

]
 .



Chapter 3

Operator Systems and Positive

Maps

In this chapter we consider operator systems and positive maps. If S is a subset

of a C∗-algebra then we define S∗ = {a∗ : a ∈ S}, and S is said to be selfadjoint

if S = S∗.

Definition 3.1. Let A be a C∗-algebra with unit. A subspace S of A which is

selfadjoint and containing the unit of A is called an operator system.

If S is an operator system in a C∗-algebra A then an element of S is called

positive (selfadjoint) if it is positive (selfadjoint) in A. Notice that any selfadjoint

element a of S is the difference of two positive elements in S since

a =
‖a‖ · 1 + a

2
− ‖a‖ · 1− a

2
·

Definition 3.2. Let S be an operator system and B be a C∗-algebra with unit

then a linear map φ : S → B is called positive if it matches positive elements of

S to positive elements of B, that is, φ(S+) ⊂ B+.

We should remark that we did not assume the continuity of the map but the

following proposition shows that a positive map must be continuous.

17
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Proposition 3.3. Let S be an operator system and B be a C∗-algebra with unit.

If φ : S → B is positive then

‖φ(1)‖ ≤ ‖φ‖ ≤ 2‖φ(1)‖.

Before the proof recall by Remark 1.30 that if p is positive then p ≤ ‖p‖ · 1,

if 0 ≤ a ≤ b then ‖a‖ ≤ ‖b‖ and if p1 and p2 are two positive elements then

‖p1 − p2‖ ≤ max(‖p1‖, ‖p2‖).

Proof. Let p be positive in S. Then 0 ≤ p ≤ ‖p‖ · 1. By using linearity of φ we

obtain that 0 ≤ φ(p) ≤ ‖p‖.φ(1). So by the above remark ‖φ(p)‖ ≤ ‖p‖ ‖φ(1)‖.

Now let a ∈ S be selfadjoint. Again by linearity

φ(a) = φ(
‖a‖.1 + a

2
)− φ(

‖a‖.1− a
2

).

So φ(a) is the difference of two positive elements. By the above discussion and

first part of the proof we see that

‖φ(a)‖ ≤ max(‖φ(
‖a‖ · 1 + a

2
)‖, ‖φ(

‖a‖ · 1− a
2

)‖) ≤ ‖a‖‖φ(1)‖.

Finally let a be an arbitrary element in S. We can write a = b + ic where b

and c are selfadjoint with ‖b‖, ‖c‖ ≤ ‖a‖. Hence

‖φ(a)‖ ≤ ‖φ(b)‖+ ‖φ(c)‖ ≤ ‖b‖‖φ(1)‖+ ‖c‖‖φ(1)‖ ≤ 2‖a‖‖φ(1)‖.

This shows that ‖φ‖ ≤ 2‖φ(1)‖. Since the other inequality is trivial we are

done.

The following example is due to Arveson and it shows that the latter inequality

in Proposition 3.3 is strict. As usually we set T = {z ∈ C : |z| = 1}.

Example 3.4. Consider the operator system S in C(T) defined by

S =span(1, z, z). Define φ : S →M2 by

φ(a1 + bz + cz) =

[
a 2b

2c a

]
.
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It is easy to show a1 + bz+ cz ≥ 0 in S if and only if c = b̄ and a ≥ 2|b|. And we

know that an element [ a b
c d ] is positive in M2 if and only if a, d ≥ 0, c = b̄ and its

determinant is nonnegative, by Remark 2.2. So clearly φ is positive. But

2‖φ(1)‖ = 2 = ‖φ(z)‖ ≤ ‖φ‖ ≤ 2‖φ(1)‖.

So ‖φ‖ = 2‖φ(1)‖.

Let φ : S → B be positive. Clearly S is also an operator system. Since φ is

bounded it has a natural linear extension to S which we still denote by φ. We

claim that this linear extension is also positive. Let p ∈ S be positive. It is

enough to find a positive sequence {pn} in S converging to p because positiveness

of φ(pn) and limφ(pn) = φ(p) together imply that φ(p) is positive. Let {an} be a

sequence in S converging to p. We may assume that {an} is a selfadjoint sequence

because otherwise we can replace it by {an+a∗
n

2
}. Now let pn = an + ‖p− an‖ · 1.

Clearly {pn} is a selfadjoint sequence in S converging to p. To see the positivity

of the sequence, by GNS, we may assume that elements of S are operators on a

Hilbert space H. If x ∈ H then

〈anx, x〉 = 〈px, x〉 − 〈(p− an)x, x〉 ≥ −‖p− an‖‖x‖2.

So 〈pnx, x〉 = 〈(an + ‖p− an‖ · 1)x, x〉 ≥ 0 which proves the claim.

A positive map φ is selfadjoint in the sense that φ(a∗) = φ(a)∗ for all a in S.

This is easy to see if we write a = p1 − p2 + i(p3 − p4). We now focus on the

domains of positive maps which guaranty that ‖φ‖ = ‖φ(1)‖.

Lemma 3.5. Let A be a C∗-algebra with unit 1 and p1, ..., pn be positive elements

of A such that
n∑

i=1

pi ≤ 1.

If λ1, ..., λn are complex numbers with |λi| ≤ 1, then∥∥∥∥∥
n∑

i=1

λipi

∥∥∥∥∥ ≤ 1.
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Proof. Consider the following multiplication in Mn(A).
∑

i λipi 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0

 =


p
1/2
1 · · · p

1/2
n

0 · · · 0
...

...

0 · · · 0




λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0

0 · · · 0 λn




p
1/2
1 0 · · · 0

p
1/2
2 0 · · · 0
...

...
...

p
1/2
n 0 · · · 0


The norm of the first matrix is ‖

∑
i λipi‖ and the norm of each matrix on right

hand side is less than 1. Indeed if A denotes the leftmost matrix on the right side

then the third matrix is A∗ and ‖AA∗‖ ≤ 1.

Theorem 3.6. Let B be a unital C∗-algebra and X be a compact Hausdorff space.

If φ : C(X)→ B is positive then ‖φ‖ = ‖φ(1)‖.

Proof. By dividing φ by a positive constant we may assume that φ(1) ≤ 1. Let

f ∈ C(X) such that ‖f‖ ≤ 1. We will show ‖φ(f)‖ ≤ 1. Let ε > 0. Since

{B(f(x), ε)}x∈X is an open covering for the compact set f(X), there exists finite

points x1, ..., xn in X such that {B(f(xi), ε)}ni=1 is a finite subcover of f(X). Let

Ui = f−1(B(f(xi), ε)). Clearly {Ui}ni=1 is an open covering for X such that if

x ∈ Ui then |f(x) − f(xi)| < ε. Let {pi} be nonnegative real valued continuous

functions such that
∑

i pi = 1 and pi(x) = 0 for x /∈ Ui for i = 1, ..., n. Note that

for any x ∈ X, |f(x)−f(xi)|pi(x) ≤ εpi(x) because, if x ∈ Ui then |f(x)−f(xi)| <
ε, while if not pi(x) = 0. So, if x ∈ X then∣∣∣f(x)−

∑
f(xi)pi(x)

∣∣∣ =
∣∣∣f(x)

∑
pi(x)−

∑
f(xi)pi(x)

∣∣∣
=

∣∣∣∑(f(x)− f(xi))pi(x)
∣∣∣

≤ ε
∣∣∣∑ pi(x)

∣∣∣ = ε.

Since ‖f‖ ≤ 1, |f(xi)| ≤ 1. So ‖
∑
f(xi)φ(pi)‖ ≤ 1 by the previous lemma.

Hence

‖φ(f)‖ ≤
∥∥∥φ(f −∑ f(xi)pi

)∥∥∥+
∥∥∥φ(
∑

f(xi)pi)
∥∥∥ ≤ ‖φ‖ε+ 1.

Since ε is arbitrary we obtained ‖φ(f)‖ ≤ 1. So ‖φ‖ ≤ 1.

We know that any commutative unital C∗-algebra is isometric ∗-isomorphic

to a C∗-algebra of continuous functions on a compact set X. So Theorem 3.6 is



CHAPTER 3. OPERATOR SYSTEMS AND POSITIVE MAPS 21

valid for any commutative unital C∗-algebra. By using this result one can obtain

some further results. Indeed, whenever the operator system is a C∗-algebra then

‖φ‖ = ‖φ(1)‖ for a positive map.

Lemma 3.7. If p is a polynomial such that Imp(eiθ) = 0 for all real θ then p is

a real constant.

Proof. Poisson’a formula states that if f is a harmonic function on {z : |z| < R}
for some R > 1, then for any 0 ≤ r < 1,

f(reiθ) =

∫ π

−π

(1− r2)f(eiθ)

1 + r2 − 2r cos(θ − t)
dt

(See [6]). We know that Imp is harmonic on C. The above formula implies that

imaginary part of p is 0 in unit disk. By Cauchy-Riemann equalities, real part

of p must be a real constant in the unit disc. So p is real constant in the unit

disc and consequently it must be a real constant on C by the uniqueness of power

series.

Lemma 3.8 (Fejer-Riesz). Let p, q be polynomials such that p(eiθ) + q(eiθ) > 0

for all real θ. Then there exists a polynomial r such that

p(eiθ) + q(eiθ) = |r(eiθ)|2 for all θ ∈ R.

Proof. Let p(z) = a0 + a1z + · · · + anz
n and q(z) = b0 + b1z + · · · + bmz

m. First

we claim that n = m, a0− b0 is real and ai = bi for i = 1, 2, ..., n(= m). In fact, if

p+ q > 0 on unit circle then p+ q = p+ q on unit circle and hence p− q = p− q
on unit circle. So Im{p − q} = 0 on the unit circle which means that p − q is a

real constant by the previous lemma. This proves the assertion that we claimed.

Hence we see that

p(eiθ) + q(eiθ) = α + a1e
iθ + · · ·+ ane

inθ + a1e
−iθ + · · ·+ ane

−inθ with α ∈ R.

We may assume an 6= 0. Let

f(z) = an + an−1z + · · ·+ a1z
n−1 + αzn + a1z

n+1 + anz
2n.
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Clearly f(0) 6= 0 and f(eiθ) = [p(eiθ) + q(eiθ)]einθ 6= 0. By the antisymmetry of

the coefficients of f we have

f(1/z̄) = z−2nf(z).

So the 2n zeros of f can be written as z1, ..., zn, 1/z1, ..., 1/zn.

Let g(z) = (z − z1)...(z − zn) and h(z) = (z − 1/z1)...(z − 1/zn). So

f(z) = ang(z)h(z).

It is easy to show

h(z) =
(−1)nzng(1/z)

z1...zn

(z 6= 0).

Hence

p(eiθ) + q(eiθ) = f(eiθ)e−inθ = |f(eiθ)| = |an| |g(eiθ)| |h(eiθ)| =
∣∣∣∣ an

z1...zn

∣∣∣∣ |g(eiθ)|2.

So if we define the polynomial r = | an

z1...zn
|1/2g then p+ q = |r|2 on unit circle.

Theorem 3.9. Let T be a linear operator on a Hilbert space H with ‖T‖ ≤ 1

and let S be the operator system in C(T) given by

S = {p+ q : p and q are plynomials}.

Then the map φ : S → B(H) given by φ(p+ q) = p(T ) + q(T )∗ is positive.

Proof. It is enough to show that φ(p+ q) ≥ 0 when p+ q > 0. Indeed, if p+ q is

only positive then p+q+ε > 0 for all ε > 0 and so φ(p+q+ε) = φ(p+q)+ε1 ≥ 0

for all ε > 0 which implies that φ(p+q) ≥ 0. So let p+q be strictly positive. So by

Fejer-Riesz Lemma there exists a polynomial r such that p(eiθ)+q(eiθ) = |r(eiθ)|2.
Let r(z) = α0 + α1z + · · ·+ αnz

n. Then

p(eiθ) + q(eiθ) = |r(eiθ)|2 =
n∑

j,k=0

αj αk e
i(j−k)θ.

So we must show

φ(p+ q) =
n∑

j,k=0

αj αk Tj−k where Tj−k =

{
T j−k j − k ≥ 0

T ∗k−j j − k < 0
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is positive. Let x ∈ H. Then

〈φ(p+ q)x, x〉 =

〈
I T ∗ · · · T ∗n

T
. . . . . .

...
...

. . . . . . T ∗

T n · · · T I



α0x

...

αnx

 ,

α0x

...

αnx


〉
,

where the inner product on the right side is taken in H(n+1). It will be enough to

show that the matrix operator on the right hand side is positive. If we set

R =


0 0 · · · 0

T
. . . . . .

...
...

. . . . . . 0

0 · · · T 0


then I +R+R2 + · · ·+Rn +R∗ +R∗2 + · · ·+R∗n is exactly the matrix operator.

Since Rn+1 = 0 it is easy to show

I +R +R2 + · · ·+Rn +R∗ +R∗2 + · · ·+R∗n = (I −R)−1 + (I −R∗)−1 − I.

Also notice that ‖R‖ ≤ 1 which can be shown easily when RR∗ is considered.

Now let h ∈ Hn+1. There exists y ∈ Hn+1 such that h = (I −R)y. Hence

〈((I−R)−1 + (I −R∗)−1 − I)h, h〉

= 〈y, (I −R)y〉+ 〈(I −R)y, y〉 − 〈(I −R)y, (I −R)y〉

= ‖y‖2 − ‖Ry‖2 ≥ 0.

This theorem has many corollaries.

Corollary 3.10 (von Neumann’s Inequality). Let T be a linear operator on

a Hilbert space such that ‖T‖ ≤ 1. Then for any polynomial p,

‖p(T )‖ ≤ ‖p‖ = sup
|z|≤1

|p(z)|.

Proof. The operator system S in previous theorem separates the points of T so

by Stone-Weierstrass theorem S is dense in C(T). This means that the positive

map φ as in Theorem 3.9 has a positive extension to C(T). Since the domain is

commutative ‖φ‖ = ‖φ(1)‖ = 1 which proves the claim.
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Corollary 3.11. Let B and C be unital C∗-algebras and let A be a subalgebra of

B such that 1 ∈ A. If φ : A+A∗ → C is positive then ‖φ‖ = ‖φ(1)‖.

Proof. Set S = A + A∗. φ extends to a positive map on S. Fix a ∈ S with

‖a‖ ≤ 1. Theorem 3.9 tells us that ψ : C(T) → B given by ψ(p) = p(a) is

positive. Since S is itself a C∗-algebra, the range of ψ is contained in S so the

map φ ◦ ψ is well-defined. Clearly it is positive. So

‖φ(a)‖ = ‖φ ◦ ψ(eiθ)‖ ≤ ‖φ ◦ ψ(1)‖ ‖eiθ‖ = ‖φ(1)‖.

This corollary implies the following important fact whose proof is now trivial.

Theorem 3.12. Let A and B be unital C∗-algebras. If φ : A → B is positive

then ‖φ‖ = ‖φ(1)‖.

Up to here we obtained basic properties of positive maps. We now look for

relevant examples. First, positive maps. For example any unital contraction is

necessarily positive. Moreover, a unital contraction defined from a subspace M
has a unique positive extension to M+M∗.

Lemma 3.13. If f : S → C is a unital contraction then f is positive.

Proof. Let a ≥ 0. It is enough to show f(a) ∈co(σ(a)). Since σ(a) is compact,

co(σ(a)) is the intersection of all closed discs containing σ(a). Let K = {z :

|z−λ| ≤ r} contain σ(a). Then σ(a−λ1) ⊆ {z : |z| ≤ r}. Since a−λ1 is normal

‖a−λ1‖ = r(a−λ1) ≤ r, and consequently |f(a−λ1)| = |f(a)−λ| ≤ ‖f‖r = r.

So f(a) in K.

Proposition 3.14. Let B be a unital C∗-algebra and φ : S → B be a unital

contraction. Then φ is positive.

Proof. By GNS we may assume that B is a concrete C∗-algebra in B(H) for

some Hilbert space H. Fix x in H satisfying ‖x‖=1. Then f :S → C defined

by f(a) = 〈φ(a)x, x〉 is a unital contraction and so positive by the lemma above.

Hence a ≥ 0 implies f(a) = 〈φ(a)x, x〉 ≥ 0. And so φ is positive.
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Proposition 3.15. Let A and B be unital C∗-algebras andM be a subspace of A
containing the unit. If φ :M→ B is a unital contraction then φ̃ :M+M∗ → B
defined by

φ̃(a+ b∗) = φ(a) + φ(b)∗, a, b ∈M,

is well defined and is the unique positive extension of φ to M+M∗.

Proof. If a positive extension of φ exists then it must satisfy the above equation

since a positive map must be selfadjoint. Thus, such an extension is unique. To

see that it is well defined we must show that if a+ b∗ = c+ d∗ with a, b, c, d ∈M
then φ̃(a + b∗) = φ̃(c + d∗). This equivalent to the following: if a, a∗ ∈ M then

φ(a∗) = φ(a)∗, i.e. φ is selfadjoint. Let S1 = {a ∈ M : a∗ ∈ M}. Then S1 is an

operator system and φ|S1 is a unital contraction. By the above proposition, φ|S1

is positive. So φ is selfadjoint.

To show that φ̃ is positive, by GNS, we may assume that B = B(H). Fix

x ∈ H with ‖x‖ = 1. Set f̃(a) = 〈φ̃(a)x, x〉 from M+M∗ to C. It is enough to

show that f̃ is positive. Define f(a) = 〈φ(a)x, x〉 from M to C. Since ‖f‖ = 1,

by the Hahn-Banach Theorem f extends to a map f1 to M +M∗ satisfying

‖f1‖ = 1. So f1 must be positive by Lemma 3.13. This means that for any a, b

in M, f1(a+b∗)=f1(a)+f1(b)
∗= f̃(a)+f̃(b)∗= f̃(a+b∗). That is, f1 = f̃ and so

f̃ is positive.



Chapter 4

Completely Positive Maps

In Chapter 3 we introduced operator systems and positive operators. Recall that

an operator system is a selfadjoint subspace of a unital C∗-algebra that contains

the unit of the C∗-algebra and a positive map is a linear operator defined from

an operator system to a C∗-algebra, which maps positive elements to positive

elements. In this chapter we will consider completely positive and completely

bounded maps.

As we saw in Chapter 2, by Mn(A) we denote the set of all n×n matrices with

entries from the unital C∗-algebra A. By GNS we know that A is isomorphic ∗-
isometric to a concrete C∗-algebra, that is, A can be thought as a C∗-subalgebra

of a B(H). By using this fact we obtained the unique norm of the C∗-algebra

Mn(A) by a quite natural map to B(H(n)).

Let A be a unital C∗-algebra and S be an operator system in A. By Mn(S) we

mean the subset of Mn(A) with entries only from S. It is easy to see that Mn(S)

is an operator system in Mn(A). The norm on Mn(S) is taken from Mn(A) and,

as usually, an element of Mn(S) is called positive or selfadjoint if it is positive or

selfadjoint in Mn(A).

Let A and B be unital C∗-algebras and let S be an operator system in A. If

26
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φ : S → B is a linear map then for any positive integer n we define

φn : Mn(S)→Mn(B) by φn([aij]) = [φ(aij)].

It is easy to see that φn is also linear for all n. φ is called n-positive if φn is

positive and called completely positive if φ is n-positive for all n. We define the

complete bound of φ by ‖φ‖cb = supn ‖φn‖ and φ is called completely bounded if

this supremum is finite. Similarly, φ is called n-contractive if φn is contractive.

The following proposition shows that if φ is n-positive, that is, if φn is positive

then φ = φ1, ..., φn−1 are all positive and if φ is n-contractive then φ1, ..., φn−1 are

all contractive.

Proposition 4.1. Let A and B be unital C∗-algebras and let S be an operator

system in A. If φ : S → B is a linear map then:

(1) ‖φn‖ ≤ ‖φn+1‖ for all n.

(2) ‖φn‖ ≤ n‖φ‖ for all n.

(3) If φn is positive then φ1, φ2,...,φn−1 are all positive.

Proof. Consider the following subspaces of Mn(S) defined for k ≥ 1 by

M (k)
n (S) = {



a11 · · · a1k 0 · · · 0
...

...
...

...

ak1 · · · akk 0 · · · 0

0 · · · 0 0 · · · 0
...

...
...

...

0 · · · 0 0 · · · 0


∈Mn(S)}.

It is easy to see that M
(k)
n (S) and Mk(S) are isometric ∗-isomorphic. So (1) and

(3) come from this identification. To see (2), recall that we showed in Section 2.1

maxij ‖aij‖ ≤ ‖[aij]‖ ≤ (
∑

i,j ‖aij‖2)1/2, so

‖φn ([aij]) ‖ = ‖ [φ(aij)] ‖ ≤ (
n∑

i,j=1

‖φ(aij)‖2)1/2

≤ ‖φ‖(
n∑

i,j=1

‖aij‖2)1/2

≤ ‖φ‖nmax
ij
‖aij‖ ≤ n‖φ‖‖[aij]‖.
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If φ is positive then this does not imply that φ is completely positive. Indeed

the following example shows that there exists a positive map which is not 2-

positive.

Example 4.2. Define φ : M2 → M2 by A 7→ Aτ , the transpose of A. Recall

that an element
[

a b
c d

]
of M2 is positive if and only if a, d ≥ 0, b̄ = c and its

determinant is nonnegative by Remark 2.2. So clearly φ is positive. But φ2 :

M2(M2)→ M2(M2) is not positive. We have M2(M2) = M4 with a very natural

identification namely removing the additional brackets. So

[
E11 E12

E21 E22

]
=


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1


is positive since it is selfadjoint and the spectrum is {0, 1} but

φ2

([
E11 E12

E21 E22

])
=

[
φ(E11) φ(E12)

φ(E21) φ(E22)

]
=


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


is not positive since its spectrum contains −1. So φ is not 2-positive.

The above example also shows that even if we allow the operator system to be

whole C∗-algebra then this still does not imply that a positive map is 2-positive.

In Proposition 4.1 we have an estimation ‖φn‖ ≤ n‖φ‖. In the following example

we see that this estimation is sharp for all n. Of course, this is also an example

of a bounded map which is not completely bounded.

Example 4.3. Let H be an infinite dimensional separable Hilbert space with

orthonormal basis {en}∞n=1. Define J : H → H by J(
∑
αnen) =

∑
ᾱnen. Clearly

J is conjugate linear and J2 = I. J also satisfies ‖Jx‖ = ‖x‖ and 〈Jx, y〉 =

〈x, Jy〉 for all x and y in H. We claim that for any T in B(H), JTJ is also in

B(H) such that ‖T‖ = ‖JTJ‖ and T ≥ 0 if and only if JTJ ≥ 0. Let x =
∑
αnen

and y =
∑
βnen in H and α in C. Write x̄ =

∑
ᾱnen and ȳ =

∑
β̄nen. Then

JTJ(αx+ y) = JT (ᾱx̄+ ȳ) = J(ᾱT x̄+ T ȳ) = αJT x̄+ JT ȳ = αJTJx+ JTJy.
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For any x in H,

‖JTJ x‖ = ‖TJ x‖ ≤ ‖T‖‖Jx‖ = ‖T‖‖x‖.

So ‖JTJ‖ ≤ ‖T‖. This also means that

‖T‖ = ‖J2TJ2‖ = ‖J(JTJ)J‖ ≤ ‖JTJ‖

and consequently ‖T‖ = ‖JTJ‖. Finally if T ≥ 0 then

〈JTJx, x〉 = 〈TJx, Jx〉 ≥ 0 for all x ∈ H

and so JTJ is positive. Similarly, if JTJ ≥ 0 then J(JTJ)J ≥ 0, that is, T is

positive.

Define φ : B(H)→ B(H) by φ(T ) = JT ∗J . Since T ≥ 0 implies T = T ∗ ≥ 0,

φ is positive and also ‖φ‖ = 1 by the above part. Now we will show ‖φn‖ = n

for all n. We know that ‖φn‖ ≤ n‖φ‖ = n by Proposition 4.1, so it is enough to

show ‖φn‖ ≥ n. Consider Eij ∈ B(H) defined on the basis by Eijej = ei and 0

elsewhere. It is easy to show E∗
ij = JE∗

ijJ = Eji and EijErs = δjrEis. Recall that

‖a‖ = ‖aa∗‖1/2 in a C∗-algebra. So∥∥∥∥∥∥∥∥

E11 · · · En1

...
...

E1n · · · Enn


∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥

E11 · · · En1

...
...

E1n · · · Enn



E11 · · · En1

...
...

E1n · · · Enn


∗∥∥∥∥∥∥∥∥

1/2

= ‖diag(E11 + · · ·+ Enn)‖1/2

= (‖E11 + · · ·+ Enn‖)1/2 = 1

in Mn(B(H)). But its image under φn has norm n. Indeed,

‖φn([Eji]) ‖ = ‖[φ(Eji)] ‖ = ‖ [Eij] ‖

= ‖ [Eij][Eij]
∗ ‖1/2

= ‖ [nEij] ‖1/2 =
√
n ‖ [Eij] ‖1/2.

The equality of third and last terms implies ‖ [Eij] ‖ = n and so by the equality

of first and third terms ‖φn([Eji])‖ = n. This shows that ‖φn‖ ≥ n.
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Sometimes, in order to obtain more general results we define the linear map

from a subspace and extend it to the smallest operator system that contains the

subspace. So some of the above definitions can be extended for subspaces. If M
is a subspace of A then Mn(M), the subset of Mn(A) with entries from M, is

also a subspace of Mn(A). If B is a C∗-algebra and φ :M→ B is linear then we

define

φn : Mn(M)→Mn(B) by φn([aij]) = [φ(aij)].

Similarly, φ is called completely bounded if ‖φ‖cb = supn ‖φn‖ < ∞ and n-

contractive if ‖φn‖ ≤ 1. By a similar argument in the proof of Proposition

4.1, one can show that {‖φn‖} is an increasing sequence such that ‖φn‖ ≤ n‖φ‖.
But in this case we do not have a notion of positivity because M and Mn(M)

may not be operator systems. However, we should remark that ifM is a subspace

of A containing the unit of A then S = M +M∗ is an operator system in A.

Moreover, Mn(S) = Mn(M) +Mn(M)∗.

Lemma 4.4. Let A be a C∗-algebra with unit 1 and let a, b ∈ A. Then

a∗a ≤ b⇐⇒

[
1 a

a∗ b

]
≥ 0. Particularly, ‖a‖ ≤ 1⇐⇒

[
1 a

a∗ 1

]
≥ 0.

Proof. By GNS we may assume that A is a concrete C∗-algebra in B(H). Let[
1 a
a∗ b

]
be positive. Then for any x ∈ H,〈[
1 a

a∗ b

][
−ax
x

]
,

[
−ax
x

]〉
≥ 0⇒ 〈(b− a∗a)x, x〉 ≥ 0⇒ b− a∗a ≥ 0.

Conversely, if b − a∗a ≥ 0 then
[

0 0
0 b−a∗a

]
≥ 0. Also

[
1 a
0 0

]∗[ 1 a
0 0

]
=
[

1 a
a∗ a∗a

]
≥ 0.

So their sum must be positive. The second part now follows from the first part

and the fact that ‖a‖ ≤ 1 iff a∗a ≤ 1.

Proposition 4.5. Let S be an operator system and let B be a unital C∗-algebra.

If φ : S → B is unital and 2-positive then φ is a contraction.

Proof. Let a ∈ S with ‖a‖ ≤ 1. Then

φ2

([
1 a

a∗ 1

])
=

[
1 φ(a)

φ(a∗) 1

]
=

[
1 φ(a)

φ(a)∗ 1

]
≥ 0.
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So ‖φ(a)‖ ≤ 1 by the previous lemma.

Proposition 4.6 (Schwarz inequality for 2-positive maps). Let S be an

operator system and let B be a unital C∗-algebra. If φ : S → B is unital and

2-positive then φ(a)∗φ(a) ≤ φ(a∗a) for all a in S.

Proof. Since
[

1 a
0 0

]∗[ 1 a
0 0

]
=
[

1 a
a∗ a∗a

]
≥ 0 and φ is unital 2-positive,

φ2

([
1 a

a∗ a∗a

])
=

[
1 φ(a)

φ(a)∗ φ(a∗a)

]
≥ 0.

So φ(a)∗φ(a) ≤ φ(a∗a) by Lemma 4.4.

Proposition 4.7. Let A and B be unital C∗-algebras and let M be a subspace

of A with 1 ∈ M. If φ : M → B is unital and 2-contractive then the map

φ̃ : M +M∗ = S → B defined by φ̃(a + b∗) = φ(a) + φ(b)∗ is 2-positive and

contractive.

Proof. Both φ and φ2 are unital contractions. So both φ̃ and φ̃2 are positive by

Proposition 3.14. Clearly (φ̃)2 = φ̃2 since M2(S) = M2(M) + M2(M)∗. So φ̃ is

2-positive. Since it is also unital, φ is contractive by Proposition 4.5.

Proposition 4.8. Let A and B be unital C∗-algebras and letM be a subspace of

A with 1 ∈ M. If φ :M→ B is unital and completely contractive then the map

φ̃ :M+M∗ = S → B defined by φ̃(a+ b∗) = φ(a) + φ(b)∗ is completely positive

and completely contractive.

Proof. Since φn is unital and 2-contractive, φ̃n is 2-positive and contractive, par-

ticularly it is positive, by Proposition 4.7. Clearly (φ̃)n = φ̃n, so we are done.

The following proposition states that a completely positive map must be com-

pletely bounded. In its proof we need the following

Lemma 4.9. If [
p a
a∗ p ] is positive then ‖a‖ ≤ ‖p‖.
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Proof. If p = 0 then necessarily a = 0, indeed [ 0 a
a∗ 0 ] + [ 1 0

0 0 ] = [ 1 a
a∗ 0 ] ≥ 0, so

a∗a ≤ 0, that is, a = 0 by Lemma 4.4. Let p 6= 0. Firstly notice that p must be

selfadjoint. So ‖p‖ · 1 − p is positive. This means that [ ‖p‖1−p 0
0 0

] is also positive

hence their sum [ ‖p‖1 a
a∗ p ] ≥ 0. If we multiply this vector by 1/‖p‖ and apply

Lemma 4.4, then we obtain a∗a ≤ ‖p‖p and so ‖a‖ ≤ ‖p‖.

Lemma 4.10. Let A and B be unital C∗-algebras and let S be an operator system

in A. If φ : S → B is a completely positive map then φ is completely bounded

with ‖φ(1)‖ = ‖φ‖ = ‖φ‖cb.

Proof. Clearly ‖φ(1)‖ ≤ ‖φ‖ ≤ ‖φ‖cb. So it is enough to show ‖φ‖cb ≤ ‖φ(1)‖.
Let A = [aij] be in Mn(S) with ‖A‖ ≤ 1. And let I be the unit of Mn(S). By

Lemma 4.4 we know [ I A
A∗ I ] is positive in M2(Mn(S)) = M2n(S). So

φ2n

([
I A

A∗ I

])
=

[
φn(I) φn(A)

φn(A)∗ φn(I)

]
≥ 0.

Hence by the above discussion ‖φn(A)‖ ≤ ‖φn(I)‖ = ‖φ(1)‖.

By an operator space we mean a subspace of a C∗-algebra. It may not contain

the unit of the C∗-algebra.

Proposition 4.11. Let S be an operator space and let f : S → C be a bounded

linear functional. Then ‖f‖cb = ‖f‖. Moreover, if S is an operator system and

f is positive then f is completely positive.

Proof. It is enough to show ‖fn‖ ≤ ‖f‖ for all n. Fix [aij] in Mn(S). Let

x = (x1, ..., xn)τ and y = (y1, ..., yn)τ . Then

|〈fn([aij]x, y)〉| =

∣∣∣∣∣∑
ij

f(aij)xj ȳi

∣∣∣∣∣ =

∣∣∣∣∣f
(∑

ij

aijxj ȳi

)∣∣∣∣∣
≤ ‖f‖

∥∥∥∥∥∑
ij

aijxj ȳi

∥∥∥∥∥ ≤ ‖f‖‖x‖‖y‖‖[aij]‖.



CHAPTER 4. COMPLETELY POSITIVE MAPS 33

To see the last inequality notice that
∑
aijxj ȳi appears in the 11-entry of the

following product
ȳ11 · · · ȳn1

0 · · · 0
...

...

0 · · · 0



a11 · · · a1n

...
...

an1 · · · ann



x11 0 · · · 0

...
...

...

xn1 0 · · · 0


and clearly the norms of the first and third matrices are ‖x‖ and ‖y‖.

Now let S be an operator system and let f be positive. Fix [aij] ≥ 0 in Mn(S).

We must show 〈fn([aij]x, x)〉 = f (
∑
aijxjx̄i) ≥ 0. Notice that the above matrix

multiplication in Mn(S) is positive when x = y. Since
∑
aijxjx̄i appears as its

11-entry
∑
aijxjx̄i ≥ 0 and, since f is positive we are done.

The above proposition is valid whenever the range is a commutative unital

C∗-algebra. Remind that such a C∗-algebra has a special shape, they are of the

form C(X) for some compact Hausdorff space X. And also remind that if [fij]

is in Mn(C(X)) then ‖[fij]‖ = sup{‖fij(x)‖ : x ∈ X} and [fij] ≥ 0 if and only if

[fij(x)] ≥ 0 in Mn for all x in X by Example 2.3 and Remark 2.4.

Proposition 4.12. Let S be an operator space and let f : S → C(X) be a

bounded linear map. Then ‖f‖cb = ‖f‖. Moreover, if S is an operator system

and f is positive then f is completely positive.

Proof. Let x ∈ X and set φx : S → C by φx(a) = φ(a)(x). Clearly ‖φx‖ ≤ ‖φ‖
and so ‖φx

n‖ ≤ ‖φ‖ for all n by the previous proposition. This means that

‖φn([aij])‖ = ‖[φ(aij)]‖ = sup
x∈X
‖[φ(aij)(x)]‖

= sup
x∈X
‖[φx(aij)]‖

= sup
x∈X
‖φx

n([aij])‖ ≤ ‖[aij]‖ sup
x∈X
‖φx

n‖ ≤ ‖[aij]‖φ‖.

To see the second part, notice that positivity of φ implies that φx is positive

for all x in X. So by the previous proposition φx is completely positive. By a

similar argument as before the result follows.
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Now we will see that if the domain is commutative then positivity implies

complete positivity. In the proof of the following theorem we need the following.

Remark 4.13. If [aij] is positive in Mn and p is positive in a C∗-algebra B then

[aijp] is positive in Mn(B).

Proof. Let [bij] = [aij]
1/2. Then [bijp

1/2][bijp
1/2]∗ = [aijp].

Theorem 4.14 (Stinespring). Let B be a unital C∗-algebra. If φ : C(X)→ B
is positive then φ is completely positive.

Proof. Let [fij] be positive in Mn(C(X)). We must show that φn([fij]) is positive.

We first claim that given ε > 0 there exists an open covering U1, ..., Um of X and

λ1, ..., λm in X with λi ∈ Ui such that

‖fij(x)− fij(λk)‖ ≤ ε for all x ∈ Uk and for all k = 1, ...,m i, j = 1, ..., n.

This is easy to see if we consider [fij] : X →Mn by x 7→ [fij(x)].

Let p1, ..., pm be a partition of unity subordinate to {Ui}. Then∥∥∥∥∥[fij(x)
]
−

m∑
k=1

pk(x)
[
fij(λk)

]∥∥∥∥∥ =

∥∥∥∥∥(
m∑

k=1

pk(x))[fij(x)]−
m∑

k=1

pk(x)[fij(λk)]

∥∥∥∥∥
=

∥∥∥∥∥
m∑

k=1

pk(x)( [fij(x)]− [fij(λk)] )

∥∥∥∥∥
≤

m∑
k=1

|pk(x)|nε = nε.

From this we deduce the following∥∥∥∥∥[fij

]
−

m∑
k=1

[
fij(λk)pk

]∥∥∥∥∥ ≤ nε.

Also we have

φn

(
m∑

k=1

[fij(λk)pk]

)
= [fij(λ1)φ(p1)] + · · ·+ [fij(λm)φ(pm)] ≥ 0
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since each term on the right hand side is positive by the previous remark. Hence

‖φn

([
fij

])
− φn

(∑
k

[
fij(λk)pk

])
︸ ︷︷ ︸

positive

‖ ≤ ‖φn‖

∥∥∥∥∥[fij

]
−

m∑
k=1

[
fij(λk)pk

]∥∥∥∥∥
≤ ‖φn‖︸︷︷︸

≤n‖φ‖

nε ≤ ‖φ‖n2ε.

We know that the set of all positive elements constitute a closed set so we are

done.



Chapter 5

Stinespring Representation

Stinespring’s Dilation Theorem is one of the main theorem that characterizes the

completely positive maps in terms of unital ∗-homomorphisms. In Section 2 we

will apply this result to obtain some other dilation theorems in various areas. We

also have Naimark’s dilation theorem for groups and some of its applications.

Let K be a Hilbert space and H be a Hilbert subspace of K. If U is in B(K)

then PHU |H, where PH is the projection onto H, is in B(H). Set T = PHU |H.

Then U is said to be a dilation of T and T is said to be compression of U . Cer-

tainly, any T ∈ B(H) has many dilations in B(K). For example it can be shown

that a contraction has an isometric dilation and a isometry has a unitary dila-

tion. A constructive proof for these can be found in [4]. Combining these results

we obtain the Sz.-Nagy Dilation Theorem which states that a contraction has a

unitary dilation. In section 2 we will prove this by using Stinespring’s Dilation

Theorem.

36
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5.1 Stinespring’s Dilation Theorem

Theorem 5.1. Let A be a unital C∗-algebra and let H be a Hilbert space. If

φ : A → B(H) is completely positive then there exists a Hilbert space K, a unital

∗-homomorphism π : A → B(K), and a bounded linear operator V : H → K with

‖φ(1)‖ = ‖V ‖2, such that

φ(a) = V ∗π(a)V for all a ∈ A.

Proof. Consider the vector space A ⊗ H. Define the sesquilinear form [·, ·] on

A⊗H by

[a⊗ x, b⊗ y] = 〈φ(b∗a)x, y〉H a, b ∈ A, x, y ∈ H.

and extend it linearly, where 〈·, ·〉H is the inner product on H.

Since φ is completely positive it follows that [·, ·] is positive semidefinite.

Indeed for any n ≥ 1, a1, ..., an ∈ A and x1, ..., xn ∈ H we have[
n∑

j=1

aj ⊗ xj ,
n∑

i=1

ai ⊗ xi

]
=

n∑
i,j=1

〈φ(a∗i aj)xj, xi〉H

=

〈
φn([a∗i aj])


x1

...

xn

 ,

x1

...

xn


〉
H(n)

≥ 0.

Positive semidefinite sesquilinear forms satisfy the Cauchy-Schwarz inequality,

hence

N := {u ∈ A⊗H : [u, u] = 0} = {u ∈ A⊗H : [u, v] = 0 ∀ v ∈ A⊗H}

is a subspace of A⊗H. This means that

〈u+N , v +N〉 := [u, v]

is an inner product on the quotient space A⊗H/N . Let K be the completion of

this space to a Hilbert space.
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For any element a in A, define π(a) : A⊗H → A⊗H by

π(a)
(∑

ai ⊗ xi

)
=
∑

(aai)⊗ xi.

Linearity of π(a) is clear. π(a) also satisfies the following inequality

[π(a)u, π(a)u] ≤ ‖a‖2[u, u] for all u ∈ A⊗H. (5.1)

To see this, observe that a∗b∗ba ≤ ‖b‖2a∗a in any C∗-algebra. It follows that

[a∗i a
∗aaj] ≤ ‖a‖2[a∗i aj] (in Mn(A)).

Therefore,[
π(a)

(∑
aj ⊗ xj

)
, π(a)

(∑
ai ⊗ xi

)]
=

∑
i,j

〈φ(a∗i a
∗aaj)xj, xi〉H

≤ ‖a‖2
∑
i,j

〈φ(a∗i aj)xj, xi〉H

= ‖a‖2
[∑

aj ⊗ xj ,
∑

ai ⊗ xi

]
.

The inequality (5.1) shows that the null space of π(a) contains N and, conse-

quently, π(a) can be viewed as a linear operator on A⊗H/N , which we will still

denote by π(a). Again by the inequality (5.1) it is easy to see that the quotient

linear operator π(a) is bounded, actually ‖π(a)‖ ≤ ‖a‖. Therefore it extents to

a bounded linear operator on K and we will denote it again by π(a).

Let us define π : A → B(K) by a 7→ π(a). It is easy to verify that π is a

unital ∗-homomorphism.

Also, define V : H → K by V x = 1⊗ x+N . Clearly V is linear and we have

‖V x‖2 = 〈1⊗ x, 1⊗ x〉 = 〈φ(1)x, x〉H = 〈φ(1)x, x〉H
= 〈φ(1)1/2x, φ(1)1/2x〉H
= ‖φ(1)1/2x‖2, x ∈ H,

so ‖V ‖2 = ‖φ(1)1/2‖2 = ‖φ(1)‖.

Finally

〈V ∗π(a)V x, y〉H = 〈π(a)1⊗ x, 1⊗ y〉K = 〈φ(a)x, y〉H

for all x and y in H and hence V ∗π(a)V = φ(a), which completes the proof.
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Several remarks have to be made.

Remark 5.2. If π : A → B(K) is a unital ∗-homomorphism and V ∈ B(H,K)

then the map φ : A → B(H) defined by φ(a) = V ∗π(a)V is completely positive.

So Stinespring’s Dilation Theorem characterizes the completely positive maps.

Remark 5.3. When φ is unital we may assume that K contains H as a sub-

Hilbert space. Indeed,

I = φ(1) = V ∗π(1)V = V ∗V

implies that V is an isometry. So, instead of K = V (H)⊕V (H)⊥ we may consider

K′ = H⊕ V (H)⊥. Thus we have

φ(a) = PHπ(a)|H for all a ∈ A.

In other words, any completely positive unital map is a compression of a unital

∗-homomorphism.

Remark 5.4. When A and H are separable then we may assume that K is

separable. Similarly, when A and H are finite dimensional then K may be taken

finite dimensional.

Definition 5.5. The triple (π, V,K) obtained in the Stinespring’s Dilation The-

orem is called a Stinespring representation for φ. If

π(A)VH = {π(a)V x : a ∈ A and x ∈ H}

has dense span in K then the triple (π, V,K) is called a minimal Stinespring

representation for φ.

Remark 5.6. Given a Stinespring representation (π, V,K) for φ : A → B(H),

it is possible to make it minimal. Let K1 be the closed linear span of π(A)VH
in K. Since π is unital, VH lies in K1 so we may assume that V : H → K1.

Also π(a)(K1) lies in K1 for all a ∈ A since π is multiplicative and continuous.

So π1 : A → B(K1) defined by π1(a) = π(a)|K1 is well defined and still a unital

∗-homomorphism. It is easy to see that (π1, V,K1) is a minimal Stinespring

representation for φ.
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The following proposition shows that minimal Stinespring representations are

unique up to unitary equivalence.

Proposition 5.7. Let A be a unital C∗-algebra and let φ : A → B(H) be com-

pletely positive. If (π1, V1,K1) and (π2, V2,K2) are two minimal Stinespring rep-

resentations for φ, then there exists a unitary operator U : K1 → K2 such that

UV1 = V2 and Uπ1(·)U∗ = π2.

Proof. We know that spanπ1(A)V1H and spanπ2(A)V2H are dense in K1 and K2,

respectively. First define

U : spanπ1(A)V1H → spanπ2(A)V2H by
∑

i

π1(ai)V1xi 7→
∑

i

π2(ai)V2xi.

The following calculation shows that U is an isometry (which also implies that U

is well-defined):∥∥∥∥∥∑
i

π1(ai)V1xi

∥∥∥∥∥
2

=
∑
i,j

〈V ∗
1 π1(a

∗
i aj)V1xj, xi〉

=
∑
i,j

〈φ1(a
∗
i aj)xj, xi〉 =

∥∥∥∥∥∑
i

π2(ai)V2xi

∥∥∥∥∥
2

.

Clearly U is onto. We may extend it linearly from K1 to K2, and the extension

is still an onto isometry, and so a unitary operator. The remaining part of the

proof just follows from the definition of U .

5.2 Applications of Stinespring Representation

5.2.1 Unitary dilation of a contraction

Theorem 5.8 (Sz.-Nagy’s Dilation Theorem). Let T ∈ B(H) with ‖T‖ ≤ 1.

Then there exists a Hilbert space K containing H as a Hilbert subspace and a

unitary operator U ∈ B(K) such that {UkH : k ∈ Z} has dense span in K and

T n = PHU
n|H for all nonnegative integers n.
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Moreover, if (K′, U ′) is another pair satisfying the above properties, then there

exists a unitary operator V : K → K′ such that V h = h for all h ∈ H and

V UV ∗ = U ′.

Proof. By Theorem 3.9 φ : C(T) → B(H) defined by p + q 7→ p(T ) + q(T )∗ is

positive. So by Theorem 4.14 φ is completely positive. Let (π, V,K) be minimal a

Stinespring representation for φ. Since φ is unital, by Remark 5.3 we may assume

that K contains H as a Hilbert subspace and V is the imbedding H ↪→ K so

φ(f) = PHπ(f)|H for all f ∈ C(T).

Set U = π(z), where z is the coordinate function. Since π is a unital ∗-homo-

morphism, U is unitary and we have

T n = φ(zn) = PHπ(zn)|H = PHπ(z)n|H = PHU
n|H for all n ≥ 0.

The minimality condition of (π, V,K) means that span of π(C(T))VH is dense in

K. Equivalently, span of {π(zk)VH : k ∈ Z} is dense in K. Since VH = H and

π(zk) = Uk, we obtain that {UkH : k ∈ Z} has dense span in K.

Let (K′, U ′) be another pair satisfying the properties in the theorem. Set

π′(p+ q̄) = p(U ′) + q(U ′)∗ for the polynomials p, q ∈ C(T) into B(K′). It is easy

to show that π′ is a unital ∗-homomorphism (so it must be bounded since it is

positive). Hence π′ extends to a unital ∗-homomorphism on C(T). Notice that

φ(p+ q̄) = p(T ) + q(T )∗ = PH
(
p(U ′) + q(U ′)∗

)
|H = PHπ

′(p+ q̄)|H.

So, necessarily, φ(f) = PHπ
′(f)|H for all f ∈ C(T). This means that (π′, V ′, K ′),

where V ′ is the imbedding of H into K′, is a Stinespring representation for φ.

Moreover, the condition {U ′kH : k ∈ Z} ensures that it is minimal. Now the

result follows from Proposition 5.7, which states that the minimal Stinespring

representations are unitarily equivalent.

5.2.2 Spectral Sets

In this part we have an application of the Stinespring representation to spectral

sets. We first recall some definitions.
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Let X be a compact subset of C. Let R(X) be the subalgebra of C(X)

containing the rational functions, that is,

R(X) = {f :X→ C : f =
p

q
for some polynomials p, q and q(z) 6= 0 ∀z ∈ X}.

Note that the above representation of a function f ∈ R(X) may not be unique,

for example if X = {λ} then 0/1 and z − λ/1 are the same functions in R(X).

Let T ∈ B(H) with σ(T ) ⊆ X. We may define the homomorphism

ρ : R(X)→ B(H) by ρ(p/q) = p(T )q(T )−1.

However this definition may not be correct since the representation by polyno-

mials may not be unique. As an example if σ(T ) = {λ} and X = {λ} then ρ

is well defined if and only if T = λI. When X is infinite compact set then ρ is

well-defined, indeed if p/q = r/s on X then ps = qr on X and so on the complex

plane. Hence we obtain p(T )q(T )−1 = r(T )s(T )−1. When X is a finite set, say

X = {λ1, ..., λn}, then ρ is well defined if and only if (T −λ1I) · ... · (T −λnI) = 0.

Note that ‖ρ‖ ≥ 1 since it is unital. When ‖ρ‖= 1 X is called a spectral set for

T , and when ρ satisfies ‖ρ‖ ≤ K, then X is said to be a K-spectral set for T .

We can consider R(X) as a subalgebra of C(∂X) since the maximum modulus

principle implies that the norms of a rational function on X and on ∂X are same.

Let T ∈ B(H) and assume that σ(T ) lies in a compact set X. T is said to

have a normal ∂X-dilation if there exists a Hilbert space K containing H as a

subspace and a normal operator N in B(K) with σ(N) ⊆ ∂X, such that

r(T ) = PHr(N)|H

for any rational function r in R(X). N is called a minimal normal ∂X-dilation

for T when {r(N)H : r ∈ R(X)} has dense span in K. When T has a normal

∂X-dilation, X must be necessarily a spectral set for T since

‖r(T )‖ ≤ ‖r(N)‖ = sup
z∈σ(N)

|r(z)| ≤ sup
z∈∂X

|r(z)| = ‖r‖.

However, the converse is not correct. That is, there exists T and a spectral set

X for T , but T has no normal dilation with spectrum contained in ∂X, cf. [5].
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Let S = R(X) + R(X). Then S is an operator system in C(∂X). R(X) is

called a Dirichlet algebra on ∂X if S is dense in C(∂X).

Theorem 5.9 (Berger-Foias-Lebow). Let X be a spectral set for T such that

R(X) is a Dirichlet algebra on ∂X. Then T has a minimal normal ∂X-dilation.

Furthermore, two minimal normal ∂X-dilations are unitarily equivalent in such

a way that the unitary map leaves invariant H.

Proof. Since ρ : R(X)→ B(H) defined by ρ(r) = r(T ) is a unital contraction, it

extends to a positive map ρ̃ to S = R(X) +R(X). We are given that S is dense

in C(∂X) so ρ̃ extends to a positive map on C(∂X). This extension is completely

positive by Theorem 4.14. The rest of the proof is similar to the proof of the

previous theorem. The only difference is that if (K, V, π) is minimal Stinespring

representation for ρ then π(z) = N is a normal dilation of T .

Sz.-Nagy’s Dilation Theorem is a very special case of the theorem above. In

fact, when ‖T‖ ≤ 1 then the closed unit disc is a spectral set for T and it is a

Dirichlet algebra on T.

5.2.3 B(H)-valued measures

Another application of the Stinespring Representation Theorem deals with oper-

ator valued measures on a compact set X. We first give some related definitions.

Let X be a compact Hausdorff space and let B be the σ-algebra of Borel sets

of X, that is, B is the smallest σ-algebra containing all open subsets of X. A

map E : B → B(H) is called a B(H)-valued measure if E is weakly countably

additive, that is, for any disjoint sequence {Bi} in B with union B

〈E(B)x, y〉 =
∞∑
i=1

〈E(Bi)x, y〉 for all x, y ∈ H.

The B(H)-valued measure E is called bounded if sup{‖E(B)‖ : B ∈ B} <∞. We

put ‖E‖ for this supremum. Note that if we fix x and y in H then Ex,y : B → C
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defined by

Ex,y(B) = 〈E(B)x, y〉

is a complex measure. E is said to be regular if Ex,y is regular for all x, y ∈ H.

Remark 5.10. There is a bijective correspondence between regular bounded

B(H)-valued measures and bounded linear maps φ : C(X) → B(H). Indeed,

let E be a regular bounded B(H)-valued measure. Fix f ∈ C(X). Define the

sequi-linear form [·, ·] on H by

[x, y] =

∫
f dEx,y.

It is easy to show that [·, ·] is bounded, in fact,

|[x, y]| ≤ ‖f‖ |〈E(X)x, y〉| ≤ ‖f‖ ‖E‖ ‖x‖ ‖y‖.

So by Riesz Representation Theorem there exists unique Tf ∈ B(H) such that

〈Tfx, y〉 = [x, y] =

∫
f dEx,y. (5.2)

Let φE : C(X)→ B(H) be defined by f 7→ Tf . It is easy to show φE is linear

and bounded.

Conversely, let a bounded linear map φ : C(X)→ B(H) be given. Fix x and

y in H. The map

f 7→ 〈φ(f)x, y〉 f ∈ C(X)

is in the dual space of C(X). So by Riesz-Markov Theorem there is a complex

valued finite Borel measure µx,y such that

〈φ(f)x, y〉 =

∫
f dµx,y for all f ∈ C(X).

For any B ∈ B, define a sequi-linear form [·, ·] on H by [x, y] = µx,y(B). By a

similar argument above, there exists unique E(B) ∈ B(H) such that

〈E(B)x, y〉 = [x, y] = µx,y(B). (5.3)

It is easy to check that E : B → B(H) given by B 7→ E(B) is a regular bounded

B(H)-valued measure.
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To sum up, the following equation gives this correspondence

〈φ(f)x, y〉 =

∫
f d〈E(·)x, y.

We also remark that the above correspondence (5.2) and (5.3) are inverse one to

each other.

Definition 5.11. A regular bounded B(H)-valued measure E is said to be

(i) spectral if E(M ∩N) = E(M)E(N);

(ii) positive if E(M) ≥ 0;

(iii) selfadjoint if E(M)∗ = E(M);

for all M,N ∈ B.

Note that (i) and (iii) together imply (ii), since E(M)2 = E(M) = E(M)∗

means that E(M) ≥ 0 for all M .

The following proposition shows the connection between this kind of measures

and the linear map obtained by them.

Proposition 5.12. Let E be a bounded regular B(H)-valued measure and let

φ : C(X)→ B(H) be the corresponding linear map. Then:

(i) φ is a homomorphism if and only if E is spectral;

(ii) φ is positive if and only if E is positive;

(iii) φ is selfadjoint if and only if E is selfadjoint;

(iv) φ is a ∗-homomorphism if and only if E is selfadjoint and spectral.

Proof. We first remark that if M is a Borel set, then 〈E(M ∩ ·)x, y〉 is a measure

such that for any measurable function g,∫
M

g d〈E(·)x, y〉 =

∫
g d〈E(M ∩ ·)x, y〉. (5.4)

(i) (⇐) Let E be spectral. It is enough to show that for any simple function ϕ

and g ∈ C(X), ∫
ϕg d〈E(·)x, y〉 =

∫
ϕ d〈E(·)φ(g)x, y〉. (5.5)



CHAPTER 5. STINESPRING REPRESENTATION 46

Indeed, if the equality holds for simple functions then it holds for any continuous

function f and we have 〈φ(fg)x, y〉 = 〈φ(f)φ(g)x, y〉, that is, φ is multiplicative.

Showing equation (5.5) is equivalent to show∫
M

g d〈E(·)x, y〉 =

∫
M

d〈E(·)φ(g)x, y〉.

for any Borel set M . But the right hand side is 〈E(M)φ(g)x, y〉 and, by (5.4),

the left hand side is∫
g d〈E(M ∩ ·)x, y〉 =

∫
g d〈E(·)x,E(M)∗y〉 = 〈φ(g)x,E(M)∗y〉.

(⇒) Let φ be multiplicative. Fix x, y in H and N,M ∈ B. For any continuous

function g,

|〈E(N ∩M)x, y〉 − 〈E(N)E(M)x, y〉|

=

∣∣∣∣∫
N

χ
M
d〈E(·)x, y〉 − 〈E(N)E(M)x, y〉

∣∣∣∣
≤

∣∣∣∣∫
N

χ
M
d〈E(·)x, y〉−

∫
N

gd〈E(·)x, y〉
∣∣∣∣+

∣∣∣∣∫
N

gd〈E(·)x, y〉 − 〈E(N)E(M)x, y〉
∣∣∣∣

=

∣∣∣∣∫
N

(χ
M
− g)d〈E(·)x, y〉

∣∣∣∣+

∣∣∣∣∫
N

d〈E(·)φ(g)x, y〉 − 〈E(N)E(M)x, y〉
∣∣∣∣

=

∣∣∣∣∫
N

(χ
M
− g)d〈E(·)x, y〉

∣∣∣∣+ |〈E(N)φ(g)x, y〉 − 〈E(N)E(M)x, y〉|

=

∣∣∣∣∫
N

(χ
M
− g)d〈E(·)x, y〉

∣∣∣∣+ |〈φ(g)x,E(N)∗y〉 − 〈E(M)x,E(N)∗y〉|

=

∣∣∣∣∫
N

(χ
M
− g)d〈E(·)x, y〉

∣∣∣∣+

∣∣∣∣∫ gd〈E(·)x,E(N)∗y〉−
∫
χ

M
d〈E(·)x,E(N)∗y〉

∣∣∣∣
=

∣∣∣∣∫
N

(χ
M
− g)d〈E(·)x, y〉

∣∣∣∣+

∣∣∣∣∫ (g − χ
M

)d〈E(·)x,E(N)∗y〉
∣∣∣∣ .

So we can choose a continuous function g such that the last sum is arbitrarily

small.

(ii)(⇐) Let E be positive. Then 〈E(·)x, x〉 is a positive measure. This means

that for any f ≥ 0, ∫
f d〈E(·)x, x〉 ≥ 0

since f can be approximated by simple functions having nonnegative real coeffi-

cients. So 〈φ(f)x, x〉 ≥ 0, equivalently φ is positive.
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(⇒) Let φ be positive. Fix M ∈ B. For any f ∈ C(X) and x ∈ H,

|〈φ(f)x, x〉 − 〈E(M)x, x〉| =

∣∣∣∣∫ f d〈E(·)x, x〉 −
∫
χ

M
d〈E(·)x, x〉

∣∣∣∣
≤

∫
‖f − χ

M
‖ d|〈E(·)x, x〉|.

It is possible to make the last integral arbitrarily small by a choice of a continuous

function f . But since ‖Ref+ − χ
M
‖ ≤ ‖f − χ

M
‖ and |〈E(·)x, x〉| is a positive

measure, we may also assume f ≥ 0. So 〈E(M)x, x〉 ≥ 0, equivalently E is

positive.

(iii) If µ is a bounded regular measure then µ̄ is also a bounded regular measure

and for any measurable function f we have∫
f dµ =

∫
f̄ dµ̄.

It is easy to see that 〈y, E(·)x〉 is also a measure such that 〈E(·)x, y〉 = 〈y, E(·)x〉
for all x, y. This means that

〈
(
φ(f ∗)− φ(f)∗

)
x, y〉 = 〈φ(f ∗)x, y〉 − 〈φ(f)y, x〉

=

∫
f̄ d〈E(·)x, y〉 −

∫
f d〈E(·)y, x〉

=

∫
f̄ d〈E(·)x, y〉 −

∫
f̄ d〈E(·)y, x〉

=

∫
f̄ d
(
〈E(·)x, y〉 − 〈x,E(·)y〉

)
.

From here it follows that φ is selfadjoint if and only if E is selfadjoint.

(iv) By (i) and (iii).

The following theorem states that a positive measure has selfadjoint spectral

dilation. We give a proof based on Stinespring Dilation Theorem.

Theorem 5.13 (Naimark). Let E be a positive B(H)-valued measure on X.

Then there exists a Hilbert space K, a bounded linear operator V : H → K and a

selfadjoint spectral B(K)-valued measure F on X such that

E(B) = V ∗F (B)V for every Borel set B.
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Proof. Let φ : C(X) → B(H) be the linear map corresponding to E. φ is

positive by the previous proposition and so φ is completely positive by Theorem

4.14. Let (π, V,K) be a Stinespring representation for φ. So π : C(X) → B(K)

is a unital ∗-homomorphism and V ∈ B(H,K) such that φ(f) = V ∗π(f)V for

all f ∈ C(X). Let F be the B(H)-valued measure corresponding to π. By the

previous proposition F is regular selfadjoint and spectral. It is clear now that F

has the desired property.

5.2.4 Completely positive maps between complex matri-

ces

If φ : Mn →Mk is completely positive then φ has a special shape, more precisely,

φ(A) = V ∗
1 AV1 + · · ·+ V ∗

j AVj for some n× k matrices V1, ..., Vj with j ≤ nk. We

will prove this result by use of the Stinespring Representation Theorem.

Lemma 5.14. Let π : Mn → B(K) be a unital ∗-homomorphism. Then there

exists a Hilbert space H such that

K ∼= H⊕ · · · ⊕ H (n copies)

and π : Mn → B(K) ∼= Mn(B(H)) satisfies π(Eij) = Ẽij for all i, j = 1, ..., n

where Eij and Ẽij are the standard matrix units for Mn and Mn(B(H)), respec-

tively.

Proof. Set Hi = π(Eii)K for i = 1, ..., n. Then K = H1 ⊕ · · · ⊕ Hn as direct sum

of Hilbert spaces. (Indeed, it is easy to see that K = H1 + · · ·+Hn and Hi ⊥ Hj

for i 6= j and consequently the sum is direct and all subspaces are complete.)

We claim that H1, ...,Hn are isometric isomorphic. Since the range of π(Eji)

lies in Hj, Uji = π(Eji)|Hi
is well-defined as an operator from Hi to Hj. We

claim that Uji is an isometric isomorphism with U−1
ji = Uij for all i, j. Linearity

is clear. Since π(Eij)K lies in Hi and Ujiπ(Eij)x = π(Ejj)x, Uji is surjective. Uji

preserves inner-product and so it is one-to-one. A typical element of Hi is of the
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form π(Eii)x. So

〈Ujiπ(Eii)x, Ujiπ(Eii)y〉 = 〈π(Eji)x, π(Eji)︸ ︷︷ ︸
π(Eij)∗

y〉 = 〈π(Eii)x, y〉 = 〈π(Eii)x, π(Eii)y〉

where the last equality follows from π(Eii) = π(Eii)π(Eii) = π(Eii)
∗π(Eii). Fi-

nally, it is easy to see that U−1
ji = Uij:

〈π(Eii)x, π(Eii)y〉 = 〈π(Eii)x, y〉 = 〈π(EijEji)x, y〉 = 〈π(Eji)x, π(Eji)y〉.

We can represent any operator on K = H1⊕· · ·⊕Hn by an n×n matrix with

operator entries. It is easy to see that π(Eij) corresponds to the matrix where

ijth entry is Uij and 0 elsewhere. Since

K = H1 ⊕H2 ⊕ · · · ⊕ Hn = H1 ⊕ U21H1 ⊕ · · · ⊕ Un1H1
∼= H1 ⊕ · · · ⊕ H1,

π(Eij), as an operator on the last summand, corresponds to Ẽij.

When K is finite dimensional we can say more.

Lemma 5.15. Let K be a finite dimensional Hilbert space and π : Mn → B(K)

be a unital ∗-homomorphism. Then

K ∼= Cn ⊕ · · · ⊕ Cn (r =
dimK
n

copies)

and π : Mn → B(K) ∼= B(Cn ⊕ · · · ⊕ Cn) ∼= Mr(B(Cn)) ∼= Mr(Mn) satisfies

π(A) =


A 0 · · · 0

0 A
...

...
. . .

...

0 · · · · · · A

 .

Proof. By the above lemma K ∼= Cr ⊕ · · · ⊕ Cr (n copies) such that

π : Mn → B(K) ∼= B(Cr ⊕ · · · ⊕ Cr) ∼= Mn(B(Cr)) = Mn(Mr)

satisfies

π([aij]) =


a11I · · · a1nI

...
. . .

...

an1I · · · annI

 ,
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where I is identity in Cr. So if we apply the canonical shuffle between Mr(Mn)

and Mn(Mr) (Section 2.3 ) then we obtain the desired result.

Theorem 5.16. Let φ : Mn → Mk be completely positive. Then there exists at

most nk linear maps Vi : Ck → Cn such that

φ(A) =
∑

i

V ∗
i AVi for all A ∈Mn.

Proof. We are given that φ : Mn → Mk = B(Ck) is completely positive. Let

(φ, V,K) be Stinespring representation for φ. By the proof of Theorem 5.1 we

know that dimK ≤ dim(Mn ⊗ Ck) = n2k. Since π : Mn → B(K) is a unital

∗-homomorphism, by the above lemma, we can write

K ∼= Cn ⊕ · · · ⊕ Cn (r copies)

with r ≤ nk such that π : Mn → B(K) ∼= B(Cn ⊕ · · · ⊕ Cn) ∼= Mr(B(Cn)) ∼=
Mr(Mn) satisfies

φ(A) =


A 0 · · · 0

0 A
...

...
. . .

...

0 · · · · · · A

 .
V : Ck → K ∼= Cn ⊕ · · · ⊕ Cn can be represented as a column operator matrix

V =


V1

...

Vr


for some Vi : Ck → Cn. And so V ∗ = [V ∗

1 , ..., V
∗
r ]. Therefore

φ(A) = V ∗π(A)V = [V ∗
1 , ..., V

∗
r ]


A 0 · · · 0

0 A
...

...
. . .

...

0 · · · · · · A



V1

...

Vr

 =
r∑

i=1

V ∗
i AVi.
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5.3 Naimark’s Dilation Theorem

Let G be a group and φ : G→ B(H) be a map. φ is said to be completely positive

definite if for any finite number of elements g1, ..., gn of G the matrix
[
φ(g−1

i gj)
]

is

a positive operator in Mn(B(H)). If G is a topological group then φ : G→ B(H)

is called weakly continuous if

〈φ(gλ)x, y〉 → 〈φ(g)x, y〉 for all nets gλ → g in G for all x, y in H.

Similarly φ is called strongly continuous if

‖φ(gλ)x− φ(g)x‖ → 0 for all net gλ → g in G for all x, y in H.

and ∗-strongly continuous if φ is strongly continuous and

‖φ(gλ)∗x− φ(g)∗x‖ → 0 for all net gλ → g in G and x in H.

Theorem 5.17. Let G be a topological group and let φ : G → B(H) be weakly

continuous and completely positive definite. Then there exists a Hilbert space K,

a bounded operator V : H → K and a unitary representation ρ : G→ B(H) such

that

φ(g) = V ∗ρ(g)V for all g ∈ G.

In particular, φ is ∗-strongly continuous.

Proof. Let F (G,H) be the vector space of finitely supported functions from G to

H. Define a sesquilinear form [·, ·] on F (G,H) by

[f1, f2] =
∑

g,g′∈G

〈
φ(g−1g′)f1(g

′), f2(g)
〉
H.

By a very similar argument used in the proof of Stinespring’s Dilation Theorem

[·, ·] is positive definite and so N = {f : [f, f ] = 0} is a subspace of F (G,H).

Hence

〈·, ·〉 = [·+N , ·+N ]

is an inner product on the quotient space F (G,H)/N . Let K be the completion

of this space.
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Define V : H → K as follows. First, consider V : H → F (G,H) defined by

V x as the function

V x(g) =

{
x g = e

0 g 6= e

where e is the unit of G. Clearly V is linear. We can define V from H to

F (G,H)/N by x 7→ V x + N . V is still linear and it is easy to show ‖V ‖ ≤
‖φ(e)‖1/2. And finally we may assume V : H → K, since F (G,H)/N is contained

in K.

Let Lg be the left translation on F (G,H) by g, that is, Lgf is the function

satisfying Lgf(g′) = f(g−1g′). Since the null space of Lg is contained in N , we

may assume Lg is defined on F (G,H)/N via f +N 7→ Lgf +N . It can be shown

that the quotient operator satisfies ‖Lg‖ ≤ 1 so we may extend it linearly on K,

which we will still denote by Lg. We have that Le = I and Lgh = LgLh. Define

ρ : G→ B(K); ρ(g) = Lg.

Clearly ρ is a unitary representation. Indeed, ρ(g)∗ = ρ(g−1). We must show

that φ(g) = V ∗ρ(g)V for all g in G. Fix g ∈ G then for all x, y in H,

〈V ∗ρ(g)V x, y〉H = 〈ρ(g)V x, V y〉K = 〈LgV x, V y〉K
=

∑
a,b∈G

〈
φ(a−1b)LgV x(b), V x(a)

〉
H

=
∑

a,b∈G

〈
φ(a−1b)V x(g−1b), V x(a)

〉
H

= 〈φ(g)x, y〉H.

To show that φ is ∗-strongly continuous, it is enough to show that ρ is ∗-
strongly continuous, since

‖φ(gλ)x− φ(g)x‖ ≤ ‖ρ(gλ)(V x)− ρ(g)(V x)‖ ‖V ∗‖,

and

‖φ(gλ)∗x− φ(g)∗x‖ ≤ ‖ρ(gλ)∗(V x)− ρ(g)∗(V x)‖ ‖V ∗‖.

We know that if a unitary net converges weakly to a unitary operator then

it converges ∗-strongly. So we must show that ρ is weakly continuous. Since
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F (G,H)/N is dense in K it is enough to show that ρ is weakly continuous on

F (G,H)/N . Let gλ → g in G, then f1, f2 ∈ F (G,H)/N we have

〈ρ(gλ)f1, f2〉 =
∑

a,b∈G

〈
φ(a−1b)ρ(gλ)f1(b), f2(a)

〉
H

=
∑

a,b∈G

〈
φ(a−1b)f1(g

−1
λ b), f2(a)

〉
H

=
∑

a,b∈G

〈
φ(a−1g−1

λ b)f1(b), f2(a)
〉
H.

The sum is finite and φ is weakly continuous. So the net converges to∑
a,b∈G

〈
φ(a−1gb)f1(b), f2(a)

〉
H = 〈ρ(g)f1, f2〉.

Remark 5.18. When φ(e) = I in Theorem 5.17, we may also assume that K
contains H as a subspace and V turns out to be an imbedding. Indeed, this holds

because V ∗V = φ(e) So in this case we can write

φ(g) = PHρ(g)|H for all g ∈ G.

The triple (ρ, V,K) is called a Naimark representation for φ. It is said to be

a minimal Naimark representation when ρ(G)V (H) has dense span in K. Given

a Naimark representation (ρ, V,K), it is possible to make it minimal as we did

for Stinespring representation. In the following proposition we show that two

minimal Naimark representations are unitarily equivalent.

Proposition 5.19. Let (ρ1, V1,K1) and (ρ2, V2,K2) be two minimal Naimark rep-

resentations for φ : G → H. Then there exists a unitary U : K1 → K2 such that

UV1 = V2 and Uρ1(·)U∗ = ρ2.

Proof. The proof is similar to the proof of Proposition 5.7. If we define

U : spanρ1(G)V1(H)→ spanρ2(G)V2 by
∑

i

ρ1(gi)V1(hi) 7→
∑

i

ρ2(gi)V2(hi)

then U is well-defined and a surjective isometry. So it can be extended to a

unitary map from K1 to K2. The required equalities are satisfied since they are

satisfied on dense subsets of K1 and K2.
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A map φ : G→ B(H) is said to be positive definite if for every finite number

of elements g1, ..., gn in G and α1, ..., αn in C, the operator

n∑
i,j=1

ᾱi αj φ(g−1
i gj)

is positive. It is easy to show that a completely positive definite map is positive

definite.

Remark 5.20. We note that if φ : G → B(H) is positive definite and x ∈ H
then the map φx : G → C defined by φx(g) = 〈φ(g)x, x〉 is completely positive

definite. Indeed, if g1, ..., gn in G and α1, ..., αn in C are given then

〈[
φx(g−1

i gj)
] 

α1

...

αn



α1

...

αn


〉

=
n∑

i,j=1

φx(g−1
i gj)αj ᾱi

=
n∑

i,j=1

〈φ(g−1
i gj)x, x〉αj ᾱi

=

〈( n∑
i,j=1

ᾱi αj φ(g−1
i gj)

)
x, x

〉
.

As an application of Naimark’s Dilation Theorem we consider the special case

G = Zn. Notice that any mapping from Zn to B(H) is weakly continuous since

Zn has discrete topology. We will show that there is a bijective correspondence

between (completely) positive definite maps from Zn to B(H) and (completely)

positive maps defined from C(Tn) to B(H).

Let Zn be the group defined as Cartesian product of n copies of Z and let

Tn = {(α1, ..., αn) : αi ∈ T}. For J = (j1, ..., jn) ∈ Zn, we define zJ : Tn → C by

(α1, ..., αn) 7→ αj1
1 · · ·αjn

n . It is easy to see that zJ ∈ C(Tn) for all J ∈ Zn and we

have (zJ)∗ = z−J and zJzK = zJ+K .

Lemma 5.21. There is a one to one correspondence between unital ∗-
homomorphisms π : C(Tn) → B(H) and (unital) unitary representations ρ :

Zn → B(H) determined by π(zJ) = ρ(J).
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Proof. Let π : C(Tn) → B(H) be a unital ∗-homomorphism. Define ρ : Tn →
B(H) by ρ(J) = π(zJ). Then clearly ρ is unital and for any J in Zn,

ρ(J)ρ(J)∗ = π(zJ)π(zJ)∗ = π(zJ)π(z−J)∗ = φ(1) = I.

Similarly ρ(J)∗ρ(J) = I, so ρ is unitary. Finally it is easy to show ρ(J + K) =

ρ(J)ρ(K). Thus, ρ is a unitary representation.

Conversely, let ρ : Tn → B(H) be a (unital) unitary representation. By the

Stone-Weierstrass Theorem the subalgebra span{zJ : J ∈ Zn} is dense in C(Tn).

We define π :span{zJ : J ∈ Zn} → B(H) by

π(a1z
J1 + · · ·+ akz

Jk) = a1ρ(J1) + · · ·+ a1ρ(J1).

Clearly the domain of π is selfadjoint. It is easy to show that φ is unital ∗-
homomorphism. So it extends to a unital ∗-homomorphism on C(Tn) and we

have π(zJ) = ρ(J).

Let H be a Hilbert space. A function γ : H → C is said to be bounded

quadratic if it satisfies γ(αx) = |α|2γ(x) and γ(x+ y) +γ(x− y) = 2(γ(x) +γ(y))

and there exists a constant M such that |γ(x)| ≤ M‖x‖2 for all x, y ∈ H and

α ∈ C.

In the proof of the following proposition we will use:

Lemma 5.22. Let γ : H → C be bounded quadratic. Then there exists unique

T ∈ B(H) such that γ(x) = 〈Tx, x〉. Conversely, for any T ∈ B(H), x 7→ 〈Tx, x〉
is bounded quadratic.

Proof. Define [·, ·] : H×H → C by

[x, y] =
1

2
(γ(x+ y)− γ(x)− γ(y)− iγ(x− iy) + iγ(x) + iγ(y)).

It is not difficult to show that [·, ·] is a sesquilinear form on H. So there exists

T ∈ B(H) such that 〈Tx, y〉 = [x, y]. This means that 〈Tx, x〉 = γ(x) for all x

(put y = x in above equality). Uniquenes of T and the converse implication of

the claim are easy to show.
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Proposition 5.23. Let φ : Zn → B(H) be a (completely) positive definite map.

Then there exists a unique (completely) positive map ψ : C(Tn)→ B(H) satisfy-

ing ψ(zJ) = φ(J). Conversely, let ψ : C(Tn) → B(H) be a (completely) positive

map. Then φ : Zn → B(H) defined by φ(J) = ψ(zJ) is a (completely) positive

definite map.

Proof. Let φ : Zn → B(H) be completely positive definite. Let (ρ, V,K) be a

Naimark representation for φ. So ρ : Zn → B(K) is a unitary representation.

Let π : C(Tn) → B(K) be the unital ∗-homomorphism satisfying π(zJ) = ρ(J).

Set ψ : C(Tn) → B(H) by ψ(f) = V ∗π(f)V . Then ψ is completely positive by

Remark 5.2 and it satisfies ψ(zJ) = V ∗π(zJ)V = V ∗ρ(J)V = φ(J). Uniqueness

of ψ is easy to see.

The proof of the converse for the completely positive is similar.

Let φ : Zn → B(H) be positive definite. If we fix x ∈ H then φx : Zn → C
is completely positive definite. By the above part there exists unique completely

positive map ψx : C(Tn)→ C such that ψx(zJ) = φx(J) for all J ∈ Zn. Let S =

{zJ : J ∈ Zn}. We claim that for all f ∈ S, γf : H → C defined by γf (x) = ψx(f)

is a bounded quadratic form. Indeed, if we write f = a1z
J1 + · · ·+ akz

Jk then

γf (x) = ψx(f) = ψx(a1z
J1 + · · ·+ akz

Jk) = a1ρx(J1) + · · ·+ akρx(Jk)

= 〈
(
a1ρ(J1) + · · ·+ akρ(Jk)

)
x, x〉.

So there exists unique Tf ∈ B(H) such that 〈Tfx, x〉 = γf (x). It is easy to show

ψ : S → B(H) is linear. We also claim that ψ is positive (S is an operator system

in C(Tn)). If f ≥ 0 and x ∈ H then

〈ψ(f)x, x〉 = 〈Tfx, x〉 = γf (x) = ψx(f) ≥ 0.

ψ also satisfies

〈ψ(zJ)x, x〉 = ψx(zJ) = φx(J) = 〈φ(J)x, x〉

for all x ∈ H. So ψ(zJ) = φ(J) for all J ∈ Zn. The positive extension of ψ on

C(Tn) is the desired map.

The proof for the converse of positive case follows from Theorem 4.14.
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Corollary 5.24. Let φ : Zn → B(H) be a map. Then φ is positive definite if and

only if it is completely positive definite.

Proof. It is enough to show (⇒). Let ψ : C(Tn) → B(H) be the positive map

satisfying ψ(zJ) = φ(J). By Theorem 4.14, ψ is completely positive. This means

that φ is completely positive definite.
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