
Computer Algebra Tailored to Matrix Inequalities in Control ∗

M. C. de Oliveira and J. William Helton †

February 20, 2006

Abstract

A major advance in linear systems theory over the last decade has been a formalism for

converting systems problems to matrix inequalities. In this tutorial paper we describe com-

puter algebra algorithms, methodology, and implementation which allows users to convert many

systems problems to Linear Matrix Inequalities (LMIs). We shall focus on computer algebra

methodology which can assist with user in producing LMIs for control design. We provide a

step-by-step computer derivation of LMI formulas for the design of linear time-invariant dynamic

controllers that achieve a prespecified performance measured by the H∞ norm of a certain closed

loop transfer function.

1 Introduction

Matrix inequalities are lists of requirements that matrix valued polynomials or rational functions

of matrix variables be positive semidefinite [BEFB94, SIG98]. If the problem does not contain

a direct reference to any system dimension, formulas must hold for matrix variables of any size.

Since matrix multiplication is not commutative, one sees much effort going into calculations (by

hand) on noncommutative rational functions. Indeed, the textbook classics of linear control, such

as the H∞ control problem [Fra87], do not explicitly mention the dimension of the systems being

controlled. The solution is expressed as two Riccati inequalities [ZDG96]. These are, in fact, in-

equalities on noncommutative expressions. For instance, in the text [ZDG96], which is a thorough

summary of linear control as of 1990, somewhere around 90% of the formulas and manipulations

are noncommutative equalities. The book [SIG98], which describes systematically the matrix in-

equality movement of the 1990’s, contains nearly all noncommutative formulas. Thus, for symbolic
∗This work has been partially supported by the NSF and the Ford Motor Company.
†University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0112, USA.

1

computing to have a full ranging impact on linear systems research, one needs a program which

will do noncommuting operations.

A major symbolic noncommutative algebra package, NCAlgebra, has been developed by one of

the authors and collaborators. This software runs under Mathematica, being platform indepen-

dent [HSM00]. The package NCGB implements and sorts the output of a Non Commutative Gröbner

Basis algorithm. Gröbner Basis Algorithms eliminate unknowns from collections of equations, and

is the heavy machinery behind the algorithms we implement. Eliminating unknowns often gives

“nice forms” for the equations and helps one discover practical formulas. NCGB links Mathematica

and NCAlgebra to C++, and has some platform dependence: we support Solaris, Windows and

various versions of Linux. More details about these software packages are available on our web-

page http://www.math.ucsd.edu/~ncalg. The goal in this paper is to handle noncommutative

inequalities in a way which can be implemented in this type of package.

While commutative computer algebra has seen heavy development and use, since the Macsyma

project in the 1960’s, general noncommutative computer algebra has only recently come to the be-

ginning stages of experimentation. Still the field is uncharted and at the stages of high adventure.

For perspective, six years ago there was little noncommutative algebra software publically avail-

able. Unfortunately, to bring noncommutative computer algebra to nearly its potential requires a

creation of a small world of algorithms and software. A crude analogy with the pre-Matlab days

of engineering comes to mind. Suppose only a few reliable algorithms were known, for example,

a (slow) matrix inversion and a (slow) eigensolver is known; there are no Riccati solvers or other

utilities. The field, to get started, faces the task of programming what is known, of doing many

experiments to find a collection of successful applications and of developing algorithms to fill major

application gaps. That is much like the starting situation with noncommuting computer algebra.

2 Objective and scope of this paper

We will describe computer algebra algorithms, methodology, and implementation which allows users

to convert many systems and control problems to LMIs (Linear Matrix Inequalities). We shall focus

on computer algebra methodology which can assist the user with the two most popular techniques

for converting control problems into LMIs, the elimination of variables method, as described in

2

Skelton, Iwasaki and Grigoriadis [SIG98], and the change of variables method, as described in

Scherer, Gahinet and Chilali [SGC97].

We discuss some generic algorithms and ideas that can be implemented using NCAlgebra and

NCGB which might be able to help users “discover” solutions to control problems in an automated

fashion, or at least, simplify much of the work that would otherwise be done by hand. We will show

how to use commands in NCAlgebra and NCGB to implement some of these ideas. For instance, we

will discuss a strategy for “motivating unknowns” in noncommutative expressions. This strategy

works by bringing the original expression into a form that is likely to be simpler to solve under

some appropriate change of variables. In particular, we show that the method of [SGC97] can

be seen as a special instance of that generic idea. A specific linear control problem, namely the

problem of desining a dynamic output feedback linear time-invariant controller satisfying a certain

performance requirement on the H∞ norm of a closed loop transfer function, will be formulated

and solved using symbolic noncommutative algebra tools.

The code used in this tutorial will run in NCAlgebra, NCGB and Mathematica. We will provide

a brief introduction to NCAlgebra and Mathematica notation to familiarize the readers with the

computer code. The tutorial code, as well as the packages NCAlgebra and NCGB are available on

the web for download [HSM00]. The readers might also be interested in some of other related

results we have previously reported in [HS99, dH03b, dH03a, CHSY03]. The authors are currently

developing numerical code that would allow the complete manipulation of matrix inequalities using

Mathematica and NCAlgebra, from production to its numerical solution. Results on this numerical

tool will be reported soon.

3 Matrix inequalities in systems and control

Matrix equations and inequalities appear naturally in several systems and control problems. Take,

for instance, the problem of checking whether the continuous-time linear time-invariant system

ẋ(t) = Ax(t), x(0) = x0, (1)

3

given here in state-space form, is asymptotically stable for any choice of x0. Let us mention two

methods which one could use to verify such property: a) compute the eigenvalues of the square

matrix A and check whether they lie in the open left half of the complex plane; b) verify whether

the set of matrix inequalities

P > 0, AT P + PA < 0, (2)

have a feasible solution, where P is a symmetric real matrix with the same dimension as A, and the

relation X > 0 (X < 0) stands for the symmetric matrix X to belong in the interior of the convex

cone of positive (negative) semidefinite matrices. This positive (negative) cone is comprised of all

symmetric matrices having only positive (negative) eigenvalues.

It is a fact that in most cases one can check the location of the eigenvalues of A, method a), much

more reliably and faster than establishing the existence of a solution to the Lyapunov inequalities,

method b). However, the latter test possesses an extremely valuable property that is not associated

with method a). This property is convexity. Indeed, the cone of symmetric positive semidefinite

matrices is a convex cone, therefore positive or negative linear (and affine) mappings on the space

of symmetric matrix variables also define convex sets. In other words, and using a terminology that

became popular in the recent systems and control literature, the method b) amounts at solving

a set of Linear Matrix Inequalities (LMIs). Convexity allows the derivation of many important

extensions of this result.

For instance, one can generalize this concept of stability to uncertain systems. We have already

mentioned the convexity properties of the inequalities (2) with respect to the variable P . Yet,

although (2) is not jointly convex on P and A, it is also convex on A, that is, for a given P . This

means that if A is now considered to be a convex function of some parameter ξ defined on a bounded

polyhedral convex set Ω with a finite number of vertices ξ̄i, i = 1, . . . , N , i.e., Ω = hull(ξ1, . . . , ξN),

then the following implication follows from convexity

A(ξ)T P + PA(ξ) ≤ A(ξ̄i)T P + PA(ξ̄i), ∀ ξ ∈ Ω = hull(ξ1, . . . , ξN). (3)

Therefore, stability of the uncertain linear time-invariant1 system in the form (1) where A(ξ) is now
1This result is indeed true for linear time-varying systems, since P can be used to build a constant quadratic

Lyapunov function that proves the asymptotic stability of the associated linear-time varying system.

4

a convex function of the uncertain parameter ξ ∈ Ω can be established by verifying the existence

of a solution to the finite number of LMI

P > 0, A(ξ̄i)T P + PA(ξ̄i) < 0, ∀ i = 1, . . . , N. (4)

Numerous useful results can be obtained in the context of design of filters and controllers,

the subject for which the tools described in this paper have been developed. Two methodologies

yield virtually all results in this area, namely, elimination of variables [SIG98] or change of vari-

ables [SGC97]. In the first methodology the controller or filter parameters are eliminated from

the original inequalities, and a set of equivalent inequalities is obtained which may be convex in

some important problems. In the second, new variables are introduced in the problem to replace

the original control parameters through a one-to-one mapping. Again, the inequalities in the new

variables may be convex in some problems.

The noncommutative symbolic algebra tools to be described in the following sections can assist

users to obtain these transformed inequalities, which many times will have better properties than

the original ones. We describe, in particular, how to obtain matrix inequalities for dynamic output

feedback control, a problem which requires intensive use of matrix operations involving noncom-

mutative products. But first, we will briefly revisit the main steps involved in the production of

these design inequalities on a simple problem, namely stabilizability by state feedback.

3.1 Stabilizability by state feedback

Consider the linear time-invariant system with one control input u(t) in the form

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (5)

connected in feedback with the state feedback controller

u(t) = Kx(t), (6)

5

where the matrices A, B, and K are assumed to have compatible dimensions. This arrangement

produces the following closed-loop system

ẋ(t) = (A + BK)x(t), x(0) = x0, (7)

which can be tested for asymptotic stability using the Lyapunov inequalities (2) for any given

controller K. Unfortunately, one can easily show that the inequalities

P > 0, (A + BK)T P + P (A + BK) < 0, (8)

are not jointly convex on P and K. In the next paragraphs we will apply transformations to (8)

so as to obtain inequalities with more favorable properties, such as convexity.

3.2 Elimination of variables

The main tool in the technique known as elimination of variables is the following lemma. Proofs

of the following lemma can be found, for instance, in the books [BEFB94] or [SIG98].

Lemma 1 (Elimination) The following statements are equivalent:

i) There exists G such that E + F T GH + HT GT F < 0.

ii) (FF T > 0 or (F⊥)T EF⊥ < 0) and (HHT > 0 or (H⊥)T EH⊥ < 0).

Here the symbol X⊥ denotes a matrix satisfying XX⊥ = 0 and XT X + (X⊥)T X⊥ > 0, that is,

X⊥ denotes a basis for the right null space of matrix X.

The strategy is to rewrite a given inequality in the form of item i) with G representing the

unknowns, or part of the unknowns, so as to produce the potentially nicer inequalities in item ii).

For instance, the second inequality of the Lyapunov inequalities (8) can be rewritten in the form i)

by defining

E = AT P + PA, F = BT P, G = K, H = I. (9)

6

Recalling that P > 0 and that B is a known matrix we can compute F⊥ = P−1(BT)⊥ and write

the inequalities of item ii)

(F⊥)T EF⊥ = [(BT)⊥]T (P−1AT + AP−1)(BT)⊥ < 0, HHT = I > 0. (10)

Then defining X := P−1 > 0 we can write the complete necessary and sufficient conditions for the

existence of a stabilizing controller K as the existence of a symmetric matrix X satisfying

X > 0, [(BT)⊥]T (XAT + AX)(BT)⊥ < 0. (11)

These are LMIs on the unknown variable X. So they are convex in X.

Rewriting inequalities in the particular form of Lemma 1 can be significantly more involved,

specially when the terms E, F , G and H are matrices, possibly with matrix entries. We have

developed symbolic algorithms to produce such factorizations in these complicated cases. The use

of such algorithms will be discussed in Section 5. Theoretical and implementation issues are briefly

discussed in Section 6.

3.3 Change of variables

The task of introducing a suitable change of variable is much less systematic and ad-hoc than that

of eliminating variables. Indeed, the particular form of factorization required by the Elimination

Lemma provides guidance to the user in this process. In this sense, it is harder to code general

purpose algorithms for introducing changes of variables. Some issues regarding this topic are further

discussed in Section 6.2.

One might try to obtain clues, when possible, by trying to reproduce the operations performed

while eliminating variables. For instance, in the case of the Lyapunov inequalities (2), the fact that

the nice inequalities previously obtained are functions of X := P−1, and not P , suggests that we

might start by rewriting the inequalities in terms of X. As X > 0, this can be done by multiplying

both inequalities in (2) by X on the left and on the right so as to get the equivalent conditions

X > 0, X(A + BK)T + (A + BK)X < 0, (12)

7

We then manipulate the second inequality by expanding the products

AX + XAT + BKX + XKT BT < 0. (13)

In more complicated inequalities, as the ones arising in output feedback problems, we may also

need to collect on the knowns 2 to motivate the introduction of new unknowns.

As the objective is to produce inequalities which depend only linearly or affinely on the un-

knowns, we introduce the new unknown

L := KX (14)

We are particularly interested in the introduction of new unknowns through changes of variables

that can be used to eliminate existing unknowns from the original problem. In this example, the

control gain K can be eliminated, or, in other words, K can be explicitly expressed in terms of

other unknowns, by solving the change of variable equation (14) for the unknown K. This produces

K = LX−1. (15)

This process typically requires the use of some assumptions, in this case the invertibility of X. The

relation (15) can be used to rewrite the necessary and sufficient conditions for stabilizability (12)

as

X > 0, AX + XAT + BL + LT BT < 0, (16)

which is an LMI on the unknowns X and L.

We can automate many of the above steps using powerful algorithms implemented in NCAlgebra.

In particular, the products that will be replaced by transformed variables are typically polynomials,

and “solving” for the original variables often can be done symbolically using NCGB. In the following

sections, we will use NCAlgebra, NCGB and Mathematica to generate all of our results, which will be

displayed in figures. The complete derivation is available for download in the form of a Mathematica

notebook from our website 3, along with all other packages used in this paper.
2See Section 6.2 for details.
3http://www.math.ucsd.edu/∼ncalg.

8

4 What goes wrong with current symbolic tools?

Virtually all commercial software for symbolic calculations, including Mathematica and Maple, offer

little or no support for expressions involving noncommutative products. Let us take, for example,

Mathematica, which is probably the most popular software in this category.

Mathematica has a a Dot operator (.), which is used to provide elementary functionality for

matrix and vector operations, and a built in noncommutative product operator (**). However,

Mathematica provides little support for manipulating expressions with such operators. That is, it

does not know how to collect, expand, factor or simplify noncommutative products, as shown in

Figure 1.

Figure 1: What goes wrong with noncommutative products?
Regular product (Times,*)is commutative (canonical form is alphabetical)

In[1]:= c * b * a

Out[1]= a b c

In[2]:= Collect[c * b * a + c * d * e,c]

Out[2]= c (a b + d e)

In[3]:= Expand[c * (b * a + d * e)]

Out[3]= a b c + c d e

Mathematica has a noncommutative operator (NonCommutativeProduct,**)....

In[4]:= c * *b * *a

Out[4]= c * *b * *a

...but does not know much about it!

In[5]:= Collect[c * *b * *a + c * *d * *e,c]

Out[5]= c * *b * *a + c * *d * *e

In[6]:= Expand[c * *(b * *a + d * *e)]

Out[6]= c * *(b * *a + d * *e)

NCAlgebra is a package written by the authors entirely in Mathematica that provides such

functionality. The commands SetNonCommutative and SetCommutative associate commutative

properties with symbols, and a large library of functions, including NCExpand and NCCollect,

brings life to expressions with noncommutative products, as shown in Figure 2.

Another tricky task is to handle symbolic matrices. Mathematica treats matrices simply as lists

of lists. This approach, however, does not handle block matrices, that is, matrices whose entries are

matrices, as shown in Figure 3. We overcome this limitation with our package Matrix, which en-

hances Mathematica’s ability to properly handle matrices, including features such as automatically

handling partitioning and flattening of partitioned matrices. This package is fully integrated with

NCAlgebra, and knows how to handle matrices with noncommutative entries, as shown in Figure 4.

9

Figure 2: The NCAlgebra solution.
In[14]:= << SetNCPath.m;

<< NCAlgebra.m;

In NCAlgebra one associates commutative properties with symbols

In[15]:= SetCommutative[b];

SetNonCommutative[a,c,d,e,f];

NCAlgebra uses the native noncommutative product operator...

In[16]:= c * *b * *a

Out[16]= b c * *a

and provides it with functionality.

In[17]:= NCCollect[c * *b * *a + c * *d * *e,c]

Out[17]= c * *(a b + d * *e)

In[18]:= NCExpand[c * *(b * *a + d * *e)]

Out[18]= b c * *a + c * *d * *e

Figure 3: What goes wrong with matrices?
Matrices in Mathematica are lists of lists

In[7]:= m1 = {{c,d},{e,f}}

Out[7]= {{c,d},{e,f}}

In[8]:= MatrixQ[m1]

Out[8]= True

But replacing entries of a matrix by another matrix produces a list with depth four...

In[9]:= m2 = ReplaceAll[{{a,b}},{a ® m1,b ® m1}]

Out[9]= {{{{c,d},{e,f}},{{c,d},{e,f}}}}

...which is not a matrix!

In[10]:= MatrixQ[m2]

Out[10]= False

Products of matrices are fine with Dot...

In[11]:= m3 = {{a,b},{c,d}}

Out[11]= {{a,b},{c,d}}

In[12]:= m4 = m1.m3

Out[12]= {{a c + c d,b c + d
2
},{a e + c f,b e + d f}}

...but Dot assumes that all entries commute!

Plus adds anything that is not a list to a list entrywise...

In[13]:= m5 = ReplaceAll[a.b + g,{a ® m1,b ® m1}]

Out[13]= {{c
2
+ d e + g,c d + d f + g},{c e + e f + g,d e + f

2
+ g}}

...what if c is a matrix we do not know the entries yet?

10

Figure 4: Doing matrices with the declaration Matrix.
In[19]:= << Matrix‘;

The package Matrix introduces a new header Matrix

In[20]:= m1 = Matrix[{c,d},{e,f}]

Out[20]= Kc d

e f
O

which behaves like a Matrix! And it also handles partitioning

In[21]:= m2 = ReplaceAll[Matrix[{x,y}],{x ® m1,y ® m1}]

Out[21]= KKc d

e f
O Kc d

e f
O O

and flattening partitioned matrices

In[22]:= MatrixFlatten[m2]

Out[22]= Kc d c d

e f e f
O

In[23]:= << NCMatrix‘;

The package NCMatrix teaches Matrix about noncommutative products

In[24]:= m3 = Matrix[{a,b},{c,d}];

In[25]:= m4 = m1 * *m3

Out[25]= Kc d

e f
O * *Ka b

c d
O

and integrates Matrix with NCAlgebra

In[26]:= NCExpand[m4]

Out[26]= Kc * *a + d * *c b c + d * *d

e * *a + f * *c b e + f * *d
O

In[27]:= m5 = ReplaceAll[x * *y + z,{x ® m1,y ® m1}]

Out[27]= z + Kc d

e f
O * *Kc d

e f
O

In[28]:= NCExpand[m5]

Out[28]= z + Kc * *c + d * *e c * *d + d * *f

e * *c + f * *e e * *d + f * *f
O

Finally, a major tool in symbolic computation is an equation solver. In this paper we use

NCGB, a platform dependent implementation of the non commutative Gröbner basis algorithm of

F. Mora [Mor86, GHK97]. This algorithm is the tool behind the command NCEliminate, which

will be used in the following section to eliminate unknowns from a given systems of polynomial

equations involving noncommutative products. See Section 6.1 for more details.

5 Automated LMI production

In this section we show how NCAlgebra can be of help with LMI production in a typical control

design problem: the design of an output feedback controller such that the closed loop system

satisfies an H∞ performance constraint. To simplify the notation, we omit the dependence of all

signals on the time t.

11

5.1 Problem statement

Given the linear time-invariant model of the system to be controlled


ẋ

z

y

 =


Ap Bw Bu

Cz Dzw Dzu

Cy Dyw 0




x

w

u

 , x(0) = 0, (17)

and the linear time-invariant dynamic output-feedback controller

ẋc

u

 =

Ac Bc

Cc Dc


xc

y

 , xc(0) = 0, (18)

we will show how to compute controller parameters (Ac, Bc, Cc, Dc) such that the closed loop system

is asymptotically stable and ‖Hwz(s)‖∞ < µ, where Hwz(s) is the closed loop transfer function from

the input w to the output z and µ > 0 is a prespecified performance level. For simplicity we assume

that the controller has the same order as the plant (that is, it is a full-order controller). Such an

assumption is essential, as will be seen later, to ensure that this control design problem can be

recast as the problem of finding a feasible solution to sets of LMIs.

The closed loop connection of the plant and controller is a linear system in the form

 ˙̃x

z

 =

A B

C D


x̃

w

 , x̃ :=

 x

xc

 . (19)

We seek to compute the matrices A, B, C, and D. This closed loop system is asymptotically stable

and the H∞ norm of Hwz(s) is less than µ if, and only if, the following inequalities, from the well

known Bounded Real Lemma [SIG98],

P > 0,


ATP + PA CT PB

C −µ D

BTP DT −µ

 < 0, (20)

have some feasible solution for some symmetric matrix P with the same dimension as matrix A.

12

Figure 5: Setting up the closed loop signal equations.
Define plant matrix and signals:

In[1]:= Plant = Matrix[{Ap,Bw,Bu},{Cz,Dzw,Dzu},{Cy,Dyw,0}];

xdotzy = Matrix[{xdot},{z},{y}];

xwu = Matrix[{x},{w},{u}];

Plant equation:

In[2]:= xdotzy - Plant * *xwu

Out[2]=

æççççççç
è

xdot

z

y

ö÷÷÷÷÷÷÷
ø

-

æççççççç
è

Ap Bw Bu

Cz Dzw Dzu

Cy Dyw 0

ö÷÷÷÷÷÷÷
ø

* *

æççççççç
è

x

w

u

ö÷÷÷÷÷÷÷
ø

Define controller matrix and signals

In[3]:= Controller = Matrix[{Ac,Bc},{Cc,Dc}];

xcdotu = Matrix[{xcdot},{u}];

xcy = Matrix[{xc},{y}];

Controller equation

In[4]:= xcdotu - Controller * *xcy

Out[4]= Kxcdot
u

O - KAc Bc

Cc Dc
O * *Kxc

y
O

Combined equations:

In[5]:= eqns = Matrix[{xdotzy - Plant * *xwu},{xcdotu - Controller * *xcy}];

eqns = MatrixFlatten[NCExpand[eqns]]

Out[5]=

æççççççç
è

xdot - Ap * *x - Bu * *u - Bw * *w

z - Cz * *x - Dzu * *u - Dzw * *w

y - Cy * *x - Dyw * *w

xcdot - Ac * *xc - Bc * *y

u - Cc * *xc - Dc * *y

ö÷÷÷÷÷÷÷
ø

Notice that the Lyapunov inequalities are embedded in the above inequalities: the second inequality

in (2) appears as the first diagonal block in the second inequality above. Indeed, this is the reason

why these inequalities ensure asymptotic internal stability to the closed loop system.

5.2 Computing the closed loop signals

The first problem we address using our symbolic tools is the computation of the closed loop matri-

ces A, B, C, and D. This will be done by solving for the closed loop signals appearing in the plant

and controller equations. This illustrates the use of NCEliminate on solving systems of equations

involving noncommutative variables. This problem could also be solved by programming construc-

tive and simpler “system connection” rules. Indeed, NCAlgebra can be set up to work together

with the Mathematica toolbox Control System Professional so as to allow high level manipulation

of systems with noncommutative entries.

We look at (17) and (18) as systems of signal equations. We want to close the loop by eliminating

the internal signals u and y from these equations. The left hand side of these equations are defined

in Figure 5.

We then set u and y as unknowns in Figure 6 and call NCEliminate. This routine takes three

13

Figure 6: Eliminating u and y.
Define the unknwons

In[6]:= unknowns = {u,y}

Out[6]= {u,y}

Call NCEliminate to solve equations:

In[7]:= solution = NCEliminate[MatrixToList[eqns],unknowns,1];

ColumnForm[solution]

Out[7]= y ® Cy * *x + Dyw * *w

Bc * *Dyw * *w ® xcdot - Ac * *xc - Bc * *Cy * *x

u ® Cc * *xc + Dc * *Cy * *x + Dc * *Dyw * *w

Dzu * *Dc * *Dyw * *w ® z - Cz * *x - Dzw * *w - Dzu * *Cc * *xc - Dzu * *Dc * *Cy * *x

Bu * *Dc * *Dyw * *w ® xdot - Ap * *x - Bw * *w - Bu * *Cc * *xc - Bu * *Dc * *Cy * *x

Figure 7: Computing the closed loop matrices.
Substitute the solution:

In[8]:= ClosedLoopSignals = NCExpand[eqns/.solution]

Out[8]=

æççççççç
è

xdot - Ap * *x - Bw * *w - Bu * *Cc * *xc - Bu * *Dc * *Cy * *x - Bu * *Dc * *Dyw * *w
z - Cz * *x - Dzw * *w - Dzu * *Cc * *xc - Dzu * *Dc * *Cy * *x - Dzu * *Dc * *Dyw * *w

0

xcdot - Ac * *xc - Bc * *Cy * *x - Bc * *Dyw * *w
0

ö÷÷÷÷÷÷÷
ø

Factor the signals to obtain the closed loop matrices

In[9]:= ClosedLoopRHS = MatrixAffineFactor[ClosedLoopSignals,{x,xc,w}]

Out[9]=

æççççççç
è

xdot

z

0

xcdot

0

ö÷÷÷÷÷÷÷
ø

-
æççççççç
è

Bw + Bu * *Dc * *Dyw Bu * *Cc Ap + Bu * *Dc * *Cy
Dzw + Dzu * *Dc * *Dyw Dzu * *Cc Cz + Dzu * *Dc * *Cy

0 0 0

Bc * *Dyw Ac Bc * *Cy
0 0 0

ö÷÷÷÷÷÷÷
ø

* *
æççççççç
è

w

xc

x

ö÷÷÷÷÷÷÷
ø

Extract the closed loop matrices

In[10]:= ClosedLoop = ClosedLoopRHS/.a_ - b_ * *c_ ® b;

ClosedLoop = ClosedLoop[[{1,4,2},{3,2,1}]];

Acl = ClosedLoop[[{1,2},{1,2}]];

Bcl = ClosedLoop[[{1,2},{3}]];

Ccl = ClosedLoop[[{3},{1,2}]];

Dcl = ClosedLoop[[{3},{3}]];

In[11]:= Matrix[{Acl,Bcl},{Ccl,Dcl}]

Out[11]=

æççççççç
è

KAp + Bu * *Dc * *Cy Bu * *Cc
Bc * *Cy Ac

O KBw + Bu * *Dc * *Dyw
Bc * *Dyw

O
(Cz + Dzu * *Dc * *Cy Dzu * *Cc) (Dzw + Dzu * *Dc * *Dyw)

ö÷÷÷÷÷÷÷
ø

arguments: a list of expressions for which all entries must equal zero, a list of unknowns, and the

number of iterations of the underlying NCGB algorithm.

In Figure 7, the solution found is substituted back into the original equations to obtain the closed

loop signals. The closed loop matrices are then obtained from by factoring the signal equations in

the form of sums of matrix products which are affine on the variables x, xc and w. This is done by

the command4 MatrixAffineFactor. This function will be also used later to factorize expressions

in a form that suits Lemma 1. Finally, the closed loop matrices A, B, C, and D are extracted

from the factorized closed loop signal equations using Mathematica’s pattern match capabilities.

In the Mathematica sessions, symbols that end in ‘cl’ denote matrices associated with closed loop

analysis, such as A, B, C, and D. For examples, Bcl is used for B.
4See Section 6.3 for details.

14

Figure 8: Obtaining the Bounded Real Lemma.
Set pretty output mode

In[1]:= NCSetOutput[All ® True]

Define the bounded real lemma matrix

In[2]:= SetCommutative[Μ];

BRLol = Matrix[{tp[Aol] * *Pol + Pol * *Aol,tp[Col],Pol * *Bol},{Col,-Μ,Dol},{tp[Bol] * *Pol,tp[Dol],-Μ}]

Out[2]=

æççççççç
è

Pol.Aol + AolT.Pol Col
T

Pol.Bol

Col -Μ Dol

BolT.Pol DolT -Μ

ö÷÷÷÷÷÷÷
ø

Impose a particular structure on Pcl

In[3]:= Pcl = Matrix[{X,-Z},{-Z,Z}]

Out[3]= K X -Z
-Z Z

O
Substitute the closed loop matrices

In[4]:= BRLcl = MatrixFlatten[NCExpand[BRLol/.{Pol ® Pcl,Aol ® Acl,Bol ® Bcl,Col ® Ccl,Dol ® Dcl}]];

ColumnForm[SymmetricMatrixToVector[BRLcl]]

Out[4]= X.Ap + ApT.X - Z.Bc.Cy - CyT.BcT.Z + X.Bu.Dc.Cy + CyT.DcT.BuT.X
-Z.Ap - AcT.Z + Z.Bc.Cy + CcT.BuT.X - Z.Bu.Dc.Cy
Z.Ac + AcT.Z - Z.Bu.Cc - CcT.BuT.Z
Cz + Dzu.Dc.Cy
Dzu.Cc

-Μ
Bw

T
.X - DywT.BcT.Z + DywT.DcT.BuT.X

-BwT.Z + DywT.BcT.Z - DywT.DcT.BuT.Z
Dzw

T + DywT.DcT.DzuT

-Μ

5.3 Elimination of the controller variables

We now apply our tools to the derivation of LMIs for the H∞ control design problem. The first

method is the elimination of the controller variables [SIG98]. As explained in Section 3.2, the major

algebraic manipulation is the reformulation of the second inequality of (20) in the form of item i)

in Lemma 1.

In Figure 8, we first define the matrix coefficient of the second inequality from the bounded real

lemma (20). The symbols ending in ‘ol’ denote matrices associated with open loop analysis. We

then go from open loop to closed loop analysis by simply substituting for the previously computed

closed loop matrices A, B, C, and D. The obtained expression in expanded form is too large to be

displayed in one line. Instead, we use the function SymmetricMatrixToVector to convert this sym-

metric matrix into a list, which leaves out redundant entries. This list is displayed vertically using

Mathematica’s formatting operator ColumnForm. This practice will be repeatedly used whenever

the obtained matrices do not fit the page width.

As anticipated in the previous section, in Figure 9, we invoke the command MatrixAffineFactor

to factor the BRL as a sum of products of matrices which is affine on the controller variables. This

expression is in the form of the inequality in item i) of Lemma 1. The factors E, F and H are

extracted from the factored expression by pattern matching.

15

Figure 9: Factoring in a form which is affine on the controller.
Factor BRL as an affine function of the controller

In[5]:= << NCLmi‘

In[6]:= BRLe = MatrixAffineFactor[BRLcl,{Ac,Bc,Cc,Dc}]

Out[6]= -

æççççççç
è

0 CyT

1 0

0 0

0 Dyw
T

ö÷÷÷÷÷÷÷
ø

.KAcT Cc
T

Bc
T

Dc
T O.K Z -Z 0 0

-BuT.X Bu
T
.Z -DzuT 0

O-
æççççççç
è

Z -X.Bu
-Z Z.Bu

0 -Dzu
0 0

ö÷÷÷÷÷÷÷
ø

.KAc Bc

Cc Dc
O.K 0 1 0 0

Cy 0 0 Dyw
O+
æççççççç
è

X.Ap + ApT.X -ApT.Z CzT X.Bw

-Z.Ap 0 0 -Z.Bw
Cz 0 -Μ Dzw

Bw
T
.X -BwT.Z Dzw

T -Μ

ö÷÷÷÷÷÷÷
ø

Extract matrix factors

In[7]:= {EE,FF,HH} = BRLe/.a_ - b_ * *c_ * *d_ - e_ * *f_ * *g_ ® {a,d,g};

Notice that we have assumed a very particular partitioning structure in the definition of P,

which depends upon only two sub-blocks, X and Z, instead of three. However, in the H∞ control

problem, such structure can be imposed without loss of generality whenever a full order controller

is to be computed. Since a similarity transformation can always be applied on the controller state

space variables so as to obtain such particular structure on P without modifying the controller

transfer function. We have also used the function NCSetOutput[All->True] to “beautify” the

output in the Mathematica notebook, so that noncommutative products are now displayed using

the pleasant ‘.’ instead of ‘**’. This function also display transpose as (·)T and inverse using (·)−1.

These transformations are only cosmetic, and the internal representation still contains the original

functions **, tp and inv.

5.3.1 Computing null spaces

The next step in generating the inequalities of item ii) in Lemma 1 is computing the null spaces of

matrices F and H. Computing X⊥ (the null space of a matrix X) means finding all solutions to the

linear algebra problem Xv = 0, where v is a vector of compatible dimension. If X is a matrix with

scalar entries, then one can use a decomposition algorithms to reliably compute the null space. Even

when such entries are symbolic, one can carry on the computations loosely assuming invertibility

of certain symbols and expressions generated during the iterations. Here, as we are interested in

computing the null space of matrices whose entries are matrices, a priori knowledge of invertibility

of certain symbols become mandatory, if one wants to obtain explicit solutions. In most systems

and control problems such hypothesis can be imposed without much difficulty.

We start by computing H⊥, first without assuming invertibility of any symbols. By partition-

ing v according to H we can set up and attempt to solve this linear problem using NCEliminate.

16

Figure 10: First iteration on solving of Hv = 0.
Define v and the equations associated with H v = 0

In[1]:= v = Matrix[{v1},{v2},{v3},{v4}];

eqns = Flatten[MatrixToList[NCExpand[HH * *v]]]

Out[1]= {v2,Cy.v1 + Dyw.v4}

Try to eliminate v2 and v4

In[2]:= unknowns = {v2,v4}

Out[2]= {v2,v4}

In[3]:= solution = NCEliminate[eqns,unknowns,2];

ColumnForm[solution]

Out[3]= v2 ® 0

Dyw.v4 ® -Cy.v1

This is done in Figure 10. The product Hv defines two equations. As v has four variables,

generically speaking, only two variables will be independent. Here we picked v1 and v3 to be the

independent ones and v2 and v4 to be the dependent ones, that is, the ones to be eliminated. The

set of solutions produced by NCEliminate is shown at the bottom of Figure 10.

Notice that it was not possible to eliminate v2 and v4 completely, as v4 is multiplied on the left

by Dyw. The algorithm can only proceed further if we explicitly state invertibility of Dyw. In the

context of the H∞ control problem, one can assume without further ado that Dyw is right invertible,

or, in other words, that Dyw has full row rank. For the purpose of computing a basis of the null

space, we can therefore compute only the solutions of v4 spanned by DT
yw, that is v4 = DT

ywṽ4.

This is done in Figure 11. Notice that the right invertibility of Dyw is informed to NCEliminate

by adding the directive NCInvertible to the list of equations. Indeed, right invertibility of Dyw is

stated as the invertibility of DywDT
yw. With this assumption, the variables v2 and v4 can now be

completely eliminated, as shown in Figure 11 (if we had chosen v1 as an independent variable, an

invertibility assumption on Cy would be needed).

The last step is to generate H⊥, whose columns are a basis for the null space of H, done in

Figure 12. The matrix H⊥ will have as columns a complete set of linearly independent vectors v,

generated by assigning particular values for the independent variables v1 and v3. Typically the

most esthetic choice suffices, in this case (v1, v3) = (I, 0) and (v1, v3) = (0, I). In some cases,

such as in the computation of F⊥ to be addressed next, we want to make choices that depend on

nonsingular matrices that can be later chosen to our advantage. For H⊥ the most parsimonious

choice is enough.

The same basic procedure is used to solve the equation Fv = 0, and is shown in Figure 13. We

17

Figure 11: Complete solution to Hv = 0 using invertibility of Dyw.
Chose particular solution for v4 in the range of tp[Dyw]

In[4]:= hypothesis = {v4 ® tp[Dyw] * *v4t}

Out[4]= {v4 ® DywT.v4t}

Compute modified equations

In[5]:= eqnst = eqns/.hypothesis

Out[5]= {v2,Cy.v1 + Dyw.Dyw
T
.v4t}

State right invertibility of Dyw

In[6]:= invs = {NCInvertible[Dyw * *tp[Dyw]]}

Out[6]= {NCInvertible[Dyw.Dyw
T
]}

Solve again for v2 and v4t

In[7]:= unknowns = {v2,v4t}

Out[7]= {v2,v4t}

In[8]:= solution = NCEliminate[Join[eqnst,invs],unknowns,2];

ColumnForm[solution]

Out[8]= v2 ® 0

v4t ® -(Dyw.Dyw
T
)
-1
.Cy.v1

Figure 12: Computing H⊥.
Compute general solution

In[9]:= vt = v/.hypothesis/.solution;

Generate basis

In[10]:= Hperp = MatrixFlatten[Matrix[vt/.{{v1 ® 1,v3 ® 0},{v1 ® 0,v3 ® 1}}]]

Out[10]=

æççççççç
è

1 0

0 0

0 1

-DywT.(Dyw.DywT)
-1
.Cy 0

ö÷÷÷÷÷÷÷
ø

chose v1 and v4 as the independent variables and v2 and v3 as the variables to be eliminated. This

time the assumption is the left invertibility of Dzu, which is informed to NCEliminate by using

the directive NCInvertible for DT
zuDzu. An additional complication in this case is the fact that

the matrix F involves the variables X and Z. As these matrices are blocks of P > 0 we have that

X > 0, Z > 0 and X − Z > 0, which implies that X, Z and X − Z must be invertible. Only

one of these three relations is essential to compute the solution of Fv = 0. This is the invertibility

of Z, which is added via NCInvertible. Matrix F⊥ is generated in Figure 14 by choosing of

(v1, v4) = (U, 0) and (v1, v4) = (0, I), where U is a nonsingular otherwise arbitrary matrix to be

determined later. The need for such extra freedom will be justified in the next section.

5.3.2 Computing the LMIs

With matrices F⊥ and H⊥ in hand, the calculation of the inequalities in item ii) of Lemma 1 is

done in Figure 15. We have one more step to get the desired LMIs. The matrices (F⊥)T EF⊥ and

(H⊥)T EH⊥ are too complicated to be displayed in this tutorial paper. For this reason, we will

18

Figure 13: Solving Fv = 0.
Define v and the equations associated with F v = 0

In[1]:= v = Matrix[{v1},{v2},{v3},{v4}];

eqns = Flatten[MatrixToList[NCExpand[FF * *v]]];

Chose particular solution for v3 in the range of Dzu

In[2]:= hypothesis = {v3 ® Dzu * *v3t}

Out[2]= {v3 ® Dzu.v3t}

Compute modified equations

In[3]:= eqnst = eqns/.hypothesis

Out[3]= {Z.v1 - Z.v2,-Bu
T
.X.v1 + Bu

T
.Z.v2 - Dzu

T
.Dzu.v3t}

State left invertibility of Dzu and invertibility of Z

In[4]:= invs = {NCInvertible[tp[Dzu] * *Dzu],NCInvertible[Z]}

Out[4]= {NCInvertible[DzuT.Dzu],NCInvertible[Z]}

Solve again for v2 and v3t

In[5]:= unknowns = {v2,v3t}

Out[5]= {v2,v3t}

In[6]:= solution = NCEliminate[Join[eqnst,invs],unknowns,10];

ColumnForm[solution]

Out[6]= v2 ® v1

v3t ® -(DzuT.Dzu)
-1
.Bu

T
.X.v1 + (DzuT.Dzu)

-1
.Bu

T
.Z.v1

Figure 14: Computing F⊥.
Compute general solution

In[7]:= vt = NCExpand[v/.hypothesis/.solution];

vt = NCCollect[vt,tp[Bu]]

Out[7]=

æççççççç
è

v1

v1

-Dzu.(DzuT.Dzu)
-1
.Bu

T
.(X.v1 - Z.v1)

v4

ö÷÷÷÷÷÷÷
ø

Generate basis

In[8]:= Fperp = MatrixFlatten[Matrix[vt/.{{v1 ® Y,v4 ® 0},{v1 ® 0,v4 ® 1}}]]

Out[8]=

æççççççç
è

Y 0

Y 0

-Dzu.(DzuT.Dzu)
-1
.Bu

T
.(X.Y - Z.Y) 0

0 1

ö÷÷÷÷÷÷÷
ø

Figure 15: Computing (F⊥)T EF⊥ and (H⊥)T EH⊥.
Compute the expressions in item ii) of the Elimination Lemma

In[1]:= FpEF1 = NCExpand[tp[Fperp] * *EE * *Fperp];

HpEH1 = NCExpand[tp[Hperp] * *EE * *Hperp];

19

Figure 16: Simplifying (F⊥)T EF⊥ and (H⊥)T EH⊥ using orthogonality.
Define symmetry and orthogonality assumptions

In[2]:= symmetry = {tp[X] ® X,tp[Z] ® Z}

Out[2]= {X
T
® X,Z

T
® Z}

In[3]:= ortho = {tp[Cz] * *Dzu ® 0,tp[Dzu] * *Cz ® 0,tp[Dzu] * *Dzu ® 1,Dyw * *tp[Bw] ® 0,Bw * *tp[Dyw] ® 0,Dyw * *tp[Dyw] ® 1}

Out[3]= {Cz
T
.Dzu ® 0,Dzu

T
.Cz ® 0,Dzu

T
.Dzu ® 1,Dyw.Bw

T
® 0,Bw.Dyw

T
® 0,Dyw.Dyw

T
® 1}

Apply the assumptions

In[4]:= FpEF2 = Substitute[FpEF1,Join[ortho,symmetry]];

ColumnForm[SymmetricMatrixToVector[FpEF2]]

Out[4]= Y
T
.X.Ap.Y - Y

T
.Z.Ap.Y + Y

T
.Ap

T
.X.Y - Y

T
.Ap

T
.Z.Y - Μ (Y

T
.X.Bu.Bu

T
.X.Y - Y

T
.X.Bu.Bu

T
.Z.Y - Y

T
.Z.Bu.Bu

T
.X.Y + Y

T
.Z.Bu.Bu

T
.Z.Y)

Bw
T
.X.Y - Bw

T
.Z.Y - Dzw

T
.Dzu.Bu

T
.X.Y + Dzw

T
.Dzu.Bu

T
.Z.Y

-Μ

In[5]:= HpEH2 = Substitute[HpEH1,Join[ortho,symmetry]]

Out[5]= KX.Ap + ApT.X - Μ CyT.Cy CzT - CyT.Dyw.DzwT

Cz - Dzw.Dyw
T
.Cy -Μ

O

compute a particular case of these inequalities in the presence of the orthogonality assumptions

CT
z Dzu = 0, DT

zuDzu = I, BwDT
yw = 0, DywDT

yw = I. (21)

It is interesting to notice that these assumptions can be enforced without loss of generality, in the

sense that a procedure is available to transform a general H∞ control problem in one for which these

relations are true (see [ZDG96], for instance). Anyway, the practical result here is that significantly

simpler expressions can be obtained in Figure 16.

From these expressions we note that (H⊥)T EH⊥ is already affine on the variable X, while

(F⊥)T EF⊥ is not. Indeed, (F⊥)T EF⊥ is still too complicated to be displayed in one single line

and we use the function SymmetricMatrixToVector to convert this symmetric matrix into a list,

which leaves out redundant entries. This list is displayed vertically using Mathematica’s formatting

operator ColumnForm.

We use the strategy discussed in Section 6.2 to try to motivate unknowns that could simplify

the matrix (F⊥)T EF⊥. In figure 17, we first collect on knowns, that is, we use the command

NCCollectOnVariables to apply collect transformations on (H⊥)T EH⊥ involving all known ma-

trices from the plant. In the transformed expression we note the presence of the term (XY −ZY).

This motivates the introduction of a new unknown defined by the relation

U := (X − Z), (22)

which is substituted in the expression in order to eliminate the variable Z. The resulting expression

20

Figure 17: Making (F⊥)T EF⊥ affine.
Collect on all known plant parameters

In[6]:= FpEF3 = NCCollectOnVariables[FpEF2,{Ap,tp[Ap],Bu,tp[Bu],Bw,tp[Bw],Dzu,tp[Dzu],Dzw,tp[Dzw]}];

ColumnForm[SymmetricMatrixToVector[FpEF3]]

Out[6]= Y
T
.Ap

T
.(X.Y - Z.Y) + (YT.X - YT.Z).Ap.Y - Μ (YT.X - YT.Z).Bu.BuT.(X.Y - Z.Y)

Bw
T
.(X.Y - Z.Y) - DzwT.Dzu.BuT.(X.Y - Z.Y)

-Μ

Introduce U:=X - Z

In[7]:= FpEF4 = Substitute[FpEF3,{Z ® X - U}];

FpEF5 = NCSimplifyRational[FpEF4]

Out[7]= KYT.U.Ap.Y + YT.ApT.U.Y - Μ YT.U.Bu.BuT.U.Y Y
T
.U.Bw - Y

T
.U.Bu.Dzu

T
.Dzw

Bw
T
.U.Y - Dzw

T
.Dzu.Bu

T
.U.Y -Μ

O

Make it affine by chosing U = Y
-1

In[8]:= FpEF6 = FpEF5/.{U ® inv[Y],tp[Y] ® Y}

Out[8]= KAp.Y - Μ Bu.BuT + Y.ApT Bw - Bu.DzuT.Dzw

Bw
T - DzwT.Dzu.BuT -Μ

O

can be made linear in the variable Y by choosing the product UY to be constant, say the identity

matrix. That is, by choosing U = Y −1. The resulting affine expression is given in the bottom of

Figure 17. It is interesting to note that setting U to be the the inverse of Y we are implicitly setting

Y = (X − Z)−1 > 0. Indeed, we would obtain the same results if we had chosen Y to assume this

value in the computation of F⊥. This explains why Y was not made equal to the identity matrix

at that point!

We have converted the expressions (F⊥)T EF⊥ < 0 and (H⊥)T EH⊥ < 0 into LMIs on the

variables X and Y . However, we have ignored the first inequality P > 0 in (20). Recalling that

Y = (X − Z)−1 we have that

Z = X − Y −1 (23)

so that

P =

 X Y −1 −X

Y −1 −X X − Y −1

 > 0. (24)

Using the Schur Complement Lemma the above inequality can be rewritten as

X > 0, Y −1 > 0, X − Y −1 > 0, (25)

which, using Schur Complement Lemma one more time, can be simply restated as the LMI

X I

I Y

 > 0. (26)

21

This implies that set of feasible H∞ dynamic output feedback controllers can be equivalently

represented as a set of LMIs.

5.4 Changing the controller variables

We now explore the second methodology for obtaining LMIs, which consists in changing the con-

troller variables [SGC97]. Before we start, we introduce the nonsingular matrices Y and

T :=

I Y

0 Y

 .

The closed loop system state x̃, given in (19), is then transformed as

x̄ = T −1x̃ =

I −I

0 Y −1


 x

xc

 =

x− xc

Y −1xc

 .

If xc is interpreted as an estimate of the plant state, the above transformation results in a closed

loop realization where the state x̄ is the plant state estimation error (x− xc), and the transformed

controller state Y −1xc. There are two motivations for applying this change of coordinates. The

first is to introduce the extra variable Y , whose role is to parametrize a change of coordinates in

the controller state. The second, as will be shown later, is to make the controller parameter Ac

appear in only one term of the closed loop bounded real lemma. These facts will be important

when computing changes of variables.

We start the symbolic computation by applying the above similarity transformation on the

closed loop system, i.e., we redefine the closed loop matrices as

(P, A, B, C, D)←−
(
T TPT , T −1AT , T −1B , CT , D

)
.

The transformations are computed in Figure 18 and used to produce the matrix coefficient of

the second inequality of (20) for the transformed closed loop system. We now use our previously

discussed strategy of collecting on the knowns to motivate new unknowns. The matrix expressions

obtained in this section are mostly long formulas, and we make extensive use of the command

22

Figure 18: Changing the closed loop coordinates.
Define similarity transformation matrix

In[1]:= T = Matrix[{1,Y},{0,Y}]

Out[1]= K1 Y

0 Y
O

In[2]:= inv[T]

Out[2]= K1 -1

0 Y
-1 O

Apply transformation on the closed loop matrices

In[3]:= {PclT,AclT,BclT,CclT,DclT} = NCExpand[{tp[T] * *Pcl * *T,inv[T] * *Acl * *T,inv[T] * *Bcl,Ccl * *T,Dcl}];

Substitute the closed loop matrices into the BRL

In[4]:= BRLclT0 = MatrixFlatten[NCExpand[BRLol/.{Pol ® PclT,Aol ® AclT,Bol ® BclT,Col ® CclT,Dol ® DclT}]];

Figure 19: Collecting on the knowns.
Collect on knowns Cy, Dyw, Bw and Ap

In[5]:= BRLclT1 = NCCollectOnVariables[BRLclT0,{Cy,tp[Cy],Dyw,tp[Dyw],Bw,tp[Bw],Ap,tp[Ap]}];

ColumnForm[SymmetricMatrixToVector[BRLclT1]]

Out[5]= X.Ap + ApT.X - CyT.(BcT.Z - DcT.BuT.X) - (Z.Bc - X.Bu.Dc).Cy

(YT.X - YT.Z).Ap + (YT.X.Bu.Dc - YT.Z.Bu.Dc).Cy - YT.AcT.Z + YT.ApT.X - YT.CyT.(BcT.Z - DcT.BuT.X) + YT.CcT.BuT.X

Y
T
.Ap

T
.(X.Y - Z.Y) + Y

T
.Cy

T
.(Dc

T
.Bu

T
.X.Y - Dc

T
.Bu

T
.Z.Y) + (Y

T
.X - Y

T
.Z).Ap.Y + (Y

T
.X.Bu.Dc - Y

T
.Z.Bu.Dc).Cy.Y + Y

T
.X.Bu.Cc.Y - Y

T
.Z.Bu.Cc.Y + Y

T
.Cc

T
.Bu

T
.X.Y - Y

T
.Cc

T
.Bu

T
.Z.Y

Cz + Dzu.Dc.Cy

Cz.Y + Dzu.Cc.Y + Dzu.Dc.Cy.Y

-Μ

Bw
T
.X - Dyw

T
.(Bc

T
.Z - Dc

T
.Bu

T
.X)

Bw
T
.(X.Y - Z.Y) + Dyw

T
.(Dc

T
.Bu

T
.X.Y - Dc

T
.Bu

T
.Z.Y)

Dzw
T + DywT.DcT.DzuT

-Μ

Collect on known Bu

In[6]:= BRLclT2 = NCCollectSymmetric[BRLclT1,Bu];

BRLclT3 = NCCollectSymmetric[BRLclT2,Bu];

ColumnForm[SymmetricMatrixToVector[BRLclT3]]

Out[6]= X.Ap + Ap
T
.X - Cy

T
.(Bc

T
.Z - Dc

T
.Bu

T
.X) - (Z.Bc - X.Bu.Dc).Cy

(YT.X - YT.Z).Ap - YT.AcT.Z + YT.ApT.X - YT.CyT.(BcT.Z - DcT.BuT.X) + YT.CcT.BuT.X + (YT.X - YT.Z).Bu.Dc.Cy

Y
T
.Ap

T
.(X.Y - Z.Y) + (YT.X - YT.Z).Ap.Y + (YT.X - YT.Z).Bu.(Cc.Y + Dc.Cy.Y) + (YT.CcT + YT.CyT.DcT).BuT.(X.Y - Z.Y)

Cz + Dzu.Dc.Cy

Cz.Y + Dzu.Cc.Y + Dzu.Dc.Cy.Y

-Μ

Bw
T
.X - Dyw

T
.(Bc

T
.Z - Dc

T
.Bu

T
.X)

Bw
T
.(X.Y - Z.Y) + Dyw

T
.Dc

T
.Bu

T
.(X.Y - Z.Y)

Dzw
T
+ Dyw

T
.Dc

T
.Dzu

T

-Μ

SymmetricMatrixToVector to convert the lower diagonal part of symmetric matrices into lists

which can be better visualized using Mathematica’s formatting operator ColumnForm.

In Figure 19, we collect on some of the plant matrices to motivate unknowns, first using the

function NCCollectOnVariables. We note the presence of a couple of terms that have been col-

lected (the parenthesized expressions) in BRLclT1. We collect further on the known Bu using

NCCollectSymmetric. In expression BRLclT3, we see at least three terms which look like good

candidates for changing variables. We introduce one new variable at a time. We start by

New1 := −(ZBc −XBuDc), (27)

in Figure 20. We use NCElminate to eliminate Bc from this expression using invertibility assump-

23

Figure 20: Introducing the first new unknown.
Introduce variable New1=-(Z**Bc-X**Bu**Dc)

In[7]:= NewVar1eq = {-(Z * *Bc - X * *Bu * *Dc) - New1}

Out[7]= {-New1 - Z.Bc + X.Bu.Dc}

Invertibility hypothesis on X, Y, Z and (X - Z)

In[8]:= invs1assumption = {NCInvertible[X],NCInvertible[Y],NCInvertible[Z],NCInvertible[X - Z]}

Out[8]= {NCInvertible[X],NCInvertible[Y],NCInvertible[Z],NCInvertible[X - Z]}

Implement the change of variables (eliminate Bc)

In[9]:= solution1 = NCEliminate[Join[NewVar1eq,invs1assumption],{Bc},2];

ColumnForm[solution1]

Out[9]= Z.(X - Z)-1 ® -1 + X.(X - Z)-1

(X - Z)
-1
.Z ® -1 + (X - Z)

-1
.X

Z
-1
.X.(X - Z)-1 ® (X - Z)-1 + Z-1

(X - Z)-1.X.Z-1 ® (X - Z)-1 + Z-1

Bc ® -Z
-1
.New1 + Z

-1
.X.Bu.Dc

Figure 21: Eliminating Bc in the closed loop Bounded Real Lemma.
Symmetric hypothesis on X and Z

In[10]:= syms1assumption = {tp[X] ® X,tp[Z] ® Z}

Out[10]= {X
T
® X,Z

T
® Z}

Eliminate Bc from the closed loop BRL

In[11]:= BRLclT4 = NCExpand[BRLclT3/.solution1/.syms1assumption];

ColumnForm[SymmetricMatrixToVector[BRLclT4]]

Out[11]= New1.Cy + X.Ap + Ap
T
.X + Cy

T
.New1

T

Y
T
.X.Ap - Y

T
.Z.Ap - Y

T
.Ac

T
.Z + Y

T
.Ap

T
.X + Y

T
.Cy

T
.New1

T
+ Y

T
.Cc

T
.Bu

T
.X + Y

T
.X.Bu.Dc.Cy - Y

T
.Z.Bu.Dc.Cy

Y
T
.X.Ap.Y - Y

T
.Z.Ap.Y + Y

T
.Ap

T
.X.Y - Y

T
.Ap

T
.Z.Y + Y

T
.X.Bu.Cc.Y - Y

T
.Z.Bu.Cc.Y + Y

T
.Cc

T
.Bu

T
.X.Y - Y

T
.Cc

T
.Bu

T
.Z.Y + Y

T
.X.Bu.Dc.Cy.Y - Y

T
.Z.Bu.Dc.Cy.Y + Y

T
.Cy

T
.Dc

T
.Bu

T
.X.Y - Y

T
.Cy

T
.Dc

T
.Bu

T
.Z.Y

Cz + Dzu.Dc.Cy

Cz.Y + Dzu.Cc.Y + Dzu.Dc.Cy.Y

-Μ

Bw
T
.X + Dyw

T
.New1

T

Bw
T
.X.Y - Bw

T
.Z.Y + Dyw

T
.Dc

T
.Bu

T
.X.Y - Dyw

T
.Dc

T
.Bu

T
.Z.Y

Dzw
T
+ Dyw

T
.Dc

T
.Dzu

T

-Μ

tions on the matrices X, Z and (X − Z) (since a full order controller is being used) and on Y

(which parametrizes a nonsingular similarity transformation). The result is used to eliminate Bc

from the closed loop Bounded Real Lemma in Figure 21, where we have also used rules to enforce

the symmetry of X and Z. This procedure will be repeated until an LMI is obtained.

In Figure 22, we collect on knowns to motivate the new unknown

New2 := CcY + DcCyY, (28)

which is used to eliminate Cc. The variable Cc is then eliminated from the Bounded Real Lemma

and the third new unknown

U := X − Z, (29)

is motivated after using NCCollectOnVariables in Figure 23. Note that this motivated unknown

have already appeared in Section 5.3.2, as expression (22). For this reason, we use the same

24

Figure 22: Introducing the second new unknown.
Collect on knowns Bu, Dzu and Ap

In[12]:= BRLclT5 = NCCollectOnVariables[BRLclT4,{Bu,tp[Bu],Dzu,tp[Dzu],Ap,tp[Ap]}];

ColumnForm[SymmetricMatrixToVector[BRLclT5]]

Out[12]= New1.Cy + X.Ap + ApT.X + CyT.New1T

(YT.X - YT.Z).Ap - YT.AcT.Z + YT.ApT.X + YT.CyT.New1T + YT.CcT.BuT.X + (YT.X - YT.Z).Bu.Dc.Cy

Y
T
.Ap

T
.(X.Y - Z.Y) + (Y

T
.X - Y

T
.Z).Ap.Y + (Y

T
.X - Y

T
.Z).Bu.(Cc.Y + Dc.Cy.Y) + (Y

T
.Cc

T
+ Y

T
.Cy

T
.Dc

T
).Bu

T
.(X.Y - Z.Y)

Cz + Dzu.Dc.Cy

Cz.Y + Dzu.(Cc.Y + Dc.Cy.Y)

-Μ

Bw
T
.X + Dyw

T
.New1

T

Bw
T
.X.Y - Bw

T
.Z.Y + Dyw

T
.Dc

T
.Bu

T
.(X.Y - Z.Y)

DzwT + DywT.DcT.DzuT

-Μ

Introduce variable New2=Cc**Y+Dc**Cy**Y

In[13]:= NewVar2eq = {Cc * *Y + Dc * *Cy * *Y - New2}

Out[13]= {-New2 + Cc.Y + Dc.Cy.Y}

Implement the change of variables (eliminate Cc)

In[14]:= solution2 = NCEliminate[Join[NewVar2eq,invs1assumption],{Cc},1];

ColumnForm[solution2]

Out[14]= Z.(X - Z)
-1
® -1 + X.(X - Z)

-1

(X - Z)
-1
.Z ® -1 + (X - Z)

-1
.X

Cc ® -Dc.Cy + New2.Y-1

Z
-1
.X.(X - Z)

-1
® (X - Z)

-1
+ Z
-1

(X - Z)
-1
.X.Z

-1
® (X - Z)

-1
+ Z
-1

Figure 23: Eliminating Cc and introducing the third new unknown.
Eliminate Cc from the BRL and collect on all knowns

In[15]:= BRLclT6 = NCExpand[BRLclT5/.solution2/.syms1assumption];

BRLclT7 = NCCollectOnVariables[BRLclT6,{Ap,tp[Ap],Bu,tp[Bu],Bw,tp[Bw],Cy,tp[Cy],Dzu,tp[Dzu],Dyw,tp[Dyw]}];

ColumnForm[SymmetricMatrixToVector[BRLclT7]]

Out[15]= New1.Cy + X.Ap + ApT.X + CyT.New1T

(Y
T
.X - Y

T
.Z).Ap + New2

T
.Bu

T
.X - Y

T
.Ac

T
.Z + Y

T
.Ap

T
.X + Y

T
.Cy

T
.New1

T
+ (Y

T
.X - Y

T
.Z).Bu.Dc.Cy - Y

T
.Cy

T
.Dc

T
.Bu

T
.X

New2
T
.Bu

T
.(X.Y - Z.Y) + Y

T
.Ap

T
.(X.Y - Z.Y) + (Y

T
.X - Y

T
.Z).Ap.Y + (Y

T
.X - Y

T
.Z).Bu.New2

Cz + Dzu.Dc.Cy

Cz.Y + Dzu.New2

-Μ

Bw
T
.X + Dyw

T
.New1

T

BwT.(X.Y - Z.Y) + DywT.DcT.BuT.(X.Y - Z.Y)

DzwT + DywT.DcT.DzuT

-Μ

Introduce variable U=X-Z

In[16]:= NewVar3eq = {X - Z - U}

Out[16]= {-U + X - Z}

Implement the change of variables (eliminate Z)

In[17]:= solution3 = NCEliminate[Join[NewVar3eq,invs1assumption],{Z},2];

ColumnForm[solution3]

Out[17]= Z ® -U + X

U.(X - Z)
-1
® 1

X.Z
-1
® 1 + U.Z

-1

(X - Z)
-1
.U ® 1

Z
-1
.X ® 1 + Z

-1
.U

Z
-1
.U.X

-1
® -X

-1
+ Z
-1

X-1.U.Z-1 ® -X-1 + Z-1

25

Figure 24: Eliminating Z and introducing the fourth new unknown.
Eliminate Z from the BRL and collect on all knowns

In[18]:= BRLclT8 = NCExpand[BRLclT7/.solution3/.syms1assumption];

ColumnForm[SymmetricMatrixToVector[BRLclT8]]

Out[18]= New1.Cy + X.Ap + ApT.X + CyT.New1T

New2T.BuT.X + YT.U.Ap + YT.AcT.U - YT.AcT.X + YT.ApT.X + YT.CyT.New1T + YT.U.Bu.Dc.Cy - YT.CyT.DcT.BuT.X

New2
T
.Bu

T
.U.Y + Y

T
.U.Ap.Y + Y

T
.U.Bu.New2 + Y

T
.Ap

T
.U.Y

Cz + Dzu.Dc.Cy

Cz.Y + Dzu.New2

-Μ

Bw
T
.X + Dyw

T
.New1

T

Bw
T
.U.Y + Dyw

T
.Dc

T
.Bu

T
.U.Y

DzwT + DywT.DcT.DzuT

-Μ

Introduce variable New3=-New1**Cy**Y+U**Ac**Y-X**Ac**Y+X**Ap**Y+X**Bu**New2+tp[Ap]**U**Y-

X**Bu**Dc**Cy**Y+tp[Cy]**tp[Dc]**tp[Bu]**U**Y

In[19]:= NewVar4eq = {New1 * *Cy * *Y + U * *Ac * *Y - X * *Ac * *Y + X * *Ap * *Y + X * *Bu * *New2 + tp[Ap] * *U * *Y - X * *Bu * *Dc * *Cy * *Y + tp[Cy] *

*tp[Dc] * *tp[Bu] * *U * *Y - New3}

Out[19]= {-New3 + New1.Cy.Y + U.Ac.Y - X.Ac.Y + X.Ap.Y + X.Bu.New2 + ApT.U.Y - X.Bu.Dc.Cy.Y + CyT.DcT.BuT.U.Y}

Invertibility hypothesis on X-U = Z

In[20]:= invs2assumption = {NCInvertible[X - U]}

Out[20]= {NCInvertible[-U + X]}

Implement the change of variables (eliminate Ac)

In[21]:= solution4 = NCEliminate[Join[NewVar4eq,invs1assumption,invs2assumption],{Ac},2];

Simplify the solution by collecting on (X -U)-1

In[22]:= solution4 = Map[NCCollectSymmetric[#,{inv[X - U],U}]&,solution4,{2}];

solution4 = Map[NCCollectSymmetric[#,{inv[X - U],U}]&,solution4,{2}];

ColumnForm[solution4]

Out[22]= X.(-U + X)-1 ® 1 + U.(-U + X)-1

Z.(X - Z)
-1
® -1 + X.(X - Z)

-1

(-U + X)-1.X ® 1 + (-U + X)-1.U

(X - Z)-1.Z ® -1 + (X - Z)-1.X

(-U + X)
-1
.U.X

-1
® -X

-1
+ (-U + X)

-1

X-1.U.(-U + X)-1 ® -X-1 + (-U + X)-1

Z-1.X.(X - Z)-1 ® (X - Z)-1 + Z-1

(X - Z)
-1
.X.Z

-1
® (X - Z)

-1
+ Z
-1

Ac ® Ap + (-U + X)-1.(New1.Cy - New3.Y-1 + U.(Ap - Bu.Dc.Cy + Bu.New2.Y-1) + (CyT.DcT.BuT + ApT).U) - Bu.Dc.Cy + Bu.New2.Y-1

symbol U as before, and save New3 for the next unknown.

In Figure 24, the variable Z is eliminated and the fourth new unknown

New3 := New1CyY + UAcY −XAcY + XApY + XBuNew2+

AT
p UY −XBuDcCyY + CT

y DT
c BT

u UY (30)

is motivated. This variable has been motivated not by collecting on the knowns, but after observing

that we can take advantage of the fact that variable Ac appears in only one entry of the bounded

real lemma coefficient. Recall that this was exactly one of the purposes of introducing a preliminary

change of coordinates in the closed loop system. This new unknown is then introduced so as to

replace this entire entry. Notice that we have used the fact that X−U = Z is nonsingular. We have

also used the function NCCollectSymmetric on solution4 in order to collect terms in (X −U)−1.

Variable Ac is eliminated from the closed loop Bounded Real Lemma in Figure 25. The result is

26

Figure 25: Eliminating Ac.
Symmetric hypothesis

In[23]:= syms2assumption = {tp[U] ® U}

Out[23]= {U
T
® U}

Eliminate Ac and simplify resulting expression

In[24]:= BRLclT9 = BRLclT8/.solution4/.syms1assumption/.syms2assumption;

BRLclT10 = NCSimplifyRational[BRLclT9];

ColumnForm[SymmetricMatrixToVector[BRLclT10]]

Out[24]= New1.Cy + X.Ap + Ap
T
.X + Cy

T
.New1

T

New3
T

New2
T
.Bu

T
.U.Y + Y

T
.U.Ap.Y + Y

T
.U.Bu.New2 + Y

T
.Ap

T
.U.Y

Cz + Dzu.Dc.Cy

Cz.Y + Dzu.New2

-Μ

Bw
T
.X + Dyw

T
.New1

T

Bw
T
.U.Y + Dyw

T
.Dc

T
.Bu

T
.U.Y

Dzw
T
+ Dyw

T
.Dc

T
.Dzu

T

-Μ

Figure 26: Changing variables in P.
Collect on Y

In[25]:= PclT1 = NCCollectSymmetric[PclT,Y]

Out[25]= K X (X - Z).Y

Y
T
.(X - Z) Y

T
.(X - Z).Y

O
Use change of variables from solution3

In[26]:= PclT2 = PclT1/.solution3

Out[26]= K X U.Y

Y
T
.U Y

T
.U.Y

O

a noncommutative rational function, and we invoke the function NCSimplifyRational to simplify

this expression.

The expression BRLclT10 is much simpler than the one we originally started, although it is not

yet an LMI. We now move our attention to the first inequality in (20), and apply the above changes

of variable so as to express P > 0 in terms of the same set of variables. This is done in Figure 26,

where we see that the only change of variables that need to be applied is the one that eliminates

variable Z. Indeed, collecting on Y motivates the introduction of U as in (29).

The expressions BRLclT10 and PclT1 are almost affine on the unknowns X, Y , New1, New2,

New3, and Dc, except for the presence of the product UY . Again, as Section 5.3.2, the fact that

U appears only in the form of products with Y can be used to make these expressions affine by

choosing U = Y −1. This is performed in Figure 27, where the final form of the coefficient matrices of

the Bounded Real Lemma inequalities are expressed as affine functions of the set of new unknowns.

At this point we use the change of variable to produce an explicit formula for the controller

parameters Ac, Bc, Cc and Dc in terms of the set of new unknowns. This is done in Figure 28,

27

Figure 27: Obtaining the LMI.
Set U -> Y

-1

In[27]:= linearize = {U ® inv[Y],tp[Y] ® Y}

Out[27]= {U ® Y-1,YT ® Y}

on the Bounded Real Lemma

In[28]:= BRLclT11 = BRLclT10/.linearize

Out[28]=

æççççççç
è

New1.Cy + X.Ap + ApT.X + CyT.New1T New3 Cz
T + CyT.DcT.DzuT New1.Dyw + X.Bw

New3
T

Ap.Y + Bu.New2 + Y.ApT + New2T.BuT Y.Cz
T + New2T.DzuT Bw + Bu.Dc.Dyw

Cz + Dzu.Dc.Cy Cz.Y + Dzu.New2 -Μ Dzw + Dzu.Dc.Dyw
Bw

T
.X + DywT.New1T Bw

T + DywT.DcT.BuT Dzw
T + DywT.DcT.DzuT -Μ

ö÷÷÷÷÷÷÷
ø

and on Pcl

In[29]:= PclT3 = PclT2/.linearize

Out[29]= KX 1

1 Y
O

Figure 28: The controller formula.
Compute controller formula

In[30]:= K = Matrix[{Ac,Bc},{Cc,Dc}]

Out[30]= KAc Bc

Cc Dc
O

by inverting the change of variables

In[31]:= K1 = Substitute[K,Join[solution1,solution2,solution3,solution4,linearize]];

K2 = NCCollectSymmetric[NCSimplifyRational[K1],inv[X - inv[Y]]]

Out[31]= K(X - Y-1)-1.(New1.Cy - New3.Y-1 + X.Ap + ApT.Y-1 - X.Bu.Dc.Cy + X.Bu.New2.Y-1 + CyT.DcT.BuT.Y-1) -(X - Y-1)
-1
.(New1 - X.Bu.Dc)

-Dc.Cy + New2.Y
-1

Dc
O

Factor as affine function of the transformed variables

In[32]:= K3 = MatrixAffineFactor[K2,{New1,New2,New3,Dc}]

Out[32]= K(X - Y-1)-1.CyT
0

O.DcT.(BuT.Y-1 0)+K(X - Y-1)-1 -(X - Y
-1
)
-1
.X.Bu

0 -1
O.KNew1 New3

Dc New2
O.K Cy -1

-Y
-1

0
O+K(X - Y-1)-1.X.Ap + (X - Y-1)-1.ApT.Y-1 0

0 0
O

where we also factorize the obtained formula as an affine function of the unknowns New1, New2,

New3 and Dc. Note that the result states that Ac, Bc and Cc depend on Dc, which is the only

controller parameter that has not been transformed.

Finally, in this example, all three terms that have been motivated in expression BRLclT3, in

Figure 19, could have been used to eliminate variables Bc, Cc and Z all at one once. This is done

in Figure 29, where we feed NCEliminate with three equations defining three new unknowns and

simultaneously eliminate Bc, Cc and Z. The solution is used to produced BRLclT13, which is equal

to BRLclT8, in Figure 24. This skips five intermediate expressions.

6 Wrapping it all together: a word about algorithms

In this section we provide the reader with a very brief introduction to the algorithms used behind

the NCAlgebra commands used in this paper.

28

Figure 29: Eliminating Bc, Cc and Z simultaneously.
Introduce the new unknowns New1, New2 and U all at once

In[33]:= NewVar123eq = Join[NewVar1eq,NewVar2eq,NewVar3eq];

ColumnForm[NewVar123eq]

Out[33]= -New1 - Z.Bc + X.Bu.Dc

-New2 + Cc.Y + Dc.Cy.Y

-U + X - Z

Implement the change of variables (eliminate Bc, Cc and Z)

In[34]:= solution5 = NCEliminate[Join[NewVar123eq,invs1assumption],{Bc,Cc,Z},2];

ColumnForm[solution5]

Out[34]= Z ® -U + X

U.(X - Z)-1 ® 1

X.Z
-1
® 1 + U.Z

-1

(X - Z)
-1
.U ® 1

Z
-1
.X ® 1 + Z

-1
.U

Z
-1
.U.X

-1
® -X

-1
+ Z
-1

Cc ® -Dc.Cy + New2.Y
-1

X
-1
.U.Z

-1
® -X

-1
+ Z
-1

Bc ® Bu.Dc - Z-1.New1 + Z-1.U.Bu.Dc

Eliminate Bc, Cc and Z from the BRL

In[35]:= BRLclT12 = NCExpand[Substitute[BRLclT3,solution5]/.syms1assumption/.syms2assumption];

BRLclT13 = NCSimplifyRational[BRLclT12];

ColumnForm[SymmetricMatrixToVector[BRLclT13]]

Out[35]= New1.Cy + X.Ap + Ap
T
.X + Cy

T
.New1

T

New2
T
.Bu

T
.X + Y

T
.U.Ap + Y

T
.Ac

T
.U - Y

T
.Ac

T
.X + Y

T
.Ap

T
.X + Y

T
.Cy

T
.New1

T
+ Y

T
.U.Bu.Dc.Cy - Y

T
.Cy

T
.Dc

T
.Bu

T
.X

New2T.BuT.U.Y + YT.U.Ap.Y + YT.U.Bu.New2 + YT.ApT.U.Y

Cz + Dzu.Dc.Cy

Cz.Y + Dzu.New2

-Μ

Bw
T
.X + Dyw

T
.New1

T

Bw
T
.U.Y + Dyw

T
.Dc

T
.Bu

T
.U.Y

Dzw
T
+ Dyw

T
.Dc

T
.Dzu

T

-Μ

6.1 Eliminating variables via Gröbner basis

Commutative Gröbner basis algorithms are powerful and make up the engines in symbolic algebra

packages’ Solve commands. Non commutative Gröbner basis algorithms are more recent but have

similar potential.

The Non Commutative Gröbner Basis Algorithm, due to F. Mora [Mor86, GHK97], can be used

to systematically eliminate variables from a collection (e.g., {pj(x1, . . . , xn) = 0 : 1 ≤ j ≤ k1}) of

polynomial equations so as to put it in triangular form.

Our computational implementation of this algorithm is the package NCGB. One specifies an

order5 on the variables (x1 < x2 < x3 < . . . < xn) which corresponds to priorities in eliminating

them. Here NCGB will try hardest to eliminate xn and try the least to eliminate x1. The output is
5From this ordering on variables (written <), an order on monomials in those variables is induced which is referred

to as non commutative graded lexicographic order. In this paper we also write � to mean a non commutative pure
lexicographic order.

29

a list of equations in a “canonical form” which is triangular

q1(x1) = 0,

q2(x1, x2) = 0,

q3(x1, x2) = 0,

q4(x1, x2, x3) = 0,

...

qk2(x1, . . . , xn) = 0.

(31)

The set of solutions to the collection of polynomial equations {qj = 0 : 1 ≤ j ≤ k2} equals6 the

set of solutions to the collection of polynomial equations {pj = 0 : 1 ≤ j ≤ k1}. This canonical

form greatly simplifies the task of solving the collection of polynomial equations by facilitating

back-solving for xj in terms of x1, . . . , xj−1. The effect of the ordering is to specify that variables

high in the order will be eliminated, while variables low in the order will not be eliminated. Thus,

in a problem, knowns are set below unknowns in the order.

If the variables commute, then the Gröbner basis is always finite and can be generated by Buch-

berger’s algorithm [CLO92]. The Buchberger algorithm always terminates in a finite amount of

time. It could terminate in seconds, days, or centuries. In the non commutative case, which is used

in this paper, the Gröbner basis is usually infinite and then NCGB fails to halt given finite computa-

tional resources. Nevertheless, the solution set of the output of a terminated (say k iteration) NCGB,

{qj = 0}, is always equivalent to the solution set of the input, {pi = 0}, and this partial basis often

proves to be useful in computations. Gröbner basis computer runs can be (notoriously) memory

and time consuming. Thus their effectiveness on any class of problems can only be determined by

experiment.

NCGB is the tool behind the user-friendly command NCEliminate, used extensively in this

paper. NCEliminate simplifies the interface with NCGB by generating automatic ordering of knowns,

translating directives to assert assumptions on variables, such as NCInvertible, and processing the

output in the form of rules that can be directly used in Mathematica. For an example, see Figure 10.
6k2 may be larger than n (i.e., there need not be ≤ n equations in the list) and there need not be any equation in

just 1 or 2 variables.

30

6.2 Changes of variables and motivated unknowns

It is often the case that some variables in the formulation of a problem are not the natural “coordi-

nates” for solution of the problem. Gröbner Basis Algorithms, which lie at the core of our method,

are very good at eliminating unknowns, but have no way of finding good changes of variables. The

paper [HS99] gives a way of producing changes of variables (CoV) for computer assisted method.

The generic idea is briefly discussed below.

6.2.1 Decompose

Suppose that it can be shown algebraically that an expression, such as x1x2 + x3, solved a Riccati

equation, e.g.,

(x1x2 + x3)a1a2(x1x2 + x3) + a3(x1x2 + x3) + a5a6 = 0 (32)

The left hand side of (32) depends on three unknowns x1, x2 and x3. It is natural, however, to

view (32) as an equation in one new unknown y = x1x2 + x3 and to rewrite the left hand side

of (32) as the composition

k(a1, . . . , a6, q(a1, . . . , a6, x1, x2, x3)) (33)

where y = q(a1, . . . , a6, x1, x2, x3) := x1x2 + x3 and

k(a1, . . . , a6, y) = ya1a2y + a3y + a5a6.

The challenge to computer algebra is to start with an expanded version of (32), which is a mess that

you would likely see in a computer algebra session, and to automatically motivate the selection of y.

Now we describe such a conceptual procedure for producing what we call a motivated unknown, y.

Suppose that a polynomial p(a1, . . . , ar, x1, . . . , xs) appears in a computer session and has the

property that there are other monomials L(a1, . . . , ar, x1, . . . , xs) and R(a1, . . . , ar, x1, . . . , xs) for

which LpR has a decomposition

LpR = k(a1, . . . , ar, q(a1, . . . , ar, x1, . . . , xs))

where k is a polynomial in one unknown.

31

Definition 1 A polynomial p motivates an unknown y via the equation y = q(a1, . . . , ar, x1, . . . , xs)

if there exist monomials L(a1, . . . , ar, x1, . . . , xs) and R(a1, . . . , ar, x1, . . . , xs) and there exists a

polynomial in one unknown k(a1, . . . , ar, y) such that LpR = k(a1, . . . , ar, q(a1, . . . , ar, x1, . . . , xs)).

Of course, from the perspective of finding zeros of collections of polynomials, if p has a zero,

then LpR has a zero and so k has a zero. Since k is a polynomial in only one unknown variable,

finding the zeros of k is bound to be easier than finding the zeros of p. Weaker than having an

unknown which is motivated by a decomposition (33) is one with two

k(a, q1(a, x), q2(a, x)),

or more motivated unknowns.

6.2.2 Implementation

The authors do not know how to fully implement the decompose operation. Finding decompositions

by hand can be facilitated with the use of a certain type of collect command. In this paper we have

used the NCAlgebra commands NCCollectOnVariables, NCCollect and NCCollectSymmetric to

perform this task. The collect commands both assist the user in performing decompositions of

a particular polynomial and help in finding other polynomials in the ideal which would produce

motivated unknowns.

In particular, the NCCollectOnVariables command is used to collect knowns and products of

knowns out of expressions. For example, suppose that A and B are knowns and X, Y and Z are

unknowns. The collected form of

XABX + XABY + Y ABX + Y ABY + AX + AY (34)

is the simpler expression

(X + Y)AB(X + Y) + A(X + Y). (35)

Clearly this suggests a decomposition of (34) and, indeed, the command NCCollectOnVariables

helps to find decompositions of much more complicated polynomials, as illustrated in this paper.

For an example, see Figure 19.

32

6.3 Factorization of noncommutative expressions as matrix affine functions

In this paper we have used the command MatrixAffineFactor to produce factored forms of ex-

pressions which are affine on a given list of variables. The unique feature of this algorithm is the

ability to factor noncommutative products of distinct parameters and variables into products of

matrices which are affine on matrices built from the given list of variables. A problem that has to

be overcome in the symbolic implementation of this algorithm is the fact that the factored form

is, in general, not unique. For instance, one expression that can be symbolically factored as the

product of three matrices ABC also admits factorizations in the form (AP1)(P1BP2)(P2C), where

P1 and P2 are arbitrary permutation matrices. Our algorithm, which worked very effectively in this

paper, symbolically “normalizes” products of matrices in order to produce factorizations which are

almost always unique. This is enforced by ensuring that all matrices in a product of matrices will

have as a first non null entry a positive number or a symbolic expression where the smallest symbol

(in alphabetical order) is always multiplied by a positive number. For an example, see Figure 9.

7 Acknoledgements

We would like to thank Robert Skelton and Juan Camino for valuable discussions and comments.

References

[BEFB94] Stephen P. Boyd, Laurent El Ghaoui, Eric Feron, and V. Balakrishnan. Linear Matrix
Inequalities in System and Control Theory. SIAM, Philadelphia, PA, 1994.

[CHSY03] J. F. Camino, J. W. Helton, R. E. Skelton, and Jieping Ye. Matrix inequalities: a sym-
bolic procedure to determine convexity automatically. Integral Equation and Operator
Theory, 46(4), 2003.

[CLO92] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Introduction to
Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in
Mathematics. Springer-Verlag, New York, NY, 1992.

[dH03a] Mauŕıcio Carvalho de Oliveira and John William Helton. Computer algebra tailored to
matrix inequalities in control. In Proceedings of the 42nd IEEE Conference on Decision
and Control, pages 4973–4978, Maui, Hawaii, 2003.

[dH03b] Mauŕıcio Carvalho de Oliveira and John William Helton. Doing systems and control
with NCAlgebra, a symbolic noncommutative algebra toolbox. In Proceedings of the

33

11th Mediterranean Conference on Control and Automation, Rhodes, Greece, June 2003.
Special session on ‘Computational Toolboxes in Control Design’.

[Fra87] Bruce A. Francis. A Course in H∞ Control Theory. Springer-Verlag, New York, NY,
1987.

[GHK97] E. L. Green, L. S. Heath, and B.J. Keller. OPAL: A system for computing noncommuta-
tive Gröbner bases. In H. Comon, editor, Eighth International Conference on Rewriting
Techniques and Applications (RTA-97), volume 1232 of Lecture Notes in Computer Sci-
ence, pages 331–334. Springer-Verlag, New York, NY, 1997.

[HS99] John William Helton and Mark Stankus. Computer assistance for ‘discovering’ formulas
in system engineering and operator theory. Journal of Functional Analysis, 161(2):289–
363, 1999.

[HSM00] J. W. Helton, Mark Stankus, and Robert L. Miller. NCAlgebra. Math-
ematics Department, University of California, San Diego, CA, 2000.
http://www.math.ucsd.edu/∼ncalg.

[Mor86] F. Mora. Gröebner bases for non-commutative polynomial rings. volume 229 of Lecture
Notes in Computer Science, pages 353–362. Springer-Verlag, New York, NY, 1986.

[SGC97] Carsten W. Scherer, Pascal Gahinet, and Mahmoud Chilali. Multiobjective output-
feedback control via LMI optimization. IEEE Transactions on Automatic Control,
42(7):896–911, 1997.

[SIG98] Robert E. Skelton, T. Iwasaki, and K. Grigoriadis. A Unified Algebraic Approach to
Control Design. Taylor & Francis, London, UK, 1998.

[ZDG96] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, Inc,
Englewood Cliffs, NJ, 1996.

34

NOT FOR PUBLICATION

Contents

1 Introduction 1

2 Objective and scope of this paper 2

3 Matrix inequalities in systems and control 3
3.1 Stabilizability by state feedback . 5
3.2 Elimination of variables . 6
3.3 Change of variables . 7

4 What goes wrong with current symbolic tools? 9

5 Automated LMI production 11
5.1 Problem statement . 12
5.2 Computing the closed loop signals . 13
5.3 Elimination of the controller variables . 15

5.3.1 Computing null spaces . 16
5.3.2 Computing the LMIs . 18

5.4 Changing the controller variables . 22

6 Wrapping it all together: a word about algorithms 28
6.1 Eliminating variables via Gröbner basis . 29
6.2 Changes of variables and motivated unknowns . 31

6.2.1 Decompose . 31
6.2.2 Implementation . 32

6.3 Factorization of noncommutative expressions as matrix affine functions 33

7 Acknoledgements 33

35

