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Abstract

A non-commutative polynomial which is positive on a bounded
semi-algebraic set of operators has a weighted sum of squares rep-
resentation. This Positivstellensatz parallels similar results in the
commutative case.

A broader issue is to what extent does real semi-algebraic ge-
ometry extend to non-commutative polynomials? Our ”strict”
Positivstellensatz is positive news, on the opposite extreme from
strict positivity would be a Real Nullstellensatz. We give an exam-
ple which shows that there is no non-commutative Real Nullstel-
lensatz along certain lines. However, we include a successful type
of non-commutative Nullstellensatz proved by George Bergman.

1 Introduction

Let P denote a collection of symmetric polynomials in non-commutative
variables x = {x1, · · · , xg}. The positivity domain DP associated to P
is the set of tuples X = (X1, · · · , Xg) of symmetric bounded operators
on separable real Hilbert space making p(X1, · · · , Xg) a positive semi-
definite operator. The domain is bounded if there exists a C so that
C2 − XT

j Xj is positive semi-definite whenever X ∈ DP

For bounded DP , our Positivstellensatz represents a polynomial q
which is strictly positive on DP as a weighted sum of squares

q =
N∑
1

sT
j pjsj +

M∑
1

rT
k rk +

∑
tTm,`(C

2 − x2
m)tm,` (1.1)
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for polynomials pj ∈ P and polynomials sj, rk, tm,`. When DP is a convex
set, the Hilbert space used in our positivity hypothesis can be taken to
be finite dimensional. Versions of the Positivstellensatz are presented
for three classes of matrix-valued non-commutative polynomials. The
matrix-valued case is important for future applications and requires little
extra effort.

Our proof uses a Hahn Banach separation argument and a GNS type
construction much as in the Putinar and Vasilescu [PV] strengthing of
Stengle’s Positivstellensatz in the commutative case. In the commuta-
tive case, dropping the boundedness hypothesis weakens the conclusion
in that the decomposition (1.1) must then include an additional weight
factor. It is not known for non-commutative situations if boundedness of
DP is essential for existence of a weighted sum of squares (SoS) represen-
tation. For instance, if DP is all tuples of finite dimensional symmetric
matrices, then positivity of q is positivity ”everywhere” and we are deal-
ing with a ”matrix positive polynomial”. Such polynomials are sums of
squares [H][M]. This is in distinction to the commutative case where they
certainly are not all sums of squares.

In the remainder of the introduction notation and the three classes of
non-commutative polynomials, NC polynomials for short, are introduced,
definitions of positivity domains and weighted sums of squares represen-
tations are given, and a precise statement of the main result is presented.
The exposition reflects the authors expectation that the results will ap-
peal to both mathematicians and engineers. Section 2 gives stronger
results on ”convex” sets. Section 6 addresses the non-commutative Real
Nullstellensatz. Sections 3, 4 and 5 give proofs.

1.1 NC Polynomials and Special Classes

Let Fg denote the free semi-group on the g non-commutative generators
x = {x1, . . . , xg}. In common language, Fg is the group of words in
x1, · · · , xg. Note that the empty word ∅ is the identity in Fg. Below we
define several classes of NC polynomials

1.1.1 Polynomials in Symmetric Entries, N

Let N denote the polynomials, over the field of real numbers R, in the
non-commuting generators x = {x1, · · · , xg} so that N consists of real
linear combinations of words w from Fg. Concretely, p ∈ N is an expres-
sion of the form

p =
∑
w∈Fg

pww, (1.2)
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where the sum is finite and each pw ∈ R. The algebra N has a natural
involution T , which behaves as follows. For a word w = xj1xj2 · · · xjn

from Fg viewed as an element of N ,

wT = xjn · · · xj2xj1 .

In general, given p as in (1.2), pT =
∑

pwwT . A polynomial is p in N
symmetric provided pT = p.

Often we shall be interested in evaluating a polynomial p in N at a
tuple of symmetric operators X = (X1, . . . , Xg) on a common Hilbert
space H. Define X∅ = I, the identity operator on H; given a word
w ∈ Fg different from the empty word, w = xj1xj2 · · · xjn , let

Xw = Xj1Xj2 · · ·Xjn ;

and given p as in (1.2), define p(X) =
∑

pwXw. Note that the involution
on N is compatible with the transpose operation on operators on real
Hilbert space,

p(X)T = pT (X),

where p(X)T denotes the adjoint operator (with respect to the native
inner product). Often the Hilbert space is simply R`, and so the operators
Xj are real symmetric `×` matrices and p(X)T is just the usual transpose
of the ` × ` matrix p(X).

Example 1. Let p ∈ N be given by p = x3x2 + 3x3x1x2 and note
pT = x2x3 + 3x2x1x3. If X = (X1, X2, X3), where

X1 =

(
1 1
1 −2

)
X2 =

(
0 1
1 0

)
X3 =

(
0 0
0 1

)
,

then

p(X) =

(
0 0
−5 3

)
and pT (X) =

(
0 −5
0 3

)
. • •

Example 2. If q ∈ N is the symmetric polynomial q = p + pT =
x3x2 + 3x3x1x2 + x2x3 + 3x2x1x3, then

q(X) =

(
0 −5
−5 6

)
. • •

1.1.2 General Polynomials, N∗

Let N∗ denote the polynomials in the 2g non-commutative symbols
{x1, . . . , xg, x

T
1 , . . . , xT

g }. The involution on N∗ is most conveniently de-
fined as follows. View the polynomials in N∗ as polynomials in the 2g
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non-commuting variables {x1, . . . , xg, xg+1, . . . , x2g}, by identifying xg+j

with xT
j . In this way, the involution on N∗ is the same as that on N in

2g, rather than g, variables.

We now define the rule of substitution of a tuple of (possibly non-
symmetric) operators into a polynomial in N∗. Given a word w ∈ F2g,
and a tuple X of (possibly non-symmetric) operators, substitute Xj for
xj and XT

j for xj+g for 1 ≤ j ≤ g in each word and extended to all of
N∗.

Example 3. Choose g = 2 and let p ∈ N∗ be given by p = x1x
T
2 + xT

2 x1.
Observe pT = x2x

T
1 + xT

1 x2 so that p and pT take on exactly the same
values when evaluated at a tuple of symmetric operators. However, with

X1 =

(
0 1
0 0

)
X2 =

(
0 0
0 1

)
,

p(X) =

(
0 1
0 0

)
6=

(
0 0
1 0

)
= pT (X). • •

The next example shows that polynomials exhibit different properties
when evaluated at operators on infinite dimensional spaces than they do
when evaluated at matrices, a phenomena which must be considered in
our Positivstellensatz. An operator X on a (real) Hilbert space H is
positive semidefinite, written X º 0, provided X = XT and 〈Xx, x〉 ≥ 0
for all x ∈ H.

Example 4. Let p = 2xT x−1 and q = 2xxT −1. If X is a square matrix
and p(X) º 0, then we have that X is invertible and 2 − X−T X−1 º 0.
Hence, 2I − X−1X−T º 0 and thus q(X) º 0. This property, p(X) º 0
implies q(X) º 0, does not (necessarily) hold for operators on infi-
nite dimensional spaces. Let S denote the forward shift operator on
`2, S(a0, a1, . . .) = (0, a0, a1, . . .), so that ST is the backward shift oper-
ator, ST (a0, a1, . . .) = (a1, a2, . . .). Straightforward computation gives
p(S) = I º 0. However, q(S)(a0, a1, . . .) = (−a0, a1, a2, . . .) so that
q(S) 6º 0. ••

1.1.3 Hereditary Polynomials, N∗N

The last type of NC polynomial we consider is a subset of N∗ called the
hereditary polynomials [A], denoted by N∗N . A polynomial p ∈ N∗ is
hereditary provided the transposes, if any, always appear on the left
and is thus a finite linear combination of terms vT w where v and w are
words in x = {x1, . . . , xg},

p =
∑

v,w∈Fg

pv,wvT w.
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In particular pT =
∑

pv,w(vT w)T , so that if p is hereditary, then so is pT .
Given a Hilbert space H and a tuple X = (X1, . . . , Xg) of operators on
H, the definition of p(X) is induced from that on N∗.

The product of two hereditary polynomials need not be an hereditary
polynomial, but if p is hereditary and q and r are polynomials in x =
{x1, . . . , xg} (no x∗

j ’s), then qT pr is again an hereditary polynomial.

Example 5. Let p ∈ N∗N be given by p = xT
3 x2 + 3xT

3 xT
1 x2. So

pT = xT
2 x3 + 3xT

2 x1x3. A polynomial q ∈ N∗ which is both hereditary
and symmetric is

q = pT + p = xT
3 x2 + 3xT

3 xT
1 x2 + xT

2 x3 + 3xT
2 x1x3.

Note that p, pT , and q take on the same values as their counterparts in
Examples 1 and 2 when evaluated at a tuple of symmetric operators. ••

Our final example demonstrates for N∗N what Example 4 did for N∗,
namely that we must consider operators on infinite dimensional Hilbert
spaces in our Positivstellensatz for N∗N .

Example 6. Let p(x) = −(xT )2x2 + 2xT x− 1 and q(x) = 1− xT x. If X
is a square matrix and p(X) º 0, then q(X) = 0 (so q(X) º 0 as well).
However, if X is the Brownian shift operator on `2(R) ⊕ R,

X =

(
S E
0 1

)
,

then p(X) = 0, but q(X) ¹ 0 non-trivially. Here, S denotes the forward
shift on `2(R) as in example 4, and E : R → `2(R) is given by Ec =
(c, 0, . . .). ••

1.1.4 Matrix Valued Polynomials, Ml(N∗) etc

We wish also to consider matrix-valued NC polynomials or, equivalently,
NC polynomials with matrix coefficients. Let Ma×b denote the a × b
matrices with entries from R and let Ma×b(N∗) denote the Ma×b ma-
trices with entries from N∗. A p ∈ Ma×b(N∗) can be expressed as
p =

∑
w pww, where pw ∈ Ma×b and pw = 0 except for finitely many

w, and may be thought of as Ma×b-valued polynomial in the NC indeter-
minates {x1, . . . , xg, x

T
1 , . . . , xT

g }. The involution T extends to a mapping
Ma×b(N∗) −→ Mb×a(N∗) as

pT =
∑

pT
wwT .

The substitution rule p(X), for p ∈ Ma×b(N∗) and a tuple X =
(X1, . . . , Xg) on a Hilbert space H, is made entry-wise. That is, writing
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p = (pj,`) where pj,` are polynomials in N∗ for 1 ≤ j ≤ a and 1 ≤ ` ≤ b,
define p(X) : ⊕b

1H −→ ⊕a
1H as the operator given in block matrix form

p(X) = (pj,`(X))j,`.

The substitution rule p(X) is conveniently described using tensor
product notation as well. Given Hilbert spaces K and H, define, for
elementary tensors k ⊗ h and k′ ⊗ h′,

〈k ⊗ h, k′ ⊗ h′〉 = 〈k, k′〉K〈h, h′〉H ,

where k, k′ ∈ K and h, h′ ∈ H. Extend the form 〈·, ·〉 to the algebraic
tensor product of K and H over R by linearity and let K⊗H denote the
Hilbert space obtained by forming the completion. If A is an operator
on H and X is an operator from K to L, then X ⊗ A is the operator
from K ⊗ H to L ⊗ H defined on elementary tensors by

X ⊗ A k ⊗ h = Xk ⊗ Ah.

With these notations,

p(X) =
∑

pw ⊗ Xw,

where each pw is viewed as an operator pw : Rb −→ Ra.

Definitions for Ma×b(N ), the involution T : Ma×b(N ) −→ Mba(N ),
and the substitution p ∈ Ma×b(N ) 7→ p(X) are made by analogy with the
N∗ case. Slightly different notation will be used in the hereditary case.
A Ma×b-valued hereditary polynomial is a finite sum of the form p =∑

pv,wvT w, where v, w ∈ N and pv,w ∈ Ma×b. The involution and sub-
stitution are those coming from the inclusion Ma×b(N∗N ) ⊂ Ma×b(N∗).

For notational purposes, let M`(N∗) = M`×`(N∗). A matrix-valued
NC polynomial p ∈ M`(N∗) is symmetric provided pT = p which is
equivalent to pT

w = pwT in the N and N∗ cases, and pT
v,w = pw,v in

the hereditary case. Let M s
` (N∗) denote the symmetric polynomials

in M`(N∗) and define M s
` (N ) and M s

` (N∗N ) analogously. Finally, we
use the notation M∞(N∗) = ∪`>0M`(N∗), M s

∞(N∗) = ∪`>0M
s
` (N∗), and

M s
∞(N∗N ) = ∪`>0M

s
` (N∗N ).

If p is an Mb×c-valued polynomial, q is an Mb×a-valued polynomial,
and r is an Mc×d-valued polynomial, then qT pr is an Ma×d-valued poly-
nomial. If p, q, r are all in either N or N∗, then so is qT pr. In the
hereditary case, if p is hereditary and q and r are transpose free, then
qT pr is again hereditary. A special case of particular importance is when
p is Mb×b-valued, q is Mb×a-valued and r = qT .
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1.2 Decomposition as Weighted Sums of Squares

Fix a collection of symmetric matrix-valued polynomials P from either
M s

∞(N ), M s
∞(N∗), or M s

∞(N∗N ).

Let C`
P denote finite positive linear combinations of sT ps and rT r

where p ∈ P and the sizes of s and r are such that the products make
sense and result in ` × ` matrix-valued polynomials. Thus q ∈ C`

P if
there exists non-negative integers M , N , and polynomials pj ∈ P and
polynomials sj and rk, where say pj is M`j

-valued, sj is M`j×`-valued and
rj is M1×`-valued, and of course all depend upon q, such that

q =
N∑
1

sT
j pjsj +

M∑
1

rT
k rk. (1.3)

We emphasize that, while P may be an infinite set of polynomials, the
decomposition (1.3) is a finite sum and that C`

P consists of symmetric
polynomials. Let CP denote the union of C`

P over `. We call (1.3) a
weighted sum of squares representation.

1.3 Domain of Positivity

Fix a subset P of M∞(N∗), M∞(N ), or M∞(N∗N ). The case that P
consists of symmetric polynomials is of primary interest, but we will
have occasion to consider more general collections. Given a real Hilbert
space H, let DP(H) denote the tuples X = (X1, . . . , Xg) such that each
Xj is an operator on H and p(X) º 0 for each p ∈ P. The positivity
domain of P , denoted DP , is the collection of tuples X such that
X ∈ DP(H) for some H. The fact that DP is not actually a set presents
no logical difficulties and typically it may be assumed that the Hilbert
spaces are separable.

A positivity domain DP is called convex provided that, if X and Y
are both operator tuples on the same Hilbert space H and both X and
Y lie in DP , then convex combinations c1X + c2Y belong to DP . Here
real numbers c1, c2 ≥ 0 satisfy c1 + c2 = 1. Thus, DP is convex if DP(H)
is convex for each H. A positivity domain is bounded provided
there is a constant C > 0 such that if X ∈ DP , then ‖Xj‖ ≤ C for each
j = 1, 2, . . . , g.

We now define a special set of polynomials, and state our first lemma.
Henceforth set

bj := C2 − xT
j xj and b̃j := C2 − xjx

T
j .

7



Lemma 1.1 For any j between 1 and g, Dbj
= Db̃j

.

Proof. Without loss of generality, take C = 1. Suppose X is such
that I − XT X º 0. Since both I º 0 and I − XT X º 0, we have that

(
Y T ZT

) (
I X

XT I

)(
Y
Z

)
º 0 for any Y, Z.

In particular, for Y = I and Z = −XT , we get I − XXT º 0. So,
Dbj

⊂ Db̃j
. Replacing X with XT gives us the reverse containment. ••

The lemma may also be proved by noting that ‖XXT‖ = ‖XT X‖,
but we chose to emphasis the algebraic approach as it illustrates the use
of the cones CP .

1.4 An NC Positivstellensatz

Let b denote the set of polynomials b := {b1, · · · , bg}. Similarly, let
b̃ := {b̃1, · · · , b̃g}. If DP is a bounded domain, then for large enough C,
we have DP∪{b} = DP . For bounded domains we take the convention:

• In the hereditary case and in the N∗ case , for each i we adjoin the
polynomial C2 − xT

i xi to P and obtain a bigger set P̃ .

• In the N case, for each i we adjoin the polynomial C2 − x2
i to P

and obtain a bigger set P̃ .

Often in what follows, when DP is bounded, we will assume P = P̃ ; i.e.,
that b ⊂ P.

An operator X on a real Hilbert space H is strictly positive definite
if X = XT and 〈Xx, x〉 > 0 whenever x ∈ H and x 6= 0.

Theorem 1.2 Suppose P is a subset of matrices with non-commutative
polynomial entries, to be precise P ⊂ M s

∞(N∗) (resp. P ⊂ M s
∞(N ), or

resp. P ⊂ M s
∞(N∗N )), and suppose the positivity domain DP of P is

bounded. If q ∈ M`(N∗)s (resp. q ∈ M s
` (N ), or resp. q ∈ M s

` (N∗N )) is
strictly positive definite on DP , that is, if q is symmetric and q(X) is
strictly positive definite whenever X ∈ DP , then q ∈ C`

P̃ , that is, q has
the representation

q =
N∑
1

sT
j pjsj +

M∑
1

rT
k rk. (1.4)
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in equation (1.3). Here pj ∈ P̃, for 1 ≤ j ≤ N .

If in addition DP is convex, we need only verify q(X) is a positive
definite operator for those X ∈ DP which are defined on a Hilbert space
of dimension at most `

∑d
0(2g)n. From this test on finite dimensional

matrices we obtain q ∈ C`
P̃ .

The proof has two parts which dictates the organization of the rest of
the paper. The first is a Hahn-Banach result which separates C`

P from any
polynomial q outside it with a linear functional λ. The second represents
such linear functionals λ using a matrix tuple X. That q is outside C`

P
forces q(X) to be not strictly positive definite. Before launching into all
of this the next section presents properties of convex positivity domains,
since it is a pleasant topic, and in this section we prove the last assertion
of Theorem 1.2, see Proposition 2.3.

The following example explains the strict positive definite hypothesis
on q(X) even in one variable. Let q = 1−xT x and p = q3. The positivity
domain determined D{p} consists matrices X with ‖X‖ ≤ 1. Certainly,
q(X) ≥ 0 whenever X ∈ D{p}. In this case a natural choice for C in
Theorem 1.2 is C = 1. However, if C > 1 is chosen, then q cannot have a
representation as in equation (1.4). To see this consider the 1×1 matrices
x, for 0 < x < 1. If the representation holds, then there are polynomials
sj, tj, rj so that

1 − x2 =
∑

sj(x)2(1 − x2)3 +
∑

tj(x)2(C2 − x2) +
∑

rj(x).

The left hand side has a zero of order one at x = 1. It follows that each
tj and rj has a zero at 1. Thus, as (1−x2)3 has a zero of order three at 1,
the right hand side has a zero of order at least two at 1, a contradiction.

1.4.1 Related Results

We are aware of several variations of Theorem 1.2 with proofs much like
the one given here. In fact, the proof here borrows heavily from Putinar
and Vasilescu [PV], although the results there are for the commutative
N scalar case and much of the significance of their work is for the case
of unbounded positivity regions.

Agler, in his seminal work on Schur class functions on the polydisc
[A], begins with the collection P = {1 − x∗

jxj : j = 1, 2, . . . , g} (here
∗ is the complex transpose, rather than just transpose) and shows that
a matrix-valued analytic function W , on the g-fold polydisc, such that
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W (X) is a contraction for each tuple of commuting strict contractions
X = (X1, . . . , Xg) can be written as

I − W (z)W (w)∗ =
∑

Hj(z)(1 − zjwj)Hj(w)∗. (1.5)

Agler and McCarthy [AM] prove a generalization involving a finite collec-
tion of scalar polynomials in place of 1−x∗

jxj. Also Joe Ball and Malakorn
[BMprep] have in preperation an extension of the representation (1.5) to
noncommutative variables which will interest the serious reader. It uses
formal power series to represent the functions Hj, so exactly when they
are polynomials depends on circumstances.

Also related to the NC Positivstellensatz is the characterization of
polynomials which are actually sums of squares. In this case D is all
tuples of operators and P is empty. For the N∗ case see [H] and for the
N case see [M] which also treats the case when the variables are unitary.

2 Convex Positivity Domains

In this section we specialize our non-commutative Positivstellensatz to
convex domains and find that the structure is very rigid. We also prove
the finite dimensionality assertion of Theorem 1.2. As background we
introduce several properties of positivity domains and two natural notions
of convexity.

2.1 Properties of Positivity Domains

Proposition 2.1 Given a set P of polynomials in Ml(N∗), Ml(N ), or in
Ml(N∗N ). The positivity domain DP has the properties that it is closed
with respect to the operations:

1. Restriction to Reducing Subspaces. Suppose X =(X1, . . . , Xg)
is a tuple of operators on Hilbert space H and X ∈ DP . If K is a
subspace of H which is invariant for Xj and XT

j for each 1 ≤ j ≤ d,
then the tuple of operators V T XV = (V T X1V, . . . , V T XgV ) on K
is in DP , where V is the inclusion isometry from K into H.

2. Direct Sums. Suppose X = (X1, . . . , Xg) is a tuple of operators
on Hilbert space H, and suppose Y = (Y1, . . . , Yg) is a tuple of
operators on Hilbert space K. If both X and Y are in DP , then the
direct sum X ⊕ Y = (X1 ⊕ Y1, . . . , Xg ⊕ Yg), which is a tuple of
operators on H ⊕ K, is in DP .
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3. Unitary Conjugation. Suppose X = (X1, . . . , Xg) is a tuple of
operators on Hilbert space H, K is a Hilbert space, and U : K −→
H is unitary. Then the tuple UT XU = (UT X1U, . . . , UT XgU)
is in DP . More generally, if π : B(H) −→ B(K) is a unital
representation which preserves T and if X ∈ DP , then π(X) =
(π(X1), . . . , π(Xg)) is in DP .

Proof. This is an immediate consequence of

(a) p(X ⊕ Y ) = p(X) ⊕ p(Y );

(b) p(V T XV ) = V T p(X)V if either K ⊂ H is reducing or V : K −→ H
is unitary; and

(c) p(π(X)) = π(p(X)). ••

2.2 Convexity

A positivity domain DP is closed with respect to compressions if
for each tuple X = (X1, . . . , Xg) of operators on Hilbert space H which
lies in DP and isometry V from a Hilbert space K into H, the tuple of
operators V T XV = (V T X1V, . . . , V T XgV ) on K is in DP . Closed with
respect to compression is a stronger property than item (1) of Proposition
2.1 in that V K need not be a reducing subspace for X and certainly is not
enjoyed by all positivity domains. However, convex positivity domains
are closed with respect to compressions.

Lemma 2.2 Every convex domain which is closed with respect to restric-
tion to reducing subspaces and unitary conjugation is closed with respect
to compression. Conversely, a domain D which is closed with respect to
direct sums and compression is convex. In particular, a positivity domain
DP is closed with respect to compressions if and only if it is convex.

Proof. Suppose the convex domain D is closed with respect to restriction
to reducing subspaces and unitary conjugation as described in items (1)
and (3) of Proposition 2.1. To see that D is closed with respect to
compressions, let X ∈ D, a tuple form B(H), and K, a subspace of H,
be given. Let M denote the orthogonal complement of K in H and,
write, with respect to the orthogonal direct sum H = K ⊕ M ,

X =

(
A B
C D

)
.

11



The matrix(
A 0
0 D

)
=

1

2

(
A B
C D

)
+

1

2

(
1 0
0 −1

)(
A B
C D

)(
1 0
0 −1

)

belongs to DP , because DP is convex and because

(
1 0
0 −1

)
is unitary.

Since K reduces

(
A 0
0 D

)
we get that A ∈ DP .

To prove the converse, let tuples X,Y ∈ D acting on the common
Hilbert space H and real numbers a1, a2 satisfying a2

1 + a2
2 = 1 be given.

Let V : H ⊕ H → H denote the isometry

V :=
(

aT
1 aT

2

)
.

Since X,Y ∈ D, their direct sum X ⊕ Y is in D, and hence

a2
1X + a2

2Y = aT
1 Xa1 + aT

2 Y a2 = V T (X ⊕ Y )V

is in D. ••

2.3 Proof of Finite Dimensionality

For a convex positivity domain D Theorem 1.2 gives a bound on the
dimension of Hilbert space H needed in the Positivstellensatz.

Proposition 2.3 Let P be a collection of symmetric polynomials from
M s

` (N∗) ( resp. M s
` (N ), resp. M s

` (N∗N )) and suppose DP is a bounded
convex positivity domain. If q is a symmetric Ml(N∗)-valued polynomial
of degree d and if q /∈ CP , then there exists a Hilbert space H of di-
mension at most `

∑d
0(2g)n, a non-zero vector γ ∈ H, and a tuple X =

(X1, . . . , Xg) of operators on H such that X ∈ DP , but 〈q(X)γ, γ〉 ≤ 0.

Proof. From the Positivstellensatz, there exists a tuple Z = (Z1, . . . , Zg)
acting on a Hilbert space H and a non-zero vector γ = ⊕γj ∈ ⊕`

1H such
that 〈q(Z)γ, γ〉 ≤ 0. Here q ∈ Ml(N∗) and has degree d. Let

Kd = span{Zwγj : w is a word of length at most d, j = 1, · · · , `} ⊂ H.

Then K has dimension at most equal to the total number of words
w of length at most d times `. Since there are 2g generators for the
words in N∗, we get Kd has dimension at most `

∑d
0(2g)n.

12



If P is the projection of H onto Kd, then

〈q(PZP )γ, γ〉 = 〈q(Z)γ, γ〉 ≤ 0.

On the other hand, convexity implies PZP ∈ DP , since by Lemma 2.2
the domain DP is closed under compression. This proves the theorem by
taking X := PZP . ••

A tighter bound on dimension is immediate for N and N∗N , since
there are fewer words. The bound for N is `

∑d
0 gn, and for N∗N is

2`
∑d

0 gn.

3 Separating CP from Outsiders with a

Linear Functional

In this section a fairly general version of the Hahn-Banach theorem is
used to construct, given q ∈ M s

` (N ) but q /∈ C`
P , a linear functional

λ : M s
` (N ) −→ R such that λ(p) ≥ 0 for p ∈ C`

P , but λ(q) ≤ 0. The
argument depends upon the boundedness of DP .

3.1 Properties of CP for Bounded DP

We first focus on the structure related to boundedness of DP . Recall
bj = C2 − xT

j xj and b denotes the set of polynomials b = {b1, · · · , bg};
likewise b̃ corresponds to b̃j = C2 − xjx

T
j .

Lemma 3.1 If w is a word of length n, then

1. C2n − wT w ∈ C`
{b,b̃} for w in N∗;

2. C2n − wT w ∈ C`
b for w in N ; and

3. C2n − wT w ∈ C`
b for w in N∗N .

Proof. First consider the case of hereditary words w in which case w is
a word in x = {x1, . . . , xg} and wT is a word in xT = {xT

1 , . . . , xT
g }. We

use (C2 − xT
j xj) ⊂ C`

b and argue by induction. Accordingly suppose the
result is true for the word v of length n and consider w = xj0v. We have,

(C2n+2 − wT w) = C2(C2n − vT v) + vT (C2 − xT
j0

xj0)v. (3.1)

13



This implies
(C2n+2 − wT w) ∈ C2(C2n − vT v) + C`

b

which yields the induction step for going from hereditary word v to hered-
itary word w.

When w ∈ N∗ is a word in xj, x
T
k which is not necessarily hereditary

we proceed as before but also consider w = xT
j0

v, and obtain

(C2n+2 − wT w) = C2(C2n − vT v) + vT (C2 − xj0x
T
j0

)v. (3.2)

Combine (3.1) and (3.2 ) to obtain the induction step for going from
words v in N∗ to words w in N∗.

For words in symmetric variables, that is in N , the same argument
prevails. ••

A set A in a vector space V is called absorbing provided that, for
each v ∈ V, there is an t > 0 such that v ∈ tA. Note that if A is
absorbing, then 0 ∈ A and if A is also convex, then for each v ∈ V , there
exists an ε > 0 such that v ∈ tA for t > ε.

Lemma 3.2 Let M denote either M s
` (N∗), M s

` (N∗N ), or M s
` (N ). The

set C`
b − I is absorbing in M . In fact, if p ∈ M , then there exists a real

number t ≥ 0 and an s ∈ C`
b such that p = s − tI.

Proof. We do the hereditary case first, since the calculations involved
include the calculations for the other cases. For the hereditary case, let
g, h ∈ R` and v, w ∈ Fg be given. Choose d so that |w|, |v| ≤ d, where
|w| denotes the length of the word w, and assume that C ≥ 1 so that
C2d ≥ C2|w| and C2d ≥ C2|v|. We have,

ghT wT v + hgT vT w

= (gT w + hT v)T (gT w + hT v) − ggT vT v − hhT wT w. (3.3)

Observe that

C2d(gT g + hT h)I − ggTvT v − hhT wT w

= ggT (C2d − vT v) + hhT (C2d − wT w) (3.4)

+ C2d(gT gI − ggT )1 + C2d(hT hI − hhT )1

and
(gT w + hT v)T (gT w + hT v) (3.5)

are both in C`
P and

− (ggT vT v + hhT wT w)

= (C2d(gT g + hT h)I − ggT vT v − hhT wT w) − C2d(gT g + hT h). (3.6)

14



Combining (3.3), (3.4), (3.5), (3.6), shows that

ghT wT v + hgT vT w = (poly in C{b}) − tI

for some t ≥ 0. To complete the proof of the lemma in the hereditary
case, observe, if p ( in Ml(N∗N ) ) is a given hereditary polynomial, then
there is a d such that p is a linear combination of terms of the form
ghT wT v + hgT vT w where all the words have length at most d. Thus,
there exists t ≥ 0 and s ∈ C{b} so that p = s − tI. Since s + I ∈ C{b}, we
have p = (s + I) − (t + 1)I and thus, p ∈ (t + 1)(C{b} − I).

The argument for the N case is nearly identical to that given above
for the hereditary case. Simply note that if p ∈ M s

` (N ), then there is a d
such that p is a linear combination of terms of the form ghT wT v+hgT vT w
where v, w ∈ Fg are words of length at most d and where now vT is still
a word in {x1, . . . , xg}, rather than in the variables {xT

1 , . . . , xT
g } as was

the case above.

Finally, for the N∗ case observe that p ∈ M s
` (N∗) is a linear combina-

tion of terms of the form ghT wT v + hgT vT w where v, w ∈ F2g are words
of length at most d, for some d, in the variables {x1, . . . , xg, x

T
1 , . . . , xT

g }.
••

3.2 Separating a Polynomial from CP
Recall the convention for bounded positivity domains set forth in Sec-
tion 1.4. Henceforth when working with bounded positivity domains we
assume b = {b1, . . . , bg} ⊂ P, equivalently P = P̃ .

Now we give the main result of Section 3.

Proposition 3.3 We are given P with a bounded positivity domain DP .
If q is in M s

` (N∗) (resp. M s
` (N ), resp. M s

` (N∗N )), but not in the corre-
sponding C`

P , then there is a non-zero linear functional λ : M s
` (N∗) −→ R,

(resp. λ : M s
` (N ) −→ R, resp. λ : M s

` (N∗N ) −→ R ) such that
λ(C`

P) ≥ 0, λ(q) ≤ 0, and λ(I) > 0. Here I is the polynomial constantly
equal to the ` × ` identity matrix.

Proof. Let M denote M s
` (N∗), M s

` (N ), or M`(N∗N ) as the case may
be and let C`

P denote the corresponding cone. Suppose q /∈ C`
P . Since the

set A = C`
P − I is convex and since it contains C`

b − I, it is absorbing by
Lemma 3.2. Thus A has a Minkowski functional µA : M 7→ R,

µA(p) := inf{t > 0 : p ∈ tA}. (3.7)
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As q − I /∈ A, µA(q − I) ≥ 1. Let L denote the span of q − I in M and
define f : L 7→ R by f(t(q − I)) = t. Verify that f ≤ µA on L so that
by a version (see [R]) of the Hahn-Banach theorem, f extends to a linear
functional F on M satisfying F (p) ≤ µA(p) for p ∈ M . (Note this does
not assume any topology.) In particular, if s ∈ C`

P , then

F (s) − F (q) + 1 = F (s − q + (q − I)) = F (s − I) ≤ µA(s − I) ≤ 1.

Thus, F (s) ≤ F (q). Since s ∈ C`
P and t > 0 implies ts ∈ C`

P , it follows
that tF (s) = F (ts) ≤ F (q) for all t > 0. Thus, F (s) ≤ 0 and F (q) ≥ 0.
Let λ = −F. Then λ(s) ≥ 0 for all s ∈ C`

P and λ(q) ≤ 0.

To see that λ(I) > 0, suppose to the contrary that λ(I) = 0 (since
I ∈ C`

P , λ(I) ≥ 0). If p ∈ C`
P , then, by Lemma 3.2 applied to −p, there

exists t > 0 and s ∈ C`
P such that −p = s − tI. Thus, tI = s + p. Now,

λ(s) and λ(p) are nonnegative, but λ(tI) = 0 and therefore, λ(p) = 0.
Thus, λ(C`

P) = 0. Finally, if p ∈ M , then there exists r, s ∈ C`
P so that

p = r − s and therefore λ(p) = 0, a contradiction to λ(I − q) = 1. ••

4 Representing Linear Functionals

This section is devoted to a representation which will soon be applied to
λ of the previous section.

Proposition 4.1 We are given P with a bounded positivity domain DP .
If λ : M s

` (N∗) −→ R (resp λ : M s
` (N ) −→ R, resp. λ : M s

` (N∗N ) −→ R
) is non-negative on C`

P and λ(I) > 0, then there exists a real Hilbert space
H, a tuple X = (X1, . . . , Xg) of bounded operators (resp. symmetric
operators, resp. operators) on H, and a non-zero vector γ ∈ ⊕`

1H, the
` fold direct sum of H, such that p(X) º 0 for all p ∈ P and for any
symmetric s ∈ M s

` (N∗) (resp s ∈ M s
`×`(N ), resp s ∈ M s

`×`(N∗N )),

〈s(X)γ, γ〉 = λ(s).

Proof for Ml(N∗) Case. Define a positive semi-definite symmetric bilin-
ear form on M1×`(N∗) as follows. Given 1× ` matrix-valued polynomials
s, t with entries in N∗, define

〈s, t〉 =
1

2
λ(tT s + sT t) (4.1)

and verify that 〈s, t〉 is indeed symmetric and bilinear. It is positive
semi-definite as sT s ∈ CP and λ is positive. Let H be the Hilbert space
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formed by moding out 〈·, ·〉-null vectors and forming the completion.
Note H may be infinite dimensional. In what follows r will denote both
r ∈ M1×`(N∗) and its equivalence class [r] ∈ H.

Recall our constant C > 0 such that C2−xT
j xj ∈ CP and C2−xjx

T
j ∈

CP . Since
C2〈s, s〉 − 〈xjs, xjs〉 = λ(sT (C2 − xT

j xj)s)

and since sT (C2 − xT
j xj)s ∈ CP , it follows that multiplication by xj on

M1×`(N∗) defines a bounded operator Xj on H. Likewise

C2〈s, s〉 − 〈xT
j s, xT

j s〉 = λ(sT (C2 − xjx
T
j )s)

implies multiplication by xT
j on M1×`(N∗) defines a bounded operator Yj

on H. Since

〈xjs, t〉 =
1

2
λ(tT xjs + sT xT

j t) =
1

2
λ((xT

j t)T s + sT (xT
j t)) = 〈s, xT

j t〉

we have Yj = XT
j and so the notation XT

j for multiplication by xT
j is

unambiguous.

Now suppose p ∈ CP is m×m and symmetric. We shall be substituting
Xj for xj in p(x) and this forces the substitution XT

j for xT
j in p(x), since

XT
j is the adjoint of XT

j . If r is an m vector where each entry is a 1 × `
matrix-valued polynomial, then

〈p(X)r, r〉 =
∑
a,b

〈pa,b(X)rb, ra〉 = λ(
∑
a,b

rT
a pa,brb) = λ(rT pr) ≥ 0,

where r is also canonically identified with an m×` matrix-valued polyno-
mial and where the inequality results from rT pr ∈ CP . Hence p(X) º 0.

Let γj denote the (equivalence class of the) constant polynomial eT
j ∈

R`, where {e1, . . . , e`} is the standard basis for R`. Note that
∑

γT
j γj =

I. Thus, in view of the hypothesis λ(I) > 0, there is a j0 such that
〈γj0 , γj0〉 = λ(γT

j0
γj0) > 0. Hence the vector γ = ⊕γj is non-zero. Finally,

if s is a symmetric M`-valued polynomial, then

〈s(X)γ, γ〉 = λ(
∑

γT
a sa,bγb) = λ(s)

where the last equality takes into account that s is symmetric and that
(γT

a sa,bγb) is the `× ` matrix with sa,b in the (a, b) entry. This completes
the proof for M s

` (N∗).

Proof for Ml(N ) Case . The construction for the Ml(N ) case is very
similar to that for the Ml(N∗) case. Given 1 × ` matrix-valued polyno-
mials s, t with entries in N , define 〈s, t〉 as in (4.1) and verify that 〈s, t〉
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is indeed symmetric and bilinear. It is positive semi-definite as s2 ∈ CP
and λ is positive on CP . Let H be the Hilbert space formed by moding
out 〈·, ·〉-null vectors and forming the completion. Note H may be in-
finite dimensional. Once again the operator of multiplication by xj on
M1×`(N ) determines a well defined bounded operator Xj on H which is
readily seen to be symmetric. The proof now proceeds as in the N∗ case.

Proof for Hereditary Ml(N∗N ) Case . Now we turn to the hereditary
case. Given 1 × ` matrix-valued polynomials s, t with entries in N (so
s, t contain no transposes and consequently sT r and rT s are hereditary),
define 〈s, t〉 as in (4.1) and verify that 〈s, t〉 is indeed symmetric and
bilinear. It is positive semi-definite as sT s ∈ CP and λ is positive. Let H
be the Hilbert space formed by moding out 〈·, ·〉-null vectors and forming
the completion. As before, multiplication by xj on M1×`(N ) determines
a well define bounded operator on H. In this case it is not true that XT

j

is multiplication by xT
j , as xT

j s is not in N . However, if P is an hereditary
polynomial, P =

∑
Pv,wvT w, X = (X1, . . . , Xg) is a tuple, and γ = ⊕γj

and δ = ⊕δj are vectors, then

〈P (X)γ, δ〉 =
∑

Pv,w〈Xwγ,Xvδ〉

so that it is not actually necessary to have an explicit representation for
XT

j .

From this point the proof is exactly as it was for the Ml(N∗) case,
keeping in mind that all products are hereditary. ••

5 Proof of Theorem 1.2

Let M denote either either M s
` (N∗), M s

` (N ), or M s
` (N∗N ). Suppose

q ∈ M and q /∈ CP . By Proposition 3.3 there is a linear functional
λ : M −→ R such that λ is non-negative on CP , λ(I) > 0, and λ(q) ≤ 0.

By Proposition 4.1, there exists a Hilbert space H, a non-zero vector
γ in ⊕`

1H and a tuple of operators X = (X1, . . . , Xg) on H such that
p(X) º 0 for all p ∈ P and for each symmetric Ml-valued polynomial
s, we have 〈s(X)γ, γ〉 = λ(s). In particular, substituting q for s gives,
〈q(X)γ, γ〉 = λ(q) ≤ 0. Since γ is non-zero, it follows that there is an
X ∈ DP such that q(X) is not strictly positive definite and this proves
the contrapositive of Theorem 1.2.

18



6 No NC Real Nullstellensatz

The Real Nullstellensatz for commutative polynomials, cf. Corollary
4.1.8 to Theorem 4.1.4 [BCR], says that if p and q are polynomials on R
satisfying

p(x) = 0 implies q(x) = 0,

then there is an integer m and a polynomial S which is a sum of squares
such that q2m + S lies in the ideal generated by p. This paper has fo-
cused on non-commutative polynomials in x and xT . In this section we
show that a rather weak non-commutative Real Nullstellensatz for such
polynomials is false. This is a bit of a surprise, since in non-commutative
situations analyzed so far, for example, sums of squares [H] [M] [MP]
the non-commutative case is better behaved than the commutative case.
Also there is a strong Nullstellensatz for polynomials in non-commutative
variables x without transposes, whose proof was generously provided to
us by George Bergman. Details are in subsection 6.2.

As a summary we compare the NC situation to a standard commuta-
tive version of the Real Positivstellensatz in Corollary 4.4.3 (i) (ii) (iii)in
[BCR]. The counter example below refutes a natural non-commutative
extension of (i) and similarly (ii). While Theorem 1.2 is an NC variant
on (iii).

6.1 Polynomials in x and xT

One possible weak version of a non-commutative Real Nullstellensatz
goes like this. Given p and q symmetric NC polynomials from N∗, if for
any tuple X = (X1, . . . , Xg) acting on the Hilbert space H and vector
v ∈ H the condition p(X)v = 0 implies q(X)v = 0, does it follow that

q2m + S = pr + rT p

for some positive integer m, polynomial r ∈ N∗, and S a sum of squares
so that S =

∑
rT
j rj for rj ∈ N∗?

The following example shows this is false.

Example 6.1 Let p = (xT x + xxT )2 and q = x + xT where x is a single
variable, that is, g = 1. Then p(X)v = 0 implies q(X)v = 0; however,
there does not exist a positive integer m and r, rj ∈ N∗ so that

q2m +
∑

rT
j rj = rT p + pr. (6.1)

Moreover, we can modify the example to add the condition p(X) is posi-
tive semidefinite implies q(X) is positive semidefinite and still not obtain
this representation.
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Proof. Since A := XXT + XT X is self-adjoint, A2v = 0 if and only
if Av = 0. It now follows that if p(X)v = 0, then Xv = 0 = XT v and
therefore q(X)v = 0.

For λ ∈ R, let

X = X(λ) =


0 λ 0

0 0 1
0 0 0




viewed as an operator on R3 and let v = e1, where {e1, e2, e3} is the
standard basis for R3.

We begin by calculating the first component of even powers of the
matrix q(X). Let Q = q(X)2 and verify,

Q =


λ2 0 λ

0 1 + λ2 0
λ 0 1


 . (6.2)

For each positive integer m there exist a polynomial qm so that

Qme1 =


λ2(1 + λqm(λ))

0
λ(1 + λqm(λ))


 (6.3)

which we now establish by an induction argument. In the case m = 1,
from equation (6.2), it is evident that q1 = 0. Now suppose equation
(6.3) holds for m. Then, computation of QQme1 shows that equation
(6.3) holds for m + 1 with qm+1 = λ(qm + λ + λqm). Thus, for any m,

lim
λ→0

1

λ2
< Qme1, e1 >= lim

λ→0
(1 + λqm(λ)) = 1. (6.4)

Now we look at p and get

p(X) =


λ4 0 0

0 (1 + λ2)2 0
0 0 1


 .

Thus

lim
λ→0

1

λ2

(
< r(X)T p(X)e1, e1 > + < p(X)r(X)e1, e1 >

)
= 0.

If the representation of equation (6.1) holds, then apply < · e1, e1 >
to both sides and take λ to 0. We just saw that the right side is 0, so the
left side is 0, which because

<
∑

rj(X)T rj(X)e1, e1 > ≥ 0
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forces

lim
λ→0

1

λ2
< Qme1, e1 > ≤ 0

a contradiction to equation (6.4). Hence the representation of equation
(6.1) does not hold.

The last sentence claimed in the example is true when we use the
same polynomial p and replace q with q2. ••

6.2 The Transpose Free Nullstellensatz

Now we look at the case where p and q are polynomials purely in x and
the ”matrix zero set” of q contains that of p. This gives a satisfying result
conjectured by the authors and proved by George Bergman.

Theorem 6.2 Fix a finite collection P of polynomials in non-commuting
variables {x1, . . . , xg} and let q be a given polynomial in {x1, . . . , xg}. Let
d denote the maximum of the deg(q) and {deg(p) : p ∈ P}. There exists
a real Hilbert space H of dimension

∑d
j=0 gj, such that, if

q(X)v = 0

whenever X = (X1, . . . , Xg) is a tuple of operators on H, v ∈ H, and

p(X)v = 0 for all p ∈ P,

then q is in the left ideal generated by P.

We sketch a slight variant of George Bergman’s proof.

Proof. Let P denote the R algebra of polynomials in the non-
commuting variables {x1, . . . , xg} and let I denote the left ideal gen-
erated by P . Define Xj on the vector space P/I by Xj[p] = [xjp], where
[p] denotes the equivalence class of p ∈ P in the quotient P/I. Thus, Xj

is determined by the left regular representation. If P/I is finite dimen-
sional, then X = (X1, . . . , Xg) can be viewed as a tuple of matrices and
we have, for p ∈ P ,

p(X)[1] = [p].

In particular, if p ∈ P ⊂ I, then p(X)[1] = 0. Hence, if we assume that
p(X)v = 0 for all p ∈ P with X a tuple acting on a Hilbert space of
dimension at least as large as the dimension of P/I, then 0 = q(X)[1] =
[q] and therefore q ∈ I. Minus the precise statement about the dimension
of H this establishes the result when P/I is finite dimensional.
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For the general case, let V denote the vector space

{[p] : p ∈ P, deg(p) ≤ d}.
Note that the dimension of V is at most

∑d
j=0 gj. Let W denote the

subspace {[p] : p ∈ P, deg(p) < d} of V and choose a basis {f1, . . . , fm}
for W . Extend this basis to a basis {f1, . . . , fm, fm+1, . . . , fn+k} for V .
There exists polynomials r1, . . . , rm of degree at most d− 1 so that f` =
[r`]. For 1 ≤ j ≤ g, define Xj[r`] = [xjr`] for 1 ≤ ` ≤ m and Xjfm+` = 0
for 1 ≤ ` ≤ k. If p has degree at most d− 1, then X`[p] = [x`p]. Thus, if
p has degree at most d, then p(X)[1] = [p]. The proof now proceeds just
as in the previous paragraph. ••
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