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Abstract. This paper presents a theory of noncommutative functions which
results in an algorithm for determining where they are “matrix convex”. Of
independent interest is a theory of noncommutative quadratic functions and
the resulting algorithm which calculates the region where they are “matrix
positive”. This is accomplished via a theorem (a type of Positivstellensatz)
on writing noncommutative quadratic functions with noncommutative ratio-
nal coefficients as a weighted sum of squares. Furthermore the paper gives
an LDU algorithm for matrices with noncommutative entries and conditions
guaranteeing that the decomposition is successful.

The motivation for the paper comes from systems engineering. Inequal-
ities, involving polynomials in matrices and their inverses, and associated
optimization problems have become very important in engineering. When
these polynomials are “matrix convex” interior point methods apply directly.
A difficulty is that often an engineering problem presents a matrix polyno-
mial whose convexity takes considerable skill, time, and luck to determine.
Typically this is done by looking at a formula and recognizing “complicated
patterns involving Schur complements”; a tricky hit or miss procedure. Cer-
tainly computer assistance in determining convexity would be valuable. This
paper, in addition to theory, describes a symbolic algorithm and software
which represent a beginning along these lines.

The algorithms described here have been implemented under Mathemat-
ica and the noncommutative algebra package NCAlgebra. Examples presented
in this article illustrate its use.
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1. Introduction

In the last few years, the approaches that have been proposed in the field of op-
timization and control theory based on linear matrix inequalities and semidefinite
programming have become very important and promising, since the same frame-
work can be used for a large set of problems ([SIG97, BEGFB94, EGN99, Roc97,
SI95]). Matrix inequalities provide a nice set up for many engineering and related
problems, and if they are convex the optimization problem is well behaved and
interior point methods provide efficient algorithms ([NN94, AHO98, VB96]) which
are effective on moderate sized problems. In practice, many of the problems in
engineering and optimization present matrix valued functions that take a large
effort to determine their convexity.

1.1. The Idea Behind Our Algorithm

This paper provides a computer algebra algorithm that can be used to find the
domain G of convexity of a noncommutative rational function Γ. This algorithm
produces sufficient, and with some weak hypotheses, necessary conditions for con-
vexity.

We now very loosely introduce the idea behind the algorithm even though we
have not set down any formal definitions. Let Γ be the noncommutative rational
function to be analyzed. Say Γ is a function of the noncommutative variables,
A1, . . . , Am, X1, . . . , Xk. The main steps of the algorithm are:

1. The second directional derivative with respect to X1, . . . , Xk, the Hessian
HΓ of the function Γ, is computed.

2. As the Hessian is always a quadratic function of the update directions, it
can be associated with a symmetric matrix MHΓ with noncommutative
entries.

3. The noncommutative LDLT factorization is applied to the coefficient ma-
trix MHΓ.

4. And finally specifying positivity of the resulting diagonal1 matrix D(A1,
. . . , Am, X1, . . . , Xk) gives inequalities describing a region G of variables
on which Γ is matrix convex.

While all this is extremely straightforward in the case where Γ is a conven-
tional commutative function, non-commutativity imposes rather interesting com-
plications. In particular proving that the largest “symbolic inequality domain” on
which Γ is “matrix convex” requires a substantial proof, mixing both linear algebra
and algebraic representation type arguments.

The implementation of the algorithm has been done completely in NCAl-
gebra, a noncommutative algebra package that runs under Mathematica. This
package with our additions provides a large number of useful commands and func-
tions for symbolic computation. It can be downloaded from http://math.ucsd.

1If D is not diagonal, it contains 2× 2 blocks which are never positive definite. See Section 4.
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edu/∼ncalg. As an example, the first and second directional derivatives of non-
commutative rational functions, and a noncommutative LDU decomposition are
easily computed with NCAlgebra.

1.2. The Theory: Positivity vs Weighted Sums of Squares

To give an idea of what type of mathematics is involved, in proving that our
algorithm gives the “largest” domain of convexity, we recall the classic Hilbert
17th problem. The problem is to represent a positive commutative polynomial
as a sum of squares, whenever possible. It is shown in [Hel] that noncommuta-
tive polynomials which are “matrix positive” are always sums of squares; thus
the noncommutative situation behaves more cleanly than the commutative situ-
ation. In this paper we shall be interested in noncommutative rational functions

Q(Z1, . . . , Zv,H1, . . . ,Hk) which are quadratic functions of
→
H = {H1, . . . ,Hk}.

Our concern is describing the region G of
→
Z= {Z1, . . . , Zv} on which Q is “ma-

trix positive” in
→
H. What we show under reasonable hypotheses is that Q has a

weighted sum of squares decomposition

Q(
→
Z,

→
H) :=

r∑
j=1

Φj(
→
Z,

→
H)T Dj(

→
Z)Φj(

→
Z,

→
H)

with Φj(
→
Z,

→
H), Dj(

→
Z) rational and Φj(

→
Z,

→
H) linear in

→
H, such that formal in-

equalities involving the Dj(
→
Z) determine a set

G := {
→
Z : Dj(

→
Z) > 0, j = 1, . . . , r}

on which Q is “matrix positive” in
→
H. Moreover, a certain “closure” of G is the

largest such set. The precise statement of this result is Theorem 8.2 and a weaker
more accessible result is Theorem 3.1.

1.3. The Noncommutative LDU Decomposition

In this paper we describe and then analyze the LDU decomposition for general ma-
trices with noncommutative entries. LDU decompositions of small size or for spe-
cial matrices with noncommutative entries exist scattered through the literature.
In our implementation, invertibility of “pivots” is a major issue. Fortunately, one
finds that after the LDU algorithm is applied to a matrix M , producing M = LDU ,
the “pivots” appear in the diagonal matrix D = diag{D1, . . . , Dr}. Our main LDU
theorem, Theorem 3.3, says that if one is willing to assume that the expressions
Dj are invertible, then the LDU decomposition produced by our algorithm is valid.

1.4. An Example

We introduce our method for finding the region on which a noncommutative func-
tion is convex or concave, with an example of an NCAlgebra command (which
embodies it). While this is a bit unusual, since it uses terms which have not been
formally introduced, we find most people understand the example anyway and
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the example eases the many pages of definitions and constructions that the reader
must endure before getting to the rewards of the method. The command for finding
the region of convexity is

NCConvexityRegion[Function Γ,
→
X ].

When we input a noncommutative rational function Γ(
→
Z) of

→
Z = {A1, . . . ,

Am, X1, . . . , Xk} this command outputs a family of inequalities which determine

a domain G of
→
Z on which Γ is “matrix convex” in

→
X = {X1, . . . , Xk}. This is

illustrated by the next two examples.

Example 1.1. Suppose ones wish to determine the domain of convexity (concavity)

with respect to X, Y of the following function on matrices
→
Z = {A,B,R, X, Y }:

F (
→
Z) = −(Y + AT XB)(R + BT XB)−1(Y + BT XA) + AT XA,

where R = RT , X = XT and Y = Y T . We treat A,B, R,X, Y symbolically as
noncommutative indeterminates and apply the command NCConvexityRegion[F ,
{X, Y }] which outputs the list

{−2 (R + BT XB)−1, 0, 0, 0}.

From this output, we conclude that whenever A, B, R, X, and Y are matrices
of compatible dimension, the function F is “matrix concave” in X, Y on the domain
G given by

G := {(X, Y ) : (R + BT XB)−1 > 0}.

The command NCConvexityRegion also has an important feature which for
this problem assures us that the “closure” of G, in a certain sense, is the “biggest
domain of matrix concavity” for F . �

Example 1.2. Let X = XT and Y = Y T , and define the function F as

F (X, Y ) = (X − Y −1)−1.

The output of NCConvexityRegion[F , {X, Y }] is

{(X − Y −1)−1, Y −1, 0}.

Thus the function F is “matrix convex” on the region

G := {(X, Y ) : Y −1 > 0 and (X − Y −1)−1 > 0},

whenever the symbolic elements X and Y are substituted by any matrices of
compatible dimension. Of course G is the same as {(X, Y ) : Y > 0 and X−Y −1 >
0}. Also in this example our algorithm guarantees that the “closure” of G in a
certain sense is the “biggest domain of matrix convexity” of F . �
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1.5. Notation

In order to make an expression symmetric the operator sym, defined as sym[M ] =
M +MT , is used. The operator (·)−1 and (·)T means the inverse and the transpose
respectively. The arrow over a variable is used to indicate that the variable is a

list of elements
→
X = {X1, . . . , Xk}. If

→
X contains only one indeterminate, then the

notation is
→
X = X. Roman upper case letters will commonly represent symbolic

elements, and also matrices when it is clear by context. Euler-Script letters are
frequently used to indicate the substitution of noncommutative elements by ma-
trices of compatible dimensions. As an example, Γ(X) means a noncommutative
rational function whose argument X is a symbolic element; on the other hand,
the Euler-Script X is used in Γ(X) when X is a matrix in Rn×m. Another example
appears in the definition of the set Rx

L := {(H L x) : all H ∈ Rn×m} where L is
a noncommutative rational function evaluated on certain matrices, H is a matrix,
and x is a vector. Note that we do not use the Euler-Script font for vectors and
functions. Even if the argument of the function L is a matrix Z rather than an in-
determinate Z, we would have used L(Z) instead of L(Z), and often we abbreviate
L(Z) to L.

1.6. The Layout of the Paper

This paper is split into two parts. Part I of this paper presents our algorithm,
describes its implementation and illustrates its effect on a few examples. We prove
in Part II that the region G of convexity which our algorithm determines is the
largest possible in a certain sense. The results in Part II give a satisfying theory
of “matrix convexity” and of “matrix positivity” of noncommutative quadratic
functions of a certain type. The paper contains a bit of redundancy in order to
maximize the reader base. Throughout the presentation of our algorithm we insert
actual calls to symbolic routines in NCAlgebra, since this makes clear exactly what
can be computed automatically.

Part I should be accessible to readers from many areas, from operator or ma-
trix theory, from symbolic computation, and from engineering who work with ma-
trix inequalities. It is organized as follows. Section 2 gives preliminary definitions
about noncommutative rational functions, convexity, positivity, and derivatives.
Section 3 concerns quadratic noncommutative functions Q. It gives a representa-
tion for Q in terms of a symmetric matrix MQ with noncommutative entries and
it provides an algorithm to compute the LDU decomposition of MQ. Section 4
gives the convexity algorithm that provides the tools for checking the positivity
and presents some examples. Section 5 illustrates how the algorithm when imple-
mented using the noncommutative algebra package NCAlgebra can be used to find
the region of convexity of a noncommutative rational function.

Now we describe the organization of Part II. Section 6 formally states and
proves a theorem to the effect that our Convexity Algorithm produces a domain G
in which the given function is convex. This is easy and informative. Section 7 gives
formal definitions. Section 8 states theorems to the effect that G is the biggest
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domain of convexity in a certain sense. Sections 9 and 10 gives proofs of the
theorems stated in Section 8 and Section 3.

Section A is an appendix which describes a computer algorithm for represent-
ing a noncommutative quadratic function of k variables H1, . . . ,Hk in terms of a
matrix MQ. This matrix plays an important role in determining the positiveness
of a noncommutative rational function.

A brief announcement of the methods in this papers was presented in [CHS00].

Part I. The Algorithm: Its Implementation and Use

We begin with definitions of noncommutative rational functions, of derivatives
of noncommutative functions, and of convexity. Next, the procedure to represent
a quadratic function together with the noncommutative LDU decomposition is
illustrated. Also the idea behind necessary and sufficient conditions for positiv-
ity of noncommutative quadratic functions is introduced. Later in Section 4, our
Convexity Algorithm is described and then, in Section 5, it is illustrated by some
examples.

2. Noncommutative Rational Functions

In this section we present useful definitions and facts about noncommutative ratio-
nal functions. In fact, the development in this section follows [HM97] and [HM98].

2.1. Noncommutative Symmetric Rational Functions

What occurs in practice are functions Γ which are polynomial or rational in non-
commutative variables (often referred to as indeterminates) with coefficient which
are real numbers. Noncommutative rational functions of X are polynomials in
X and in inverses of polynomials in X. Examples of noncommutative symmetric
functions are

Γ(A,B,X) = AX + XAT − 3
4
XBBT X, X = XT ,

Γ(A,D, X, Y ) = XT AX + DY DT + XY XT , Y = Y T and A = AT , (2.1)

and

Γ(A,D,E, X, Y ) = A(I + DXDT )−1AT + E(Y XY T )ET , X = XT . (2.2)

We also assume there is an involution on these rational functions which we
denote superscript T , and which will play the role of transpose later when we
substitute matrices for the indeterminates.

Often we shall think of some indeterminates as knowns and other indeter-
minates as unknowns and be concerned primarily about a function’s properties
with respect to unknowns. For example, in function (2.2) when we are mainly con-
cerned about behavior such as convexity of Γ in X, Y we write Γ(A,D,E, X, Y )
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simply as Γ(X, Y ). We also use
→
Z to abbreviate all indeterminates which appear

in the function, for example, in (2.2) we have
→
Z = {A,D,E, X, Y }. Often we dis-

tinguish knowns
→
A = {A1, . . . , Am} from unknowns

→
X = {X1, . . . , Xk} by writing

→
Z = {

→
A,

→
X}. Throughout this paper, letters near the beginning of the alphabet

denote knowns, while the letters X, Y stand for unknowns.

We call a noncommutative function Γ(
→
A,

→
X) symmetric provided that Γ(

→
A,

→
X)T = Γ(

→
A,

→
X). If all XT

1 , XT
2 , . . . , XT

k in Γ(
→
A,

→
X) appear to the left of every

X1, X2, . . . Xk variable, then the noncommutative function Γ(
→
A,

→
X) is said to be

hereditary2 in
→
X. Our algorithm when restricted to hereditary noncommutative

functions is easier to describe and the theory is easier.

2.2. First Derivatives

Conventional convexity of a function can be characterized by the second derivative
being positive. As we shall see in Section 2.4, this is also the case with “noncom-
mutative convex functions” and so we review a notion of second derivative which
is suitable for symbolic computation. We begin with first derivatives rather than
second derivatives. Later we study convexity tests which are based on derivatives
of Γ and their transposes.

Directional derivatives of noncommutative rational Γ(
→
A,

→
X) with respect to

→
X in the direction

→
H are defined in the usual way

DΓ(
→
X)[

→
H] := lim

t→0

1
t

(
Γ(
→
X + t

→
H)− Γ(

→
X)
)

=
d

dt
Γ(
→
X + t

→
H)
∣∣∣∣
t=0

.

For example, the derivative of Γ in (2.1) with respect to X is

DXΓ(X, Y )[H] = HT AX + XT AH + HY XT + XY HT .

and the derivative of Γ in (2.2) with respect to Y is

DY Γ(X, Y )[K] = E(KXY T + Y XKT )ET .

It is easy to check that derivatives of symmetric noncommutative rational functions
always have the form

DΓ(X)[H] = sym

[
k∑

`=1

A`HB`

]
.

The noncommutative algebra command to generate the directional derivative
of Γ(X, Y ) with respect to X, which is denoted by DXΓ(X, Y )[H], is:

NCAlgebra Command: DirectionalD[Function Γ, X, H].

2Note that in our definition of hereditary the variables Xj can not be constrained to be symmetric.
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2.3. Second Derivatives

To obtain sufficient conditions for optimization we must use the second order terms

of a Taylor expansion of Γ(
→
X + t

→
H) about t = 0 ∈ R:

Γ(
→
X + t

→
H) = Γ(

→
X) + DΓ(

→
X)[

→
H] t +

→
HΓ(

→
X)[

→
H] t2 + . . .

Where the Hessian HΓ of Γ is defined by

HΓ(
→
X)[

→
H] :=

d2

dt2
Γ(
→
X + t

→
H)
∣∣∣
t=0

.

One can easily show that the second derivative of a hereditary symmetric
noncommutative rational function Γ with respect to one variable X has the form

HΓ(X)[H] = sym

[
k∑

`=1

A`H
T B`HC`

]
.

And an analogous more general expression holds for more variables. For example,
the second derivative of Γ in (2.2) with respect to X is

HXΓ(X, Y )[H] =

2 (A(I + DXDT )−1DHDT (I + DXDT )−1DHDT (I + DXDT )−1AT ).

Once the Hessian HΓ(
→
X)[

→
H] is computed, the only variable of interest is

→
H. Thus, for convenience, the variables

→
X and

→
A are gathered in

→
Z , producing a

function Q,

Q(
→
Z)[

→
H] := HΓ(

→
X)[

→
H],

which is quadratic in
→
H. Here of course, a noncommutative polynomial in vari-

ables H1, H2, . . . , Hk is said to be quadratic if each monomial in the polynomial
expression is of order two in the variables H1, H2, . . . , Hk.

We emphasize that for our convexity considerations once the Hessian is com-

puted the fact that
→
X played a special role has no influence.

NCAlgebra Command: Hessian[function Γ, {X1, H1}, . . . , {Xk, Hk}].

2.4. Matrix Convex Functions

There are several (almost equivalent) notions of noncommutative convexity, and
hence we describe two familiar matrix versions. We begin by defining matrix convex
functions as it is the definition used throughout the paper, and later we define
geometrically matrix convex functions as it is a common definition for convexity
although we do not use it.

We shall be focusing on symmetric noncommutative functions Γ of
→
Z defined

on a domain G given by “inequalities” on symmetric noncommutative rational

functions ρj , j = 1, . . . , r. The tuple
→
Z denotes all noncommutative variables
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A,B,C, X, . . . which appear in Γ. (Frequently we just denote
→
Z = {Z1, . . . ,Zv}).

We write the formal expression

Gρ := {
→
Z = {Z1, . . . , Zv} : ρj(

→
Z) ≥ 0, j = 1, . . . , r}

and call such an expression a Symbolic Inequality Domain – SID. An example is

G := {
→
Z = {A,C,X} : −AT X −XA− CT C ≥ 0, X ≥ 0}

and Example 1.1 and 1.2 of the introduction.

Note that the
→
Z are just formal symbols. Since our ultimate interest is matri-

ces we introduceM(Gρ) the set of all matrix tuple
→
Z = {Z1, . . . ,Zv} which satisfy

ρj(
→
Z) is a positive semidefinite matrix for all j = 1, . . . , r.

Denote by M∆ all tuple of matrices
→
Z of size ∆. Denote by M∆(G) the set

of all matrices of size ∆ which are inM(G), that is, M∆(G) =M∆

⋂
M(G). See

section 7.2 for a more complete statement.
Our main definitions of positivity are:

1. A noncommutative rational function Q(
→
Z)[

→
H] which is quadratic in

→
H is

said to be matrix positive quadratic (resp. matrix strictly positive qua-

dratic) on a SID Gρ provided that Q(
→
Z)[

→
H] is a positive semidefinite matrix

(resp. positive definite matrix) whenever tuple of matrices
→
Z inM(Gρ) and

→
H are substituted for

→
Z and

→
H.

2. The function Γ(
→
A,

→
X) is said to be matrix convex with respect to variable

→
X on a SID Gρ provided its Hessian HΓ(

→
X)[

→
H] is a positive semidefinite

matrix for all
→
A,

→
X inM(Gρ) and all

→
H; in other words, when its Hessian

is matrix quadratic.

One Symbolic Inequality Domain Gρ contains another Gρ̃, means that when-

ever tuple of matrices
→
Z of compatible dimension satisfy the inequalities ρ̃j(

→
Z) ≥ 0,

for j = 1, . . . , r̃, then they also satisfy the inequalities ρj(
→
Z) ≥ 0, for j = 1, . . . , r.

In this case we say that

the inequalities ρ(
→
Z) ≥ 0 are weaker than the inequalities ρ̃(

→
Z) ≥ 0.

This condition is the same as M(Gρ̃) ⊆M(Gρ).
While this looks awkward and elaborate, it is in fact the type of “matrix

convexity” which fits reasonably into symbolic processing of the type of matrix
inequalities which engineers use. We present a few examples in Section 5 which
make this definition clear and natural. Also matrix convexity is strongly connected
with usual notions of geometric convexity, as we now discuss.
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A noncommutative rational symmetric function Γ of
→
X = {X1, . . . , Xk} will

be called geometrically matrix convex provided that whenever the noncommuta-

tive variables
→
X are taken to be any matrices of compatible dimension, then for

all scalars 0 ≤ α ≤ 1 we have that

Γ(α
→
X

1

+ (1− α)
→
X

2

) ≤ αΓ(
→
X

1

) + (1− α)Γ(
→
X

2

).

Where
→
X

1

= {X1
1, . . . ,X

1
k} and

→
X

2

= {X2
1, . . . ,X

2
k} are tuples of matrices of com-

patible dimension. The function Γ is strictly geometrically matrix convex if the
inequality is strict for 0 < α < 1. The reverse inequality characterizes geometri-
cally matrix concave.

Both the definitions, matrix convex and geometrically matrix convex, are
equivalent provided that the domain of the function Γ is a convex set; as stated
by the following lemma.

Lemma 2.1. Suppose Γ is a noncommutative rational symmetric function. Then
it is geometrically matrix convex (respectively geometrically matrix concave) on a
convex region Ω of matrices of fixed sizes if and only if

HΓ(
→
X)[

→
H] ≥ 0

(respectively ≤ 0) for all
→
H and

→
X ∈ Ω.

Proof. The proof is given in [HM98] where Ω is all matrices of a given size. It
extends in a straight forward way to Ω which are convex sets. �

3. Noncommutative Quadratic Functions

An example of a simple quadratic function in H = HT and K = KT , where the
arguments appear outside the expression, is

Q[H,K] := HAH + KBK + HCK + KCT H.

Or yet, a more complicated function, in the sense that the argument H appears
inside the monomial is

Q[H] := HAH + GT HBH + HBT HG + GT HDHG.

This function can be written in the form

Q[H] =
(

H GT H
)( A BT

B D

)(
H

HG

)
. (3.1)

This contrasts with the commutative case where (3.1) takes the form

Q[H] = H(A + GT B + BT G + GT DG)H.
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3.1. Representing a Quadratic Function as a Matrix MQ

As suggested by (3.1), a noncommutative quadratic function Q which is heredi-

tary in
→
H = {H1, . . . ,Hk} can be always represented as a product of the form

V [
→
H]T MQV [

→
H], where V [

→
H] is a “vector” with noncommutative entries and MQ

is a symmetric matrix with noncommutative entries. The “vector” V [
→
H] is called

a border vector of the quadratic function Q and the matrix MQ is the coefficient
matrix of the quadratic function Q.

The representation V T MQV for a general hereditary quadratic polynomial

in
→
H = {H,K} is given by Q[H,K] :=

HL1
1

...
HL1

`1

KL2
1

...
KL2

`2



T 

A1,1 · · · A1,`1 A1,`1+1 · · · A1,r

...
...

...
...

AT
1,`1

· · · A`1,`1 A`1,`1+1 · · · A`1,r

AT
1,`1+1 · · · AT

`1,`1+1 A`1+1,`1+1 · · · A`1+1,r

...
...

...
...

AT
1,r · · · AT

`1,r AT
`1+1,r · · · Ar,r





HL1
1

...
HL1

`1

KL2
1

...
KL2

`2


where r = `1+`2. The quantity `1 is the number of times that a monomial of order
two in H appears, and the quantity `2 is the number of times that a monomial
of order two in K appears. The Li

j , j = 1, . . . , `i are called the coefficients of the

border vector. The L1
j corresponding to H are distinct and only one may be the

identity matrix (equivalently for the L2
j corresponding to K). The border vector V

is the vector composed of H, K and Li
j . The coefficient matrix MQ is the one in the

middle with entries As,t, for s, t = 1, . . . , r. See appendix A for an algorithm which
compute this decomposition. This general notation illustrated by the example in
equation (3.1) is:

V [H]T =
(

H GT H
)

and MQ =
(

A BT

B D

)
.

Noncommutative quadratics even though not hereditary have a similar rep-
resentation (which takes much more space to write) for such a quadratic in H,K.
For example, the border vector for a quadratic in H, HT , K, KT has the form

V [H,K]T =
(

(L1
1)

T HT , · · · , (L1
`1)

T HT , (L2
1)

T KT , · · · , (L2
`2)

T KT , (L̃1
1)

T H, · · · ,

(L̃1
˜̀1

)T H, (L̃2
1)

T K, · · · , (L̃2
˜̀2

)T K

)
.

As we shall see from the Example 5.3 in Section 5 the MQ representation
for a quadratic Q may not be unique. However, this non-uniqueness turns out to
produce surprisingly few problems.

We should emphasize that the size of the MQ representation of a noncommu-
tative quadratic functions Q[H1, . . . ,Hk] depends on the particular quadratic and
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not only on the number of arguments k of the quadratic. For example, there are
noncommutative quadratic functions in one variable which have a representation
with MQ a 102 × 102 matrix.

NCAlgebra Command: NCMatrixOfQuadratic[Q, {H1, . . . ,Hk}] generates the list
{left border vector, coefficient matrix, right border vector}.

3.2. Positivity of Noncommutative Quadratic Functions

Determining positiveness of the Hessian, which is a quadratic function in
→
H, is

the key to determining the convexity of a rational function of matrices. A critical

issue is relating Q[
→
H] being a positive semidefinite matrix for all

→
H to the matrix

MQ being positive semidefinite. In this section we roughly summarize our main
result which surprisingly says that under weak hypotheses these two properties
are very close to being equivalent. Later, Theorem 3.3 gives a definitive test for
the positivity of MQ.

Theorem 3.1 (Positivity: Q versus MQ ). Suppose that the noncommutative ratio-

nal function Q(
→
Z)[

→
H] is quadratic in

→
H. Represent Q(

→
Z) with coefficient matrix

M
Q(

→
Z)

and border vector V [
→
H], that is Q(

→
Z)[

→
H] = V [

→
H]T M

Q(
→
Z)

V [
→
H]. Let G de-

note the Symbolic Inequality Domain, based on M
Q(

→
Z)

, given by

G :=
{
→
Z : M

Q(
→
Z)
≥ 0
}

.

Then Q(
→
Z)[

→
H] is a matrix positive quadratic function for each

→
Z ∈ G. Conversely,

assume:

i. the MQ representation of Q has a border vector V [
→
H] with coefficients

Lj
1(
→
Z), . . . , Lj

lj
(
→
Z) for Hj which for each j are linearly independent func-

tions of
→
Z ;

ii. the Symbolic Inequality Domain G is not thin in the sense that the set
M∆(G) is an open set in M∆, provided that the size ∆ is large enough
(see the Openness Property in Section 7.2).

Then the closure of G in a certain topology is the biggest domain on which Q(
→
Z)[

→
H]

is a matrix positive quadratic function.

Proof. The sufficient side, the symmetric matrix MQ being positive semidefi-

nite guarantees that the matrix Q[
→
H] is also positive semidefinite for all tuple

of matrices
→
H, is trivially proved. To see this, write the quadratic function as

Q[H1, . . . ,Hk] := V [H1, . . . ,Hk]T MQV [H1, . . . ,Hk]. Now, let MQ ∈ Rr×r be
positive semidefinite. By definition this implies that xT MQx ≥ 0 for all vectors
x ∈ Rr. So, for any y ∈ Rm, choose x to be x = V [H1, . . . ,Hk]y. Then xT MQx =
yT V [H1, . . . ,Hk]T MQ V [H1, . . . ,Hk]y = yTQ[H1, . . . ,Hk]y ≥ 0.
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The necessity side requires involved proof which takes up Part II of this
paper. We shall illustrate one of its steps in the simple Example 3.1 below. �

Note that linear dependence of a small set of matrices in a high dimensional
space is a rare event. This intuitively speaking is the type of linear dependence in
assumption (i) of Theorem 3.1 required to violate the necessity of MQ being posi-
tive. Indeed, this type of linear dependence has never occurred in any experiments
we have done, although one could probably make up examples where it occurs.

Even though a quadratic Q can have two representations M1
Q and M2

Q meet-
ing the hypotheses in Theorem 3.1, our result implies that M1

Q will be positive
semidefinite if and only if M2

Q is also positive semidefinite.

Example 3.1. Consider the noncommutative quadratic function Q[H] given by

Q[H] := HT BH + GT HT CH + HT CT HG + GT HT AHG. (3.2)

Here, in distinction to most of Part I, we are not forcing H to be symmetric.
This is much easier to analyze than the case where H is symmetric. The border
vector V [H] and the coefficient matrix MQ with noncommutative entries are

V [H]T =
(

HT GT HT
)

and MQ =
(

B CT

C A

)
,

that is, Q[H] has the form

Q[H] = V [H]T MQV [H] =
(

HT GT HT
)( B CT

C A

)(
H

HG

)
.

Now, if in equation (3.2) the elements A, B, C, G, H are replaced by matrices
in Rn×n, then the noncommutative quadratic function Q[H] becomes a matrix
valued function Q[H]. The matrix valued function Q[H] is positive semidefinite if
and only if xTQ[H]x ≥ 0 for all vectors x ∈ Rn and all H ∈ Rn×n. Or equivalently,
the following inequality must hold(

xT HT xT GT HT
)
MQ

(
Hx
HGx

)
≥ 0. (3.3)

Let
yT :=

(
xT HT xT GT HT

)
. (3.4)

Then (3.3) is equivalent to yT MQ y ≥ 0. Now it suffices to prove that all vectors
of the form y span R2n.

Suppose for a given x, with n ≥ 2, the vectors x and Gx are linearly inde-

pendent. Let y =
(

v1

v2

)
be any vector in R2n, then we can choose H ∈ Rn×n with

the property that v1 = Hx and v2 = HGx. It is clear that vectors of the form

Rx :=
{(

Hx
HGx

)
: for all H

}
is all R2n as required. Thus we are finished unless for all x the vectors x and Gx are
linearly dependent. That is for all x, λ1(x)x + λ2(x)Gx = 0 for nonzero λ1(x) and
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λ2(x). Note λ2(x) 6= 0, unless x = 0. Set τ(x) := λ1(x)
λ2(x) , then the linear dependence

becomes τ(x)x + Gx = 0. This says that every vector x is an eigenvector of G,
which implies that G = λI for some constant λ. This fact can be verified from the
Jordan form G = M−1JM via τ(x)Mx + JMx = 0, for all x. Thus the set of all y
satisfying (3.4) is all of R2n unless τI + G = 0 for some τ .

Conversely, if G = λI, then the set of y of the form (3.4) is not all of R2n

and has an orthogonal complement R⊥. The function Q can be positive without
rT MQr being positive on vectors r ∈ R⊥. �

Clearly the method used in the proof above to show that Rx is all of R2n is
very special. Part II of this paper uses a very different method (there are several
parts to this more general proof). In a very vague sense, the main idea behind
the proof is that if Rx is not all of R2n, then the coefficients Li

j of the border
vector form a set of linearly dependent functions. One consequence of this linear
dependence property, which is of independent interest, is presented in the following
corollary of Theorem 10.10 from Part II.

Corollary 3.2 (Corollary 10.11). Let L1(
→
Z), . . . , L`(

→
Z) be noncommutative rational

functions of
→
Z = {Z1, . . . , Zv}. For each vector x, suppose that the vectors L1(

→
Z)x,

. . . , L`(
→
Z)x are linearly dependent whenever matrices Zj of compatible dimension

are substituted for Zj for all size ∆ bigger than some ∆0. Then there exist real
numbers λj for j = 1, . . . , ` such that∑̀

j=1

λjLj(
→
Z) = 0,

that is, the functions Lj(
→
Z) are linearly dependent.

We mention some basic work on positivity of commutative polynomials (not
just quadratic polynomials) done in [Par00, PW98]. Our algorithm is somewhat
like theirs, in that both use the LDLT decomposition. While positivity of com-
mutative quadratic functions is easily checked, noncommutative quadratics cause
difficulties reminiscent of what happens with non-quadratic higher order commu-
tative polynomials.

3.3. Noncommutative LDU Decomposition

In our approach, the LDU factorization of a matrix with noncommutative entries
is the key tool for determination of the matrix positivity of a quadratic function,
and hence the region of convexity G of noncommutative functions.

The LDU factorization applied to a symmetric matrix M of size r × r with
noncommutative entries provides the decomposition M = LDLT , where the r× r
matrix D is diagonal3 or contains 2 × 2 blocks with zeros on the diagonal, and

3This assumes that at each step of our LDU algorithm a matrix entry called pivot is invertible.

The case where some pivot may not be invertible will be discussed in details in Theorem 3.3.
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the r× r matrix L is lower triangular and normalized so that each diagonal entry
equals the identity. To check the positivity of the symmetric matrix M it suffices
to check that D is purely diagonal and to check the positivity of the entries of
the diagonal matrix D. It is often very useful (sometimes essential) to perform the
LDU decomposition not on a given matrix M but on a matrix PMQ obtained
from M by permutation matrices P , Q. When M is symmetric, we shall choose
Q = PT so as to obtain PMPT = LDLT , or equivalently M = PT LDLT P .

References on LDU decomposition of matrices with commutative entries are
[HJ96, GL83]. The LDU decomposition for noncommutative 2 × 2 matrices is
standard and appears in many places. We do not know a reference on the general
r×r case. However, as we shall see its properties are much like the well understood
commuting case. Note that at the kth {k := 0, . . . , r−2} step of the process above,
one can choose (r− k)! permutations. The noncommutative LDLT decomposition
(as implemented in NCAlgebra) is briefly presented here.

Let a symmetric 2 × 2 matrix with noncommutative entries be given by

M =
(

A BT

B C

)
with A and C symmetric elements. Then M has the following

LDLT decomposition

M = LDLT =
(

I 0
BA−1 I

)(
A 0
0 C −BA−1BT

)(
I A−1BT

0 I

)
, (3.5)

provided that the noncommutative element A is invertible. Our computer algo-
rithm automatically assumes invertibility when it is needed. If the permutation

P =
(

0 I
I 0

)
is applied to both sides of M producing

PMPT =
(

C B
BT A

)
,

the decomposition is

PMPT = LDLT =
(

I 0
BT C−1 I

)(
C 0
0 A−BT C−1B

)(
I C−1B
0 I

)
. (3.6)

Note that matrix D in the two decompositions (3.5) and (3.6) above has the
classical Schur complements as its main ingredients.

Now we sketch the computer algebra algorithm for noncommutative sym-
metric matrices of size r × r. Suppose that matrix M has r × r noncommutative
entries. Then M can be always partitioned as

M =
(

A11 BT

B C

)
(3.7)

with C a matrix of size (r − 1)× (r − 1) and B a matrix of size (r − 1)× 1 with
noncommutative entries. Now apply the 2× 2 LDLT decomposition as in (3.5) to



16 Juan F. Camino, J. W. Helton, Robert E. Skelton, and Jieping Ye IEOT

get (
I 0

BA−1
11 I

)(
A11 0
0 C−BA−1

11 BT

)(
I A−1

11 BT

0 I

)
.

In our symbolic algorithm we assume that if A11 is not 0, then it has an inverse
denoted A−1

11 . We call A11 the pivot for this step of the algorithm. At the next step
the r − 1 × r − 1 matrix C − BA−1

11 BT with noncommutative entries, called the
residual matrix, can also be factored as L̂D̂L̂T using a partition form analogous
to (3.7). In that case M takes the form

M =
(

I 0
BA−1

11 L̂

)(
A11 0
0 D̂

)(
I A−1

11 BT

0 L̂T

)
.

The procedure continues until the residual matrix has size 1× 1 (in which case we
are finished) or the diagonal entry on which we need to pivot is 0. In the later case
we find a non-zero diagonal entry Akk and apply a permutation P from right and
left to move this diagonal entry Akk to the pivot4 position. Then we proceed as
before. This procedure with permutations stops when the residual matrix R has
size 1× 1 or all diagonal entries of the residual matrix R of size greater than 1 are
identically zero (and no pivot is possible).

The key property of the Noncommutative LDU Algorithm is

Theorem 3.3. Suppose M is a symmetric matrix of size r×r with noncommutative
rational function entries. The possibly permuted LDU algorithm outputs a matrix
D with noncommutative rational entries. Either D is diagonal,

i. in which case, whenever n × n matrices are substituted for the variables
in the function Dj, j = 1, . . . , r in D and produce matrices Dj, which for
j = 1, . . . , r − 1 are invertible, then

each Dj for j = 1, . . . , r is a positive definite (resp. positive
semidefinite) matrix if and only if the rn×rn matrix M resulting
from M is positive definite (resp. positive semidefinite).

or D can be partitioned as D = diag(D̄, R),5 where D̄ is a diagonal matrix with
noncommutative rational entries D̄j, j = 1, . . . , d with d < r − 1, and R is a non-
diagonal matrix of size (r − d)× (r − d). We need to distinguish two situations:

ii. All entries of the matrix R are identically zero, in which case D is actually
diagonal, and the conclusion of case (i) applies.

iii. The off diagonal entries of R are not identically zero, in which case some
matrices substituted for the variables in M produce M which is neither a
positive semidefinite matrix nor a negative semidefinite matrix.

4A appealing way to choose Akk is to observe that each diagonal entry typically will be a rational
function of other entries in the matrix. Thus each Ajj is given by a formula of some length, and

we select Akk to be the nonzero diagonal entry of shortest length. This is a symbolic analog of
the common numerical analysis method of picking the pivot of largest size.
5diag(x1, . . . , xr) means a diagonal matrix with entries x1, . . . , xr.
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Proof. Prove (i,ii): Suppose D is diagonal with entries Dj , j = 1, . . . , d not identi-
cally zero. Our symbolic algorithm used an expression denoting the inverse of each
pivot. Note that the pivots used in the algorithm (and assumed invertible) are
exactly the diagonal elements Dj , for j = 1, . . . ,min(d, r − 1). Thus our symbolic
formulas are valid when matrices are substituted in, provided that the resulting
matrix diagonal entries Dj for j = 1, . . . ,min(d, r−1), are invertible. Thus Dj , for
j = 1, . . . , d, positive semidefinite (resp. for j = 1, . . . , r, each Dj a positive definite
matrix) implies that M is positive semidefinite (resp. positive definite). Conversely,
if M is positive semidefinite (resp. positive definite) the Dj , for j = 1, . . . , d, are
positive semidefinite (resp. for j = 1, . . . , r, each Dj is positive definite) since L is
invertible.

Now we prove (iii): If n × n matrices of any size n are substituted for the
variables in M and in R the resulting symmetric residual matrix R has block
diagonal entries equal to the n × n zero matrix, which implies that R has trace
0, which implies R has some positive and some negative eigenvalues. Thus R and
consequently M can not be either a positive semidefinite matrix or a negative
semidefinite matrix. �

While we have presented only enough of the LDLT decomposition for non-
commutative symmetric matrices to determine positivity, in fact the NCAlgebra
program can do more. If the user chooses a certain option, NCAlgebra picks a non
zero 2×2 block in R and pivots on it. This procedure combined with permutations
when needed, ultimately produces a center matrix D which is block diagonal with
blocks of size 1× 1 or 2× 2. This exactly generalizes the standard behavior of the
commutative case.

A further feature of our NCAlgebra implementation is that one can retrieve
the sequence of permutations which the algorithm selected. Also one can specify
exactly which permutations are to be used and thereby override the algorithm’s
automatic selection of permutations.

A brief summary of a simplified version of the LDLT algorithm code imple-
mented in the NCAlgebra package follows.

Algorithm 3.4 (Noncommutative LDLT Decomposition).
Set k = 0, Mk = M
while k < r do

Apply desired permutation on Mk

Partition Mk as in (3.7)
LkDkLT

k ←Mk; as in (3.5)
Append: L← Lk; D ← Dk

Let Mk be the residual Ck −BkA−1
k BT

k

k ← k + 1
end

NCAlgebra Command: NCLDUDecomposition[M ], gives a permuted LDU decom-
position of a symmetric M .
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4. Convexity Algorithm

This section presents our main algorithm that provides the region G in which a

given noncommutative symmetric function Γ(
→
Z) is matrix convex in

→
X.

1. Compute symbolically Q(
→
Z)[

→
H] := HΓ(

→
X)[

→
H].

2. AsQ(
→
Z)[

→
H] is second order in

→
H, it can be expressed as V [

→
H]T M

Q(
→
Z)

V [
→
H].

Extract the matrix M
Q(

→
Z)

from this quadratic expression.

3. Apply the noncommutative LDLT decomposition on the matrix M
Q(

→
Z)

,

i.e., M
Q(

→
Z)

= LDLT , to get matrix D with noncommutative entries.

4. Suppose that matrix D can be partitioned as D = diag(D̄, R), where D̄

is a diagonal matrix with entries ρj(
→
Z), for j = 1, . . . , d̃ and R is a non-

diagonal matrix of size (r − d̃)× (r − d̃) containing zeros on the diagonal
or 2× 2 blocks

Ri =

(
0 ρi(

→
Z)

ρi(
→
Z)T 0

)
for i = d̃ + 1, . . . , r. Thus matrix D has the form

D =



ρ1(
→
Z)

. . .

ρd̃(
→
Z)

0 ρd̃+1(
→
Z)

ρd̃+1(
→
Z)T 0

. . .

0 ρr(
→
Z)

ρr(
→
Z)T 0

0



.

5. The Hessian Q(
→
Z)[

→
H] is a positive semidefinite matrix for all

→
H whenever

the tuple of matrices
→
Z = {Z1, . . . , Zv} makes the block diagonal matrix

D positive semidefinite. Thus a set G where Γ(
→
Z) is matrix convex is given

by

G =
{
→
Z : ρj(

→
Z) > 0, j = 1, . . . , d̃

}⋂{
→
Z : ρi(

→
Z) = 0, i = d̃ + 1, . . . , r

}
.

6. Note that, if M
Q(

→
Z)

is a matrix of size r × r, then there are Π = r!(r −
1)! · · · 2 possible LDLT decompositions depending on different permuta-
tions of the matrix M

Q(
→
Z)

. This gives Π different diagonal matrices, D1,
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D2, . . . , DΠ. Up to the assumptions that the NCLDUDecomposition algo-
rithm makes about invertibility, each Di must produce a set G. However,
the inequalities produced by the diagonal Di may be much more elegant
and useful than those produced by the diagonal Dj , even though they
must produce equivalent sets G.

The main difficulty is the fact that there are Π different permutations for
doing the LDLT decomposition. Checking them all consumes computer time and
leaves the user with many choices. In our experience many permutations work to
give the same answer (as will be shown in some examples), so finding a satisfactory
one appears not to be time consuming.

The set G produced by the Convexity Algorithm is the biggest possible in
a certain sense. This is the content of Theorem 3.1 and is described precisely in
Theorem 8.2 of Part II.

5. Examples

In this section we give several examples of the Convexity Algorithm which vary in
complication and which illustrate different points. We begin with a simple example.

Example 5.1. Define the function Γ(X) by

Γ(X) = GT XT AXG + XT BX + GT XT CX + XT CT XG,

where B = BT and A = AT . The Hessian of Γ(X) is given by

HΓ(X)[H] = 2(HT BH + HT CT HG + GT HT AHG + GT HT CH).

Equivalently, this quadratic expression takes the form

HΓ(X)[H] = V [H]T MHΓV [H] = 2(HT , GT HT )
(

B CT

C A

)(
H

HG

)
.

The LDLT decomposition with no permutation applied to MHΓ is(
I 0

CB−1 I

)(
B 0
0 A− CB−1CT

)(
I B−1CT

0 I

)
,

provided that B is invertible6.
Therefore, when B is invertible and G 6= αI, for any scalar α, the necessary

and sufficient conditions for the Hessian to be positive semidefinite are

B > 0 and A− CB−1CT ≥ 0.

6The list returned by NCConvexityRegion is

{B, A− CB−1CT }.
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On the other hand, if A is invertible and a permutation is applied, the LDLT

decomposition is(
I 0

CT A−1 I

)(
A 0
0 B − CT A−1C

)(
I A−1C
0 I

)
.

For this case, the necessary and sufficient conditions are

A > 0 and B − CT A−1C ≥ 0.

�

5.1. NCAlgebra Examples

Henceforth our examples will use notation which is standard in Mathematica and
NCAlgebra. This adds a level of precision and concreteness to the discussion. Also
the notation is quite transparent so it causes little reading difficulty. Sometimes
for better visualization, TEX notation is employed. In the course of illustrating the
Convexity Algorithm we actually show what is inside the command NCConvexi-
tyRegion[].

Before going through the examples, it is convenient to explain the basic no-
tation used in NCAlgebra. The transpose of an element x is denoted by tp[x]. The
identity is denoted 1. The inverse of x is inv[x]. The product of the noncommuta-
tive elements x and y is x ∗ ∗ y. The product of a matrix A with noncommutative
entries by another matrix B is provided by the command MatMult[A,B].

The directional derivative, the Hessian, and the LDU decomposition, were
already introduced. They are provided from: Hessian[f(X, Y ), {X, H}, {Y, K}],
DirectionalD[Γ(X, Y ), {X, H}, {Y , K}], and NCLDUDecomposition[Matrix].

The border vector and the coefficient matrix of a noncommutative quadratic
function is given by NCMatrixOfQuadratic[Q, {H, K}].

The command NCExpand[expression] expands out noncommutative multi-
ply’s inside an algebraic expression. It is the noncommutative generalization of the
Mathematica Expand[ ].

The command NCSimplifyRational[ ], simplifies an expression that includes
polynomials and inverses of polynomials. This works by applying a collection of
simplifying rules to the expression. The call is NCSimplifyRational[expression].
This is in practice an essential command because the expressions obtained by other
commands, such as NCLDUDecomposition[ ], Hessian[ ], etc., usually are not in
their simplified form. For more details about simplification of noncommutative
expressions and symbolic implementation, the reader is referred to [HSW98].

The following examples describe the steps for checking the convexity of a
noncommutative function.

Example 5.2. Let the function Γ be given by

F := XA+AT X− (C1T −X B D1T )(Y −D1D1T )−1(C1−D1BT X)−XBBT X

with X = XT and Y = Y T . The definition of this function F in Mathematica is:
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In[1]:= F := X**A+tp[A]**X - (tp[C1]-X**B**tp[D1])**inv[Y-D1**tp[D1]] **
(C1-D1**tp[B]**X) - X**B**tp[B]**X;

The Hessian of this function is produced by the command
In[2]:= hess = 1/2 NCHessian[F, {X, H}, {Y, K}] // NCSimplifyRational;

The left (right) border vector and the coefficient matrix Mhess are produced
by the command

In[3]:= {LeftBorder, Mhess, RightBorder} = NCMatrixOfQuadratic[hess, H, K];
The matrix Mhess from the command above in TEX format is

Mhess =

 −BBT −BD1T RD1BT −BD1T R BD1T R
−RD1BT −R R
RD1BT R −R

 ,

where we have made the substitution R := (Y − D1D1T )−1. The LDLT decom-
position of Mhess is obtained by the command

In[4]:= {lu, di, up, P} = NCLDUDecomposition[Mhess] // NCSimplifyRational;
From the output of this command we obtain the diagonal matrix di, presented
below in TEX format

di =

−(Y −D1D1T )−1 0 0
0 −BBT 0
0 0 0

 .

The list returned by NCConvexityRegion is the entries of the diagonal matrix di:

{−(Y −D1D1T )−1, −BBT , 0}.

Therefore we may conclude that the function F is concave on the region G := {Y :
Y −D1D1T > 0}.

To determine that Ḡ := {Y : Y − D1D1T ≥ 0} is the biggest domain of
concavity we need to check if the border vector is linearly independent and if the
region G satisfies the Openness Property7. The left border vector “LeftBorder” is

LeftBorder = {H, C1T (Y −D1D1T )−1K, XBD1T (Y −D1D1T )−1K}.

This border vector has linearly independent8 coefficients for each H and K. To see
that, we need to analyze separately the coefficients for the H and K. The H case
is trivial as it appears only once. For the K, we need to show that the functions
L1(Y ) := C1T (Y −D1D1T )−1 and L2(X, Y ) := XBD1T (Y −D1D1T )−1 are lin-
early independent, which is immediate as L1 does not depend on X. We remark
that the output of the LeftBorder is an option in NCConvexityRegion. Also a suf-
ficient though not necessary test for linear independence of the LeftBorder vector
entries is automatically implemented. This test is sketch later in Example 5.3.

7See the Openness Property in Section 7.2 referred to in item (ii) of Theorem 3.1
8A rigorous treatment is given in Definition 7.1, where the block linearly independence property

is defined.
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It is also evident from the strict inequality that for matrices of any compatible
dimension the domainM(G) of matrices is an open set; thus G satisfy the Openness
Property. Therefore we conclude the region Ḡ := {Y : Y − D1D1T ≥ 0} is the
biggest domain of concavity for the function F .

�

An interesting aspect of the next example is that it shows that the MQ
representation may not be unique. This may lead one to conclude that a function
is matrix positive instead of being matrix strictly positive.

Example 5.3. Let x, y, h and k be symmetric noncommutative elements. Let’s
define the noncommutative function F (x, y) to be used in the example as

F (x, y) := (x− y−1)−1.

This function F in Mathematica takes the form:

In[5]:= F := inv[x - inv[y]];

Thus, the Hessian HΓ(x, y)[h, k] of this function is produced by the command

In[6]:= hess = 1/2 NCHessian[F, {x, h}, {y, k}] // NCExpand

inv[x - inv[y]] ** h ** inv[x - inv[y]] ** h ** inv[x - inv[y]] +

inv[x - inv[y]] ** h ** inv[x - inv[y]] ** inv[y] ** k ** inv[y] **

inv[x - inv[y]] + inv[x - inv[y]] ** inv[y] ** k ** inv[y] ** k **

inv[y] ** inv[x - inv[y]] + inv[x - inv[y]] ** inv[y] ** k ** inv[y]

** inv[x - inv[y]] ** h ** inv[x - inv[y]] + inv[x - inv[y]] **

inv[y] ** k ** inv[y] ** inv[x - inv[y]] ** inv[y] ** k ** inv[y] **

inv[x - inv[y]]

The left (right) border vector and the coefficient matrix Mhess are produced
by the command

In[7]:= {LeftBorder, Mhess, RightBorder} = NCMatrixOfQuadratic[hess, {h, k}];
The Hessian of F , denoted by hess, can be rewritten in TEX format as

hess = V T Mhess V,

where V T = LeftBorder is given by

V T =
[

h(x− y−1)−1

ky−1(x− y−1)−1

]T

and the matrix Mhess is given by

Mhess =
[

(x− y−1)−1 (x− y−1)−1y−1

y−1(x− y−1)−1 y−1 + y−1(x− y−1)−1y−1

]
.

The LDLT decomposition of the coefficient matrix Mhess is given by the
command

In[8]:= {lu, di, up, P} = NCLDUDecomposition[Mhess] // NCSimplifyRational;
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From the output of this command we obtain the following factorization for P
Mhess PT = lu di up(

I 0
y−1 I

)(
(x− y−1)−1 0

0 y−1

)(
I y−1

0 I

)
,

where P is a permutation matrix generated automatically by our LDU algorithm.
Finally, the list returned by NCConvexityRegion is the entries of the diagonal
matrix di, i.e.,

{(x− y−1)−1, y−1}.
Therefore the Hessian is matrix strictly positive on the Symbolic Inequality Do-
main

G := {(x, y) : y > 0 and x− y−1 > 0}. (5.1)

Now, Let’s analyze the effect of a different representation for the Hessian.
Where instead of expanding the expression for the Hessian with the command
NCExpand, we apply the command NCSimplifyRational.

In[9]:= hess = 1/2 NCHessian[F, {x, h}, {y, k}] // NCSimplifyRational

k ** h ** inv[x - inv[y]] + inv[x - inv[y]] ** h ** k - k ** x **

inv[x - inv[y]] ** h ** inv[x - inv[y]] + k ** x ** inv[x -

inv[y]] ** inv[y] ** k - inv[x - inv[y]] ** h ** k ** x ** inv[x -

inv[y]] + inv[x - inv[y]] ** h ** inv[x - inv[y]] ** h ** inv[x -

inv[y]] - inv[x - inv[y]] ** h ** inv[x - inv[y]] ** x ** k -

inv[x - inv[y]] ** x ** k ** h ** inv[x - inv[y]] - k ** x **

inv[x - inv[y]] ** inv[y] ** k ** x ** inv[x - inv[y]] + inv[x -

inv[y]] ** h ** inv[x - inv[y]] ** x ** k ** x ** inv[x - inv[y]]

+ inv[x - inv[y]] ** x ** k ** x ** inv[x - inv[y]] ** h ** inv[x

- inv[y]] - inv[x - inv[y]] ** x ** k ** x ** inv[x - inv[y]] **

inv[y] ** k + inv[x - inv[y]] ** x ** k ** x ** inv[x - inv[y]] **

inv[y] ** k ** x ** inv[x - inv[y]]

The LeftBorder (RightBorder) vector and the coefficient matrix Mhess are
produced by the command

In[10]:= {LeftBorder, Mhess, RightBorder} = NCMatrixOfQuadratic[hess, {h, k}];
The Hessian of F can be rewritten in TEX format as hess = V T Mhess V ,

where V T = LeftBorder, given by

V T =
(
k, (x− y−1)−1h, (x− y−1)−1xk

)
,

has linearly independent coefficients, and the matrix Mhess is

Mhess =

 x(x− y−1)−1y−1 1− x(x− y−1)−1 −x(x− y−1)−1y−1

1− (x− y−1)−1x (x− y−1)−1 −1 + (x− y−1)−1x
−x(x− y−1)−1y−1 −1 + x(x− y−1)−1 x(x− y−1)−1y−1

 .

The LDLT decomposition of the coefficient matrix Mhess is given by the command

In[11]:= {lu, di, up, P} = NCLDUDecomposition[Mhess];
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From the output of this command we obtain the following factorization for P
Mhess PT = lu di up I 0 0

y−1 I 0
−y−1 −I I

 (x− y−1)−1 0 0
0 y−1 0
0 0 0

 I y−1 −y−1

0 I −I
0 0 I

 . (5.2)

Finally, the list returned by NCConvexityRegion is

{(x− y−1)−1, y−1, 0}.

Thus the region of convexity for F contains

G := {(x, y) : y > 0 and x− y−1 > 0}. (5.3)

Naturally, this is the same domain that was already determined in (5.1).
To insure that Ḡ := {(x, y) : y > 0 and x − y−1 ≥ 0} contains the biggest

region of convexity of F , we must verify hypotheses (i) and (ii) of Theorem 3.1. The
linear dependence of the coefficients of the border vector states, as in hypothesis (i),
that there exist λ1, λ2 scalars such that λ1I+(x−y−1)−1xλ2 = 0 for all symmetric
x, y. It follows that the coefficients of the border vector are linearly independent.
Now we say a few words about a practical test guaranteeing linear independence
of the border vector, that is guaranteeing hypotheses (i) of Theorem 3.1. This
test is implemented in the command NCConvexityRegion. The idea is to declare
all variables to commute; then compute a linear combination of the coefficient
functions of the border vector which is 0. If the only linear combination is 0, then
this insures that condition (i) holds. This is a conservative test and our example
passes it.

To check condition (ii) of Theorem 3.1, without going into the topology
involved, we just say that because the inequalities in 5.3 are strict, the set of n×n
symmetric matrices which satisfy them (for each large n) contains an open set.
This suffices to satisfy (ii).

We should emphasize the fact that if we conclude that a function is matrix
convex, it could be quite possible that the function actually is matrix “strictly”
convex. This happens because we do not have a way to guarantee a unique repre-
sentation for the matrix MQ. However, the biggest possible domain of convexity
of F , the “closure” of G, is uniquely determined whatever representation is used.

Now we discuss permutations. One can observe that for this example (the 3×3
case) there are 12 LDLT factorizations, related to all possible permutations. We
computed them and found that four permutations provide identical decompositions
to the one in (5.2), four permutations give division9 by 0, and the other four give

9NCLDUDecomposition[ ] contains (automatic) logical rules for permutations to bypass division
by 0. Using this automatic permutation, which is the default, the four decompositions provide

diagonal matrices identical to the one in (5.4).
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the following diagonal matrix:
−x + x(x− y−1)−1x 0 0

0


− y + x−1 − (x− y−1)−1 + yx(x− y−1)−1

+ (x− y−1)−1xy + (x− y−1)−1x(x− y−1)−1

− (x− y−1)−1xyx(x− y−1)−1

 0

0 0 0

 .

(5.4)

�

Example 5.4. Define the function Γ as

F := −X + Y − (Y + AT XB)(R + BT XB)−1(Y + BT XA) + AT XA, (5.5)

with X = XT , Y = Y T and R = RT . In Mathematica it takes the form
In[12]:= F := - X + Y - (Y+tp[A]**X**B) ** inv[R+tp[B]**X**B] **

(Y+tp[B]**X**A) + tp[A]**X**A;
For that function the Hessian and the coefficient matrix are obtained from the
commands:

In[13]:= hess = NCHessian[F, {X,H}, {Y,K}] // NCSimplifyRational;
In[14]:= {LeftBorder, Mhess, RightBorder} = NCMatrixOfQuadratic[hess, H, K];

The LDLT decomposition of Mhess is obtained by
In[15]:= {lu, di, up, P} = NCLDUDecomposition[Mhess] // NCSimplifyRational;

From the output of this command we obtain the diagonal matrix di, presented
below

di =


−2 inv[R + tp[B] ∗ ∗X ∗ ∗B] 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 .

The list returned by NCConvexityRegion is the entries of the diagonal matrix
di above. The corresponding lower triangular matrix lu is

lu =


I 0 0 0
B I 0 0
−B 0 I 0
−B 0 0 I

 .

The coefficient matrix is

Mhess = −2


I
B
−B
−B

 inv[R + tp[B] ∗ ∗X ∗ ∗B]
(

I tp[B] −tp[B] −tp[B]
)
.

Therefore the condition for negative semi-definiteness of Mhess is R+ tp[B] ∗ ∗X ∗
∗B > 0. In which, one concludes that the function F in (5.5) is concave on the
region {X : R + tp[B] ∗ ∗X ∗ ∗B > 0}. �
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Part II. Theoretical Results and Proofs

Earlier in Section 3.2, we saw that positivity of the matrix MQ implies matrix
positivity of the associated quadratic function Q. Also, Example 3.1 in Section 3.1
gives a glimpse of the main linear independence idea behind the converse. Part II
fully addresses the converse; we know that the quadratic function Q is matrix
positive in some sense and we wish to conclude that the matrix MQ is also matrix
positive. Our main results show a substantial class of cases in which this is true.
From these results we obtain under weak hypotheses that our Convexity Algorithm
determines exactly the correct Symbolic Inequality Domain up to its “closure”.

Part II of this paper is a bit redundant with Part I, so that it can be read
without constantly flipping back to Part I.

6. Main Theorem on Sufficient Condition for Convexity

As we now see, it is easy to prove that our Convexity Algorithm in Section 4
produces a Symbolic Inequality Domain G on which a noncommutative symmetric
rational function Γ is matrix convex on G.

Remark 6.1. We do not analyze the full Convexity Algorithm, but we shall treat
only the case where the residual matrix R in the LDU decomposition is identically
zero. The reason we do little work on this case is that matrix D can be partitioned
as

D =



ρ1(
→
Z)

. . .

ρd̃(
→
Z)

0 ρd̃+1(
→
Z)

ρd̃+1(
→
Z)T 0

. . .

0 ρr(
→
Z)

ρr(
→
Z)T 0

0



.

This matrix D is positive semidefinite for
→
Z only if

→
Z makes ρj(

→
Z) ≥ 0 for j =

1, . . . , d̃ and ρi(
→
Z) = 0 for i = d̃ + 1, . . . , r. The constraint ρi(

→
Z) = 0 is very

demanding and typically will force the Symbolic Inequality Domain G to violate
the Openness Property. We have not analyzed this situation carefully, since we
felt confident that it would not cause difficulties in our Convexity Algorithm. The

NCConvexityRegion command lists the domain of convexity G for Γ(
→
Z) as those
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→
Z such that

G =
{
→
Z : ρj(

→
Z) > 0, j = 1, . . . , d̃

}⋂{
→
Z : ρi(

→
Z) = 0, i = d̃ + 1, . . . , r

}
.

The strict inequality ρj(
→
Z) > 0 reflects the fact that the LDU algorithm requires

invertibility of the ρj for j = 1, . . . , d̃.

Theorem 6.2 (Sufficient Condition for Convexity). Let Γ(
→
Z) with

→
Z = {

→
A,

→
X}

be a noncommutative symmetric rational function. The function Γ(
→
Z) may be or

may not be hereditary10. Suppose that the coefficient matrix MHΓ of the Hessian

HΓ(
→
X)[

→
H] has a noncommutative L(

→
Z)D(

→
Z)L(

→
Z)T decomposition with diagonal

D(
→
Z) whose entries are all matrix positive on a Symbolic Inequality Domain11 G.

Then Γ(
→
Z) is matrix convex on G.

Proof. It suffices to prove that the Hessian HΓ(
→
X)[

→
H] is a matrix positive qua-

dratic function for
→
Z = {

→
A,

→
X} in the Symbolic Inequality Domain G. Let HΓ(

→
X)

[
→
H] be in the form V [

→
H]T MHΓV [

→
H], where MHΓ = L(

→
Z)D(

→
Z)L(

→
Z)T . Thus

HΓ(
→
X)[

→
H] = V [

→
H]T L(

→
Z)D(

→
Z)L(

→
Z)T V [

→
H]. (6.1)

Now, substitute for
→
Z and

→
H in (6.1) any tuple of matrices

→
H and

→
Z = {

→
A,

→
X}

inM(G)12 of compatible dimension. Since D(
→
Z) has positive semidefinite entries,

formula (6.1) implies that HΓ(
→
X)[

→
H] is positive semidefinite. This says that Γ(

→
Z)

is matrix convex on G. �

7. Key Definitions

This section presents the definitions essential for the statement of our most general
theorem, which shows that no “bigger” Symbolic Inequality Domain than the G
produced by our Convexity Algorithm yields a function Γ which is matrix convex
on G. We start with a simple illustrative case and then we present the general case.

7.1. Definitions of Linearly Dependent Functions and Borders

To make sure there is no confusion in understanding our results and discussion of
borders we include notational discussion which looks at the border of a quadratic
function Q carefully.

10Defined in Section 2.1, Part I.
11Defined in Section 2.4, Part I.
12Defined in Section 2.4, Part I.
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7.1.1. The Basic Idea Now we illustrate what we mean by linearly independent
border vector. For simplicity of exposition, the hereditary function Q is limited to

be quadratic in two noncommutative variables H1 and H2 (
→
H := {H1,H2}). In

the next section, we will extend the idea to the case of several variables. Let the

hereditary quadratic function Q(
→
Z)[

→
H] take the form

Q(
→
Z)[

→
H] =

`1∑
s=1

`1∑
t=1

L1
s
T
(
→
Z)HT

1 As,t(
→
Z)H1L

1
t (
→
Z)

+ sym

`1∑
s=1

`2∑
t=1

L1
s
T
(
→
Z)HT

1 As,t+`1(
→
Z)H2L

2
t (
→
Z)

+
`2∑

s=1

`2∑
t=1

L2
s
T
(
→
Z)HT

2 As+`1, t+`1(
→
Z)H2L

2
t (
→
Z).

Where each Li
j(
→
Z) is a rational function not necessarily distinct; may even be the

identity matrix. The quantity `i is the number of times that the monomial of order
two in Hi appears. For the case above, the border of the matrix valued function

Q(
→
Z)[

→
H] has the form

V (
→
Z)[

→
H] :=



H1L
1
1(
→
Z)

H1L
1
2(
→
Z)

...

H1L
1
`1

(
→
Z)

H2L
2
1(
→
Z)

...

H2L
2
`2

(
→
Z)


. (7.1)

In this border, the H1 and H2 parts operate independently, so we shall consider
separately the polynomials, which are the coefficients of H1 and H2:

→
L

1

(
→
Z) := {L1

1(
→
Z), . . . , L1

`1(
→
Z)} (7.2)

and
→
L

2

(
→
Z) := {L2

1(
→
Z), . . . , L2

`2(
→
Z)}. (7.3)

Definition 7.1 (Linearly Independent Functions Property). For a given i, the non-

commutative rational functions Li
j(
→
Z) for j = 1, . . . , `i are said to be linearly

independent functions if the only scalars λj , such that
`i∑

j=1

λjL
i
j(
→
Z) = 0
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are λ1 = λ2 = · · · = λ`i
= 0. We emphasize that the scalars λj do not depend on

→
Z . If there exists such nonzero scalars, the functions Li

j(
→
Z) are said to be linearly

dependent functions.

As we shall see what is critical for our Convexity Algorithm is when either
→
L

1

(
→
Z) or

→
L

2

(
→
Z) is a linearly dependent set of functions. We say that the border

vector V (
→
Z)[

→
H] in (7.1) has block linearly independent coefficients, if neither the

functions
→
L

1

(
→
Z) in (7.2) nor the functions

→
L

2

(
→
Z) in (7.3) are linearly dependent.

In the next section, we repeat all of these definitions for the most general case.

7.1.2. The General Case In the most general case, the quadratic function

Q(
→
Z)[

→
H] is not constrained to be hereditary. Let’s define

→
H as

→
H := {H−h, . . . ,H−1,H1, . . . ,Hh,Hh+1, . . . ,Hg,Hg+1, . . . ,Hk}, (7.4)

where {Hj}kj=g+1 are constrained to be symmetric and Hj = HT
−j , for j = 1, . . . , h.

That is, we can separate
→
H into three different parts as follows: the first part13

{Hj}hj=−h has the pairwise restriction that H−j = HT
j , for j = 1, . . . , h, the

second part {Hj}gj=h+1 has no restriction, the third part {Hj}hj=g+1 has each Hj

constrained to be symmetric. Let I denote the integers between −h and k except

for 0. This is the index set for the Hj which are the entries of
→
H.

Any noncommutative symmetric quadratic Q(
→
Z)[

→
H] can be put in the form

V (
→
Z)[

→
H]T M

Q(
→
Z)

V (
→
Z)[

→
H], where the border V (

→
Z)[

→
H] has the form

V (
→
Z)[

→
H] :=

 V mix(
→
Z)[

→
H]

V pure(
→
Z)[

→
H]

V sym(
→
Z)[

→
H]

 , (7.5)

13The integer 0 is not included in the index set j = −h, . . . , h of the first part, but for simplicity

of notation we do not make this explicit, since it is clear from context.
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with V mix(
→
Z)[

→
H], V pure(

→
Z)[

→
H], and V sym(

→
Z)[

→
H] defined as follows:

V mix(
→
Z)[

→
H] =



H−hL−h
1 (

→
Z)

...

H−hL−h
`−h

(
→
Z)

...

H−1L
−1
1 (

→
Z)

...

H−1L
−1
`−1

(
→
Z)

H1L
1
1(
→
Z)

...

H1L
1
`1

(
→
Z)

...

HhLh
1 (
→
Z)

...

HhLh
`h

(
→
Z)



V pure(
→
Z)[

→
H] =



Hh+1L
h+1
1 (

→
Z)

...

Hh+1L
h+1
`h+1

(
→
Z)

...

HgL
g
1(
→
Z)

...

HgL
g
`g

(
→
Z)



V sym(
→
Z)[

→
H] =



Hg+1L
g+1
1 (

→
Z)

...

Hg+1L
g+1
`g+1

(
→
Z)

...

HkLk
1(
→
Z)

...

HkLk
`k

(
→
Z)


In order to illustrate the above definitions, we give a simple example of a

quadratic function and its border vector representation. Let the quadratic function

Q(
→
Z)[

→
H] be given by Q(

→
Z)[

→
H] = HT

1 ∗H1+H1∗HT
1 +H2∗HT

2 +HT
3 ∗H3+H4∗H4,

where H1, H2, and H3 are not symmetric and H4 = HT
4 . The symbol ∗ means any

expression that does not contain Hi. For this quadratic, the border vector has the
following structure:

V [
→
H] =



H1

HT
1

}
Mixed

HT
2

H3

}
Pure

H4

}
Symmetric


Note that this representation of Q(

→
Z)[

→
H] might require simple relabeling of

variables. For example, if Q[{H,K}] = HT AH +KBKT , then H1 = H, H2 = KT
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and

V [
→
H] = V pure[

→
H] =

(
H1

H2

)
. (7.6)

Indeed, the representations with only V pure[
→
H] give precisely the hereditary14 Q.

Allowing simple relabeling of variables increases the scope of such representations
to include all cases like those in example (7.6).

Definition 7.2 (Block Linearly Dependent Coefficients). The border V (
→
Z)[

→
H] in

(7.5) has block linearly dependent coefficients if for some i the functions Li
j(
→
Z)

for j = 1, . . . , `i are linearly dependent, otherwise the border vector V (
→
Z)[

→
H] has

block linearly independent coefficients.

The “block” nature of the definition above is because we shall often consider
separately the set

→
L

i

(
→
Z) := {Li

1(
→
Z), . . . , Li

`i
(
→
Z)}

for each i ∈ I.

7.2. Substituting Matrices for Indeterminates

In this section we discuss the substitution of matrices for indeterminates and give

some definitions. Let
→
Z = {Z1, . . . , Zv} be all indeterminates (variables) occurring

in whatever noncommutative rational functions Γ(
→
Z) and constraints G we are

studying. If these indeterminates are replaced by matrices we must be careful to

replace them by tuple of matrices
→
Z := {Z1, . . . ,Zv} of sizes

→
Z

#

:= {m1 × n1, . . . ,mv × nv}

compatible with the function Γ(
→
Z) and the constraints G. Let Cdim denote the set

of all compatible dimensions. A partial order � on Cdim, denoted by
→
Z

#

�
→
Z

a#

,
is given by

{m1 ≥ ma
1 , n1 ≥ na

1 , . . . ,mv ≥ ma
v , nv ≥ na

v},

and if strict inequality holds in every entry we write
→
Z

#

�
→
Z

a#

. Once a size
∆ ∈ Cdim has been selected we let M∆ denote the set of all v tuples of matrices
of size ∆. Moreover, if G is a Symbolic Inequality Domain, then let M(G) (resp.
M∆(G)) denote the set of all matrices meeting the constraints defining G (resp.
and lying inM∆). Often we suppress the subscript ∆ because its presence is clear
from context.

14Note that in our definition of hereditary the variables Hj can not be constrained to be

symmetric.
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Definition 7.3 (Openness Property). The domain G has the Openness Property
provided that there is a size ∆0 in Cdim with the property that when indetermi-
nates are replaced by matrices with size ∆ � ∆0, then the set of matricesM∆(G)
is contained in the closure of the interior ofM∆(G).

8. Theorems on Convexity and Positivity

8.1. Main Result on Convexity: Theorem 8.2

Theorem 8.2, which follows, gives a test which can in fact be implemented with
a noncommutative Gröbner basis algorithm ([Mor86, Mor94, Frö97]). The linear
dependence check is purely algebraic and can be performed automatically by com-
puter (software willing). We have not considered seriously the practicality of the
Openness Property. However, in all the examples we have done, it is obvious that
the set G obtained satisfy it. Now we set down a class of quadratic functions for
which the theory in this paper works. The definition also serves as a reminder of
Theorem 3.3 on LDLT decompositions.

Definition 8.1 (Nice Quadratic on a Symbolic Inequality Domain G). A noncom-

mutative symmetric function Q(
→
Z)[

→
H], which is rational in

→
Z and quadratic in

→
H, can be always put in the form V (

→
Z)[

→
H]T MQ(

→
Z) V (

→
Z)[

→
H] with V (

→
Z)[

→
H] as

in (7.5). Suppose that the coefficient matrix MQ(
→
Z) has a noncommutative L(

→
Z)

D(
→
Z) L(

→
Z)T decomposition (we may have applied some permutation) with D(

→
Z)

a diagonal matrix (no matrix R in Theorem 3.3, unless all entries of the matrix R

are identically zero) having entries Dj(
→
Z), for j = 1, . . . , r − 1, each of which are

zero or invertible matrices whenever tuple of matrices
→
Z of compatible dimension

inM∆(G) for large enough ∆ are substituted for
→
Z , then we call Q(

→
Z)[

→
H] a nice

quadratic.

Theorem 8.2 (A Checkable Necessary and Sufficient Condition for Convexity).

Assumptions: Define
→
Z = {

→
A,

→
X} where Xj may or may not be constrained to be

symmetric. Let Γ(
→
Z) be any noncommutative symmetric rational function, whose

Hessian HΓ(
→
Z)[

→
H] is a nice quadratic, satisfying the following two conditions:

i. the function Γ(
→
Z) is matrix convex for

→
Z on a Symbolic Inequality Domain

G satisfying the Openness Property for some big enough ∆0;

ii. the border vector V (
→
Z)[

→
H] of the Hessian HΓ(

→
Z)[

→
H] has block linearly

independent coefficients.
Conclusion: The following statements are equivalent:

a. when tuple of matrices
→
Z inM∆(G) of compatible dimension ∆ � ∆0 are

substituted into the Hessian HΓ, we obtain HΓ(
→
Z)[

→
H] ≥ 0 for all

→
H.
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b. for all tuple of matrices
→
Z in the closure of M∆(G) the diagonal entries

of the L(
→
Z) D(

→
Z) L(

→
Z)T decomposition are positive semidefinite matrices

(that is D(
→
Z) ≥ 0) provided that D(

→
Z) is defined.

Proof. That (b) implies (a) is easy to prove and follows from Theorem 6.2. That
(a) implies (b) is difficult to prove and follows from:

• the next Theorem 8.3 which applies only to quadratic functions and proves

under appropriate hypotheses that HΓ(
→
Z)[

→
H] ≥ 0 implies MHΓ(

→
Z) ≥ 0

for
→
Z defined as in (a) above;

• and that MHΓ(
→
Z) ≥ 0 implies D(

→
Z) ≥ 0, which is true since MHΓ(

→
Z) =

L(
→
Z)D(

→
Z)L(

→
Z)T with L(

→
Z) an invertible matrix.15

�

8.2. Main Result on Quadratic Functions: Theorem 8.3

This section gives results about quadratic functions. The main result is Theo-

rem 8.3 that concerns positivity of a noncommutative rational function Q(
→
Z)[

→
H]

which is quadratic in
→
H. The statement of this theorem is presented in this section

and its proof is finished in Section 10.

Theorem 8.3 (Main Result on Quadratic Functions).

Assumptions: Let
→
H := {H−h, . . . ,Hk} be defined as in (7.4). Consider a non-

commutative rational function Q(
→
Z)[

→
H] which is a nice quadratic in the variables

→
H on a Symbolic Inequality Domain G. Write Q(

→
Z)[

→
H] in the form Q(

→
Z)[

→
H] =

V (
→
Z)[

→
H]T M

Q(
→
Z)

V (
→
Z)[

→
H]. Suppose that the following two conditions hold:

i. the Symbolic Inequality Domain G satisfies the Openness Property for some
big enough ∆0;

ii. the border vector V (
→
Z)[

→
H] of the quadratic function Q(

→
Z)[

→
H] has block

linearly independent coefficients.
Conclusion: The following statements are equivalent:

a. when tuple of matrices
→
Z inM∆(G) of compatible dimension ∆ � ∆0 are

substituted into Q, we obtain Q(
→
Z)[

→
H] is a positive semidefinite matrix

for each tuple of matrices
→
H;

b. we have M
Q(

→
Z)
≥ 0 for all

→
Z in the closure of M∆(G) on which M

Q(
→
Z)

is defined.

Proof. Clearly (b) implies (a). The hard part is (a) implies (b). The proof of this
result consumes the following Section 9 and is finalized in Section 10. �

15L(
→
Z) is an invertible matrix since it is lower triangular with ones on its diagonal.
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9. Theorems Concerning Quadratic Functions

Before beginning the proof of Theorem 8.3 in earnest, we sketch some of the ideas
for the simplest type of quadratic functions. Section 9, which consist of Section 9.1

and Section 9.2, concerns primarily a matrix valued quadratic function Q[
→
H] of

tuple
→
H of n × n matrices; there is no dependence on symbolic variables or on

variables
→
Z . In Section 9.1, we treat quadratic functions which are hereditary in

the variables
→
H.

Later, in Section 10, we begin to combine the matrix results of Section 9.1

with symbolic variables, and also we study quadratic functions of
→
H which also

depend on
→
Z . We reemphasize that the function Q(

→
Z)[

→
H] is quadratic in

→
H, but

it need not be quadratic in
→
Z .

9.1. Some Ideas of the Proof

This section gives a very special case of Theorem 8.3 in order to illustrate a few
of the ideas involved and expose the readers to easy cases of the notation. This
tutorial proof takes up Section 9.1 and then after that the fully general proof
begins.

The special case we consider is that of a hereditary quadratic function Q[
→
H].

To assume that Q[
→
H] is a hereditary function is equivalent to imposing that

→
H has

the special form
→
H := {Hh+1, . . . ,Hg}, which in our notation says that {Hi}hi=−h

and {Hj}kj=g+1 are missing in
→
H := {H−h, . . . , H−1, H1, . . . , Hh, Hh+1, . . . , Hg,

Hg+1, . . . , Hk}. Note that we are treating a purely quadratic function Q[
→
H], in

other words, Q(
→
Z)[

→
H] has no

→
Z dependence. This special type of Q[

→
H] has the

following representation

Q[
→
H] = V pure[

→
H]T MQV pure[

→
H],

where V pure[
→
H] is defined as follows

V pure[
→
H] =



Hh+1L
h+1
1

...
Hh+1L

h+1
`h+1

...
HgL

g
1

...
HgL

g
`g


, (9.1)

with each Li
j being a fixed matrix, that is, they do not depend on matrices

→
Z.
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The main result of this section, Proposition 9.1, is easy to prove, and serves
as an introduction to the ideas of the proof of the main Theorem 8.3.

Proposition 9.1 (Necessary Condition for Positivity). Let Q[
→
H] be a hereditary

quadratic function of tuple
→
H = {Hj}gj=h+1, where each matrix Hj has dimension

n × n. Also assume that this quadratic has a border vector of the type defined in

(9.1). Suppose that Q[
→
H] is a positive semidefinite matrix for each tuple

→
H, then

either
i. the matrix MQ is positive semidefinite

or
ii. there is an integer d ∈ [h + 1, g] and real valued functions

λj : Rn → R, j = 1, . . . , `d,

such that
`d∑

j=1

λj(x)Ld
jx = 0, for x ∈ Rn.

We now define some sets that will be used throughout the paper, and es-
pecially in the proof of Proposition 9.1 above. Let each Li

j be fixed matrices of
dimension n× n. For a given x ∈ Rn, define the set Rpure,x

→
L

i to be

Rpure,x
→
L

i :=


 HiL

i
1x

...
HiL

i
`i

x

 : all Hi ∈ Rn×n

 , (9.2)

and the set Rpure
→
L

i to be

Rpure
→
L

i :=
{
Rpure,x
→
L

i : all x ∈ Rn

}
.

Define also the set S→
L

to be

S→
L

:=


Rpure
→
L

h+1

...
Rpure
→
L

g

 =





Hh+1L
h+1
1 x

...
Hh+1L

h+1
`h+1

x
...

HgL
g
1x

...
HgL

g
`g

x


: all Hh+1, . . . , Hg ∈ Rn×n

and all x ∈ Rn


.

Proof of Proposition 9.1. The proof of this proposition follows immediately from
the fact that if the space S→

L
, defined above fills out the whole space Rn(`h+1+···+`g),

then Lemma 9.2 below applies and part (i) is proved. If the space S→
L

does not fills
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out the whole space Rn(`h+1+···+`g), then for some d ∈ [h + 1, g] the space Rpure
→
L

d

is not all of Rn`d , consequently item (ii) of Proposition 9.3 below holds and part
(ii) is proved. �

Now we present Lemma 9.2 and Proposition 9.3 which were just used in the
proof above.

Lemma 9.2. Let Q[
→
H] be a hereditary quadratic function of tuple

→
H of matrices

of dimension n × n. Also assume that this quadratic has a border vector of the

type defined in (9.1). The function Q[
→
H] is positive semidefinite for all

→
H implies

MQ ≥ 0, provided that the space S→
L

fills out the whole space Rn(`h+1+···+`g).

Proof. Let Q[
→
H] be positive semidefinite. By definition this implies that yTQ[

→
H]y

≥ 0 for all y ∈ Rn(`h+1+···+`g) and all {Hj}gj=h+1 ∈ Rn×n. Therefore yTQ[
→
H]y =

yT V [
→
H]T MQ V [

→
H]y = wT MQw ≥ 0 for all w = V [

→
H]y ∈ Rn(`h+1+···+`g) and all

{Hj}gj=h+1 ∈ Rn×n. Now it suffices to prove that all vectors of the form w equals
Rn(`h+1+···+`g). But this condition is directly satisfied from the assumption that
the space S→

L
fills out the whole space Rn(`h+1+···+`g). �

Proposition 9.3. For a given x ∈ Rn, let Rpure,x
→
L

i be defined as in (9.2). The

following holds:
i. If Rpure,x

→
L

i is all of Rn`i , then Li
1x, Li

2x, . . . , Li
`i

x are linearly independent

vectors.
ii. If Rpure,x

→
L

i is not all of Rn`i , then Li
1x, Li

2x, . . . , Li
`i

x are linearly de-

pendent vectors, and consequently there exist nontrivial scalar functions
λj(x), that may depend on x, such that

λ1(x)Li
1x + λ2(x)Li

2x + · · ·+ λ`i(x)Li
`i

x = 0. (9.3)

An obvious consequence of the above fact is that if Rpure
→
L

i = {Rpure,x
→
L

i :

all x ∈ Rn}, is not all of Rn`i , then for each x, Rpure,x
→
L

i is not all of Rn`i ,

and thus equation (9.3) holds for all x.

Proof. For a given x ∈ Rn, let Rpure,x
→
L

i be all of Rn`i . Suppose Li
1x, Li

2x, . . . , Li
`i

x

are linearly dependent vectors. Without loss of generality, let Li
1x =

∑`i

j=2 λj(x)
Li

jx, where λj(x) are scalar functions. Define sj = HiL
i
jx, then Rpure,x

→
L

i becomes

Rpure,x
→
L

i =




λ2(x)s2 + · · ·+ λs(x)s`i

s2

...
s`i

 : some sj ∈ Rn
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which can not possibly be Rn`i . This fact contradicts our assumption on Rpure,x
→
L

i

being all of Rn`i , thus Li
1x, Li

2x, . . . , Li
`i

x must be a linearly independent set of
vectors.

To prove (ii), suppose for a given x ∈ Rn the vectors Li
1x, Li

2x, . . . , Li
`i

x are
linearly independent. Let

y =

w1

...
w`i


be any vector in Rn`i . Then we can choose Hi ∈ Rn×n with the property that
w1 = HiL

i
1x, w2 = HiL

i
2x, . . . , w`i = HiL

i
`i

x. Thus Rpure,x
→
L

i is all of Rn`i . �

What we have demonstrated is only the beginning of the proof of Theorem 8.3
for a hereditary quadratic function. Next, we must show that the λj do not depend
on x. For the particular case we have been treating, there are several ways to do
this, but they do not all work for the general case of interest. The method we use
later to prove that the λj are independent of x uses the fact that the quadratic

function depends on the variables
→
Z (see Theorem 10.10 in Section 10). Another

difficulty is that the sets analogous to Rpure,x
→
L

i never equal the whole space for the

case where Q is non-hereditary or
→
H contains symmetric elements. Fortunately

these sets have co-dimension which depends only on the dimension of the coefficient
matrix MQ and does not depend on the dimension of the matrices contained in

the tuple
→
Z substituted for

→
Z (See Proposition 9.8). We combine this fact about

co-dimension with the algebraic dependence of the functions Q(
→
Z) and Li

j(
→
Z) on

→
Z to complete the proof of Theorem 8.3 in Section 10.

9.2. The Range of the Border Vector of a Matrix Quadratic Function

Earlier in Section 9.1, a necessary condition for positivity was presented in Propo-
sition 9.3 for a particular type of quadratic function. The key was a linear inde-
pendence property guaranteeing that the space Rpure,x

→
L

i is all Rn`i , that means, the

co-dimension of the space Rpure,x
→
L

i equals zero. Unfortunately, this only character-

izes the unconstrained part (the second part) of
→
H defined in (7.4). Section 9.2

gives similar conditions on the other two parts of
→
H, the pairwise symmetric part

(the first part) and the symmetric part (the third part). General quadratic func-
tions are treated in Proposition 9.4, and the key property is a uniform bound
on certain co-dimensions. Again, as in Section 9.1, we study quadratic functions

Q(
→
Z)[

→
H] with no

→
Z dependence.

First define Rsym,x
→
L

i and Rmix,x
→
L

i to be
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Rsym,x
→
L

i :=


 HiL

i
1x

...
HiL

i
`i

x

 : all Hi = HT
i ∈ Rn×n

 , (9.4)

Rmix,x
→
L

i :=





H−iL
−i
1 x

...
H−iL

−i
`−i

HiL
i
1x

...
HiL

i
`i

x


: all H−i = HT

i ∈ Rn×n


. (9.5)

Define also Rsym
→
L

i and Rmix
→
L

i to be

Rsym
→
L

i :=
{
Rsym,x
→
L

i : all x ∈ Rn

}
,

Rmix
→
L

i :=
{
Rmix,x
→
L

i : all x ∈ Rn

}
.

The following Proposition 9.4 introduces our main results concerning Rsym,x
→
L

i

andRmix,x
→
L

i , and also summarizes similar results concerningRpure,x
→
L

i given in Propo-

sition 9.3.

Proposition 9.4. For a given x ∈ Rn, let Rpure,x
→
L

i , Rsym,x
→
L

i and Rmix,x
→
L

i be defined

as in (9.2) and (9.4-9.5). The following holds:
i. If Rpure,x

→
L

i is all of Rn`i , then Li
1x, Li

2x, . . . , Li
`i

x are linearly independent

vectors.
ii. If Rpure,x

→
L

i is not all of Rn`i (resp. If Rsym,x
→
L

i has co-dimension in Rn`i

greater than `i[`i− 1]/2), then Li
1x, Li

2x, . . . , Li
`i

x are linearly dependent
vectors, and consequently there exist nontrivial scalar functions λj(x), that
may depend on x, such that

λ1(x)Li
1x + λ2(x)Li

2x + · · ·+ λ`i
(x)Li

`i
x = 0. (9.6)

iii. If Rmix,x
→
L

i has co-dimension in Rn(`i+`−i) greater than `i`−i, then either

Li
1x, Li

2x, . . . , Li
`i

x or L−i
1 x, L−i

2 x, . . . , L−i
`−i

x are linearly dependent
vectors, and consequently there exist nontrivial scalar functions λj(x), that
may depend on x, such that either

λ1(x)Li
1x + λ2(x)Li

2x + · · ·+ λ`i(x)Li
`i

x = 0 (9.7)

or

λ1(x)L−i
1 x + λ2(x)L−i

2 x + · · ·+ λ`−i(x)L−i
`−i

x = 0. (9.8)
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Proof. The results concerning Rpure,x
→
L

i were proved in Proposition 9.3.

First we treat the case where the Hi are constrained to be symmetric. If (9.6)
fails, then Li

1x, . . . , Li
`i

x are linearly independent; thus we may use Lemma 9.5
below to obtain that Rsym,x

→
L

i is a space of co-dimension equal to `i(`i − 1)/2. This

contradicts the assumption that Rsym,x
→
L

i has co-dimension in Rn`i greater than

`i(`i − 1)/2. This proves part (ii) of Proposition 9.4.

The proof of part (iii) follows the same line. If both (9.7) and (9.8) fail, then
both Li

1x, . . . , Li
`i

x and L−i
1 x, L−i

2 x, . . . , L−i
`−i

x are linearly independent vectors;

thus Lemma 9.6 below implies that Rmix,x
→
L

i is a space of co-dimension equal to

`i`−i, contradicting the assumption that Rmix,x
→
L

i has co-dimension greater than

`i`−i. This completes the proof of Proposition 9.4. �

Now we present the Lemmas required in the proof of Proposition 9.4. We use
H instead of H to stand for a matrix in Rn×n in Lemma 9.5 and Lemma 9.6. This
makes the rather involved formulas easier to read.

Lemma 9.5. For linearly independent vectors v1, . . . , v` ∈ Rn the space S defined
by

S =


 Hv1

...
Hv`

 : all H = HT ∈ Rn×n


is a subspace in Rn` with co-dimension `(`− 1)/2.

Proof. Define invertible matrices P ∈ Rn×n and Q ∈ R`×` by

(
v1| · · · |v`

)
= P

(
I
0

)
Q,

where I is the identity matrix with dimension ` and
(

v1| · · · |v`

)
denotes the

matrix whose columns are v1, . . . , v`. (Note that the hypotheses of this theorem
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imply n > `.) The dimension of the space S is

dim(S) = dim



 Hv1

...
Hv`

 : all H = HT ∈ Rn×n




= dim
({

H
(

v1| . . . |v`

)
: all H = HT ∈ Rn×n

})
= dim

({
HP

(
I
0

)
Q : all H = HT ∈ Rn×n

})
= dim

({
HP

(
I
0

)
: all H = HT ∈ Rn×n

})
= dim

({
PT HP

(
I
0

)
: all H = HT ∈ Rn×n

})
= dim

({
H̃

(
I
0

)
: all H̃ = H̃T ∈ Rn×n

})
= n`− `(`− 1)/2.

Thus the co-dimension equals `(` − 1)/2. The last step above was a consequence
of the following argument. Partition

H̃ = `
n− `

` n− `(
H11 H12

H21 H22

)
.

Then

dim
({

H̃

(
I
0

)
: for all H̃ = H̃T

})

= dim
({(

H11

H21

)
: for all H11 = HT

11 ∈ R`×`and H21 ∈ R(n−`)×`

})
= dim

({
H11 : for all H11 = HT

11 ∈ R`×`
})

+

dim
({

H21 : for all H21 ∈ R(n−`)×`)
})

= `(`+1)
2 + (n− `)`

= n`− `(`− 1)/2.

�

Lemma 9.6. Suppose that {ui}ri=1 and {vj}sj=1 are two sets of linearly independent
vectors in Rn. (The set {ui, vj}i,j need not consist of linearly independent vectors.)
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Then the space S defined by

S =





Hu1

...
Hur

HT v1

...
HT vs


: for all H ∈ Rn×n


is a subspace in Rn(r+s) with co-dimension rs.

Proof. Define invertible matrices P1 ∈ Rn×n, Q1 ∈ Rr×r, P2 ∈ Rn×n, and Q2 ∈
Rs×s by (

u1| · · · |ur

)
= P1

(
Ir

0

)
Q1,

(
v1| · · · |vs

)
= P2

(
Is

0

)
Q2,

where Ir and Is are the identity matrices with dimension r and s respectively.
(Note that the hypotheses of this theorem imply n > r and n > s.) The dimension
of the space S is

dim(S) = dim







Hu1

...
Hur

HT v1

...
HT vs


: for all H ∈ Rn×n




= dim

({(
H
(

u1| . . . |ur

)
| HT

(
v1| . . . |vs

) )
:

for all H ∈ Rn×n
})

= dim
({(

HP1

(
Ir

0

)
Q1 | HT P2

(
Is

0

)
Q2

)
:

for all H ∈ Rn×n
})

= dim
({(

HP1

(
Ir

0

)
Q1 | HT P2

(
Is

0

)
Q2

)(
Q−1

1 0
0 Q−1

2

)
:

for all H ∈ Rn×n
})

= dim
({(

HP1

(
Ir

0

)
| HT P2

(
Is

0

) )
:

for all H ∈ Rn×n
})
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= dim
({(

PT
2 HP1

(
Ir

0

)
| PT

1 HT P2

(
Is

0

) )
:

for all H ∈ Rn×n
})

= dim
({(

H̃

(
Ir

0

)
| H̃T

(
Is

0

) )
: for all H̃ ∈ Rn×n

})
= n(r + s)− rs.

Thus the co-dimension equals to rs. The last step above follows from the
following argument. Partition (assume r < s)

H̃ =
r

s− r
n− s

r s− r n− s H11 H12 H13

H21 H22 H23

H31 H32 H33

 . (9.9)

Then

dim
({(

H̃

(
Ir

0

) ∣∣∣H̃T

(
Is

0

))
: for all H̃ ∈ Rn×n

})

= dim


 H11 HT

11 HT
21

H21 HT
12 HT

22

H31 HT
13 HT

23

 :

for all H̃ ∈ Rn×n partitioned as in (9.9)
})

= dim({H̃ : for all H̃ ∈ Rn×n})

− dim
({

(H32 H33) : for all H32 ∈ R(n−s)×(s−r) and H33 ∈ R(n−s)×(n−s)
})

= n2 − [(n− s)(s− r) + (n− s)(n− s)]

= n(r + s)− rs

�

We now present a lemma concerning co-dimensions, which will be used in the
proof of Proposition 9.8.

Lemma 9.7. Suppose that each Si for i = 1, . . . , k is a subspace in Rni with co-

dimension mi, then the space S =

 S1

...
Sk

 is a subspace in Rn1+···+nk with co-

dimension m1 + · · ·+ mk.



Vol. 41 (2001) Matrix Inequalities: A Symbolic Procedure to ... 43

Proof. The space S is the direct sum of the spaces



0
...

Si

...
0

, each of which has

dimension ni−mi. The dimension of S equals to the sum of the dimensions of Si,
or equivalently the co-dimension of S equals to the sum of the co-dimensions of
Si, which is m1 + · · ·+ mk. �

Finally, we present Proposition 9.8, which introduces our main result con-
cerning the co-dimension of the range of a border vector.

Proposition 9.8. If there is an x ∈ Rn such that Li
1x, . . . , Li

`i
x are linearly inde-

pendent vectors for every i ∈ I, then the following space Rall,x
→
L

has co-dimension

less than or equal to t := t1 + · · ·+ tk, where

ti =

 `−i`i for i = 1, . . . , h
0 for i = h + 1, . . . , g
`i(`i − 1)/2 for i = g + 1, . . . , k

and Rall,x
→
L

is defined as

Rmix,x
→
L

1

...
Rmix,x
→
L

h

Rpure,x
→
L

h+1

...
Rpure,x
→
L

g

Rsym,x
→
L

g+1

...
Rsym,x
→
L

k



=





H−hL−h
1 x

...
HhLh

`h
x

Hh+1L
h+1
1 x

...
HgL

g
`g

x

Hg+1L
g+1
1 x

...
HkLk

`k
x


:

for all Hi ∈ Rn×n (i ∈ I), sat-
isfying the constraints H−j = HT

j

for j = 1, . . . , h and Hj = HT
j for

j = g + 1, . . . , k


Proof. It follows directly from Lemma 9.7, Lemma 9.6, and Lemma 9.5. �

10. Linear Dependence of Symbolic Functions

Let ∆0 be a size sufficiently large that the domain G posses the Openness Prop-
erty16. Let N∆0(G) be the subset of the set of all matrices meeting the inequality

16See definition 7.3 in Section 7.2.
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constraints M(G) defined by N∆0(G) :=
⋃

∆≥∆0

M∆(G). Define also three subsets

of N∆0(G), namely A, B, and C, by

A := {
→
Z ∈ N∆0(G) : the matrix M

Q(
→
Z)

has less than or equal to t

negative eigenvalues}, where t is defined in Proposition 9.8.

B := {
→
Z ∈ N∆0(G) : for every x with compatible dimension, there exists

i ∈ I such that the vectors Li
1(
→
Z)x, . . . , Li

`i
(
→
Z)x are linearly

dependent, that is, for each
→
Z and x, there exists λj(

→
Z, x), such

that
`i∑

j=1

λj(
→
Z, x)Li

j(
→
Z)x = 0}. We emphasize that i also depends

on
→
Z and x, that is i = i(

→
Z, x).

C := B
⋂

Ac, where Ac denotes the theoretic complement of set A.

We will show later that the set N∆0(G) is the disjoint union of the two sets A and
C. Let A∆ be the set of tuples in A with size ∆. Similarly, C∆ is the set of tuples
in C with size ∆. The next three lemmas give basic properties of the sets A, B,
and C.

Lemma 10.1. Let the sets A, B, and C be defined as above. Suppose that the qua-

dratic function Q(
→
Z)[

→
H] is positive semidefinite for all

→
H provided that the vari-

ables
→
Z, having compatible dimension, are in N∆0(G). Then the set N∆0(G) is the

union of the sets A and B, that is, N∆0(G) = A
⋃

B, furthermore, N∆0(G) is the
disjoint union of the sets A and C.

Proof. Observe what happens when we replace
→
Z by tuple of matrices

→
Z of com-

patible dimension. Fix a vector x. Suppose that xTQ(
→
Z)[

→
H]x ≥ 0 for all

→
H. This

implies, that
→
w

T
M
Q(

→
Z)

→
w ≥ 0 for all

→
w in Rall,x

→
L(
→
Z)

. Thus the number of negative

eigenvalues of M
Q(

→
Z)

is less than or equal to the co-dimension of the space Rall,x
→
L(
→
Z)

,

which by Proposition 9.8 either is bounded by t or there is a d ∈ I, which depends

on
→
Z and x, such that Ld

1(
→
Z)x, . . . , Ld

`d
(
→
Z)x are linearly dependent for every vector

x with compatible dimension.
As a consequence of the above result, the set N∆0(G) is the union of the sets

A and B, and consequently the disjoint union of the sets A and C. In particular,
the setM∆(G) is the disjoint union of A∆ and C∆ for each ∆ � ∆0. �

Lemma 10.2. For every ∆ � ∆0, suppose the closure of A∆, denoted by A∆,
containsM∆(G), in other words, A∆ is dense inM∆(G). Then A∆ actually equals
the whole set M∆(G).
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Proof. The lemma follows directly from the fact that the eigenvalues of a sym-
metric matrix continuously depend on the norm of the matrix, c.f. Appendix D of
[GL83]. �

We present some definitions about direct sum and sets which respect direct
sums, since they are important tools for proving linear dependence of the coefficient
of the border vector.

Definition 10.3 (Direct Sum). Our definition of the direct sum is the usual one,
which for two matrices Z1 and Z2 is given by

Z1 ⊕ Z2 :=
(

Z1 0
0 Z2

)
.

Now, we extend this definition for v tuples of matrices
→
Z := {Z1, . . . ,Zv}. For any

positive integer J , we denote by
→
Z

J

the direct sum
→
Z ⊕ · · · ⊕

→
Z of J copies of

→
Z.

For instance, the direct sum of three v tuples of matrices
→
Z1 := {Z11, . . . ,Z1v},

→
Z2 := {Z21, . . . ,Z2v}, and

→
Z3 := {Z31, . . . ,Z3v} is given by

→
Z1 ⊕

→
Z2 ⊕

→
Z3 := {Z11 ⊕ Z21 ⊕ Z31, . . . ,Z1v ⊕ Z2v ⊕ Z3v} .

Note that from the above definition, if noncommutative functions Li
j applied

to a v tuples of matrices
→
Z produce matrices Li

j(
→
Z) ∈ Rn×n, then these functions

Li
j applied to the direct sum

→
Z

J

produce matrices Li
j(
→
Z

J

) ∈ RJn×Jn.

Definition 10.4 (A Set Respects Direct Sums). A set P is said to respect direct

sums if
→
Zi for i = 1, . . . , µ is contained in the set P implies that the direct sum

→
Z

J

i is also contained in P for each positive integer J . Furthermore, the direct sum
→
Z

J

1 ⊕ · · · ⊕
→
Z

J

µ is also contained in P.

We present Proposition 10.5 below because it foreshadow a key idea in the
proof of Theorem 8.3.

Lemma 10.5. Under the same assumptions as Lemma 10.1, the set C (a subset of
B) respects direct sums.

Proof. The proof is by contradiction. Pick
→
Zi ∈ C, thus

→
Zi ∈ Ac, which means

M
Q(

→
Zi)

has at least t + 1 negative eigenvalues. Next suppose that
→
Z

J

i is not con-

tained in C for some integer J . Then by Lemma 10.1, ZJ
i is contained in A, which

by the definition of the set A implies that M
Q(

→
Z

J

i )
has less than or equal to t

negative eigenvalues. On the other hand, by the property of direct sum, the num-
ber of negative eigenvalues of M

Q(
→
Z

J

i )
equals J times the number of the negative
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eigenvalues of M
Q(

→
Zi)

. Thus, M
Q(

→
Zi)

also has less than or equal to t negative

eigenvalues, which is a contradiction. Hence,
→
Z

J

i is contained in C for all integers
J .

Similarly, we can further prove that the direct sum
→
Z

J

1 ⊕ · · · ⊕
→
Z

J

µ is also
contained in C. �

10.1. Subsets of B Which Respect Direct Sums

The following few lemmas pertain to a subset P of B which respects direct sums.
The next lemma shows that for a finite set denoted by S, consisting of different
elements in P, we can find a linear combination of the coefficients of the border

vector which equals zero for any
→
Z ∈ S. We actually prove something a little more

general. That is,

Lemma 10.6. Let P be a subset of B which respects direct sums. Suppose that S is
a finite subset of P. Then, there are scalars λj(S) and an integer d(S) ∈ I (which
depend upon the choice of the set S) such that

`d(S)∑
j=1

λj(S)Ld(S)
j (

→
Z) = 0, (10.1)

for every
→
Z ∈ S.

Proof. The proof relies on taking direct sums of matrices. Write the set S as

S = {
→
Z1, . . . ,

→
Zµ}, where each

→
Zi ∈ P for i = 1, . . . , µ. For this proof, it suffices to

take each Ld
j (
→
Zi) to be in Rn×n. Choose

→
Z
∗

to be the direct sum
→
Z

n

1 ⊕ · · · ⊕
→
Z

n

µ,

where each
→
Z

n

i for i = 1, . . . , µ is the direct sum of n copies of
→
Zi. Define the

vector e∗ to be

e∗ :=

 e1

...
en

 ∈ Rn2
,

where the ek for k = 1, . . . , n are the standard basis elements for Rn. Also let x∗

be a vector that contains µ copies of e∗, that is,

x∗ =

 e∗

...
e∗

 ∈ Rµn2
.

Since (by assumption) the set P respects direct sum,
→
Z
∗

is also contained in P.

Then, by the definition of the set B, there exist scalars λj(
→
Z
∗
, x∗) and an integer



Vol. 41 (2001) Matrix Inequalities: A Symbolic Procedure to ... 47

d ∈ I (we reemphasize that d = d(
→
Z
∗
, x∗)), such that

`d∑
j=1

λj(
→
Z
∗
, x∗)Ld

j (
→
Z
∗
)x∗ = 0.

It follows that
`d∑

j=1

λj(
→
Z
∗
, x∗)Ld

j (
→
Z

n

i )e∗ = 0, for i = 1, . . . , µ.

This implies that for i = 1, . . . , µ,
`d∑

j=1

λj(
→
Z
∗
, x∗)Ld

j (
→
Zi)ek = 0, for k = 1, . . . , n.

Since the {ek}nk=1, is a basis for Rn, we obtain that
`d∑

j=1

λj(
→
Z
∗
, x∗)Ld

j (
→
Zi) = 0, for i = 1, . . . , µ.

Since (
→
Z
∗
, x∗) are determined by the choice of the set S, we conclude that

`d(S)∑
j=1

λj(S)Ld(S)
j (

→
Zi) = 0,

for each
→
Zi ∈ S, with λj(S) := λj(

→
Z
∗
, x∗) and d(S) := d(

→
Z
∗
, x∗). Thus we obtain

equation (10.1) required for the lemma. �

The next Lemma 10.7 extends this result from the finite set S to the bigger
setM∆(G).

Lemma 10.7. Let P be a subset of B which respects direct sums. For ∆ � ∆0, if
there is an open set U∆ contained in P∆ := P

⋂
M∆(G), then there exist scalars

λj(∆) and an integer d(∆) ∈ I, such that
`d(∆)∑
j=1

λj(∆)Ld(∆)
j (

→
Z) = 0,

for every
→
Z ∈M∆(G).

Proof. Fix a size ∆ � ∆0. Denote by vec the map which sends a tuple of matrices
→
Z in P∆ to their entries arranged as a vector (y1, . . . , yK) ∈ RK as follows

vec : P∆ → RK ,

where K is total number of entries in the matrices in
→
Z. The order of the ar-

rangement does not matter, but the same order must be used consistently. Denote
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vec− the inverse map of vec. Then each entry of the matrix Li
j(
→
Z) is a rational

function of the elements y1, . . . , yK . By multiplying through by some polynomials

if necessary, we can assume without loss of generality that each entry of Li
j(
→
Z) is

a polynomial in the K variables y1, . . . , yK . Let Dr be the maximum degree of yr

among all of the polynomials which are entries of Li
j(
→
Z), for all i and j.

Since P∆ contains an open set U∆, we can choose a finite set

S̃ := {(yv1
1 , . . . , yvK

K ) ∈ RK , here vr = 1, . . . , Dr + 1 for all r = 1, . . . ,K},

such that for every r = 1, . . . ,K, the elements y1
r , . . . , yDr+1

r are distinct. That is,
the values in each coordinate of S̃ are distinct. The set S̃ is a subset of the space
RK . As a consequence, the cardinality Π of the set S̃ (the number of elements in

S̃) equals Π =
K∏

r=1
(Dr + 1).

Define S = vec−(S̃) ∈ P∆. By Lemma 10.6, for each tuple
→
Z ∈ S, there are

constants λj(S) and an integer d(S) ∈ I, both depending on S such that

`d(S)∑
j=1

λj(S)Ld(S)
j (

→
Z) = 0, (10.2)

for every tuple of matrices
→
Z ∈ S.

Now we show that (10.2) actually holds for every
→
Z ∈ M∆(G). Note that

(10.2) can be equivalently written as

`d(S)∑
j=1

λj(S)
[
L

d(S)
j (

→
Z)
]
(p,q)

= 0, (10.3)

for every tuple of matrices
→
Z ∈ S, where

[
L

d(S)
j (

→
Z)
]
(p,q)

denotes the (p, q)th entry

of L
d(S)
j (

→
Z). By the previous argument,

[
L

d(S)
j (

→
Z)
]
(p,q)

is a polynomial in the K

variables y1, . . . , yK , and also the maximum degree on each indeterminate yr is no

greater than Dr. Clearly all the elements in S̃ give rise to matrix tuple
→
Z that

satisfy the polynomial equation (10.3) for all p and q. By the elementary theorem
of algebra which says that every nonzero polynomial in one complex variable with
degree Dr has at most Dr zeros, we conclude by the construction (cardinality Π)

of the set S̃ that for every
→
Z ∈M∆(G)

`d(S)∑
j=1

λj(S)
[
L

d(S)
j (

→
Z)
]
(p,q)

= 0, for each p and q,



Vol. 41 (2001) Matrix Inequalities: A Symbolic Procedure to ... 49

Thus it follows that
`d(∆)∑
j=1

λj(∆)Ld(∆)
j (

→
Z) = 0,

for every
→
Z ∈ M∆(G), by choosing constants λj(∆) := λj(S) and integer d(∆) =

d(S). �

Now we have obtained the linear combination λj(∆) of L
d(∆)
j (

→
Z), which is

zero for all elements
→
Z in M∆(G) for one fixed size ∆. The following lemma

connects the coefficients λj(∆) of the linear combinations between different size.
It says that if we have an annihilating linear combination for M∆(G), then this
same combination will also be annihilated for all size ∆′ with ∆ � ∆′.

Lemma 10.8. Fix a size ∆. Suppose there are scalars λj(∆) and an integer i(∆) ∈ I
such that

`i(∆)∑
j=1

λj(∆)Li(∆)
j (

→
Z) = 0,

for every
→
Z ∈M∆(G). Then

`i(∆)∑
j=1

λj(∆)Li(∆)
j (

→
Z) = 0,

for every
→
Z ∈M∆′(G), with ∆ � ∆′.

Proof. Let
→
∅ = {∅1, . . . , ∅v} be a tuple of zero matrices of compatible dimension.

For every
→
Z0 ∈M∆′(G) let

→
Z be

→
Z =

→
Z0 ⊕

→
∅

to get
→
Z ∈ M∆(G) with ∆ � ∆′. By assumption, there are scalars λj(∆) and an

integer i(∆) such that
`i(∆)∑
j=1

λj(∆)Li(∆)
j (

→
Z) = 0,

for every
→
Z ∈M∆(G). Then plug in the decomposition of

→
Z given above, together

with the fact that

L
i(∆)
j (

→
Z0 ⊕

→
∅ ) = L

i(∆)
j (

→
Z0)⊕ L

i(∆)
j (

→
∅ ) =

(
L

i(∆)
j (

→
Z0) 0

0 0

)
,

to obtain
`i(∆)∑
j=1

λj(∆)Li(∆)
j (

→
Z0) = 0
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for every
→
Z0 ∈M∆′(G). �

So far we have shown that for every fixed size ∆, there exists an annihilating
linear combination (that may depend on the size ∆), which also holds for any size
∆′ with ∆ � ∆′. Now we show that actually there exists an annihilating linear

combination for all
→
Z ∈M∆(G) that does not depend on the size ∆.

Lemma 10.9. Let P be a subset of B which respect direct sums. Suppose there is a
size ∆1 � ∆0, such that for every size ∆ � ∆1 there is an open set U∆ contained
in P∆ := P

⋂
M∆(G). Then, there are constants λj and an integer d ∈ I (we

emphasize that λj and the integer d do not depend on the size ∆) such that

`d∑
j=1

λjL
d
j (
→
Z) = 0,

for every
→
Z ∈M(G).

Proof. Define the set Λ∆
∗ as

Λ∆
∗ :=

{
(d(∆), λ1(∆), . . . , λ`d(∆)(∆)) :

`d(∆)∑
j=1

λj(∆)Ld(∆)
j (

→
Z) = 0,

for every
→
Z ∈M∆(G) and an integer d(∆) ∈ I

}
.

Since for every ∆ � ∆1, the set P∆ contains an open set U∆, we have from
Lemma 10.7, that the set Λ∆

∗ is nonempty. Thus there exists a point

(d̃(∆), λ̃1(∆), . . . , λ̃`d(∆)(∆)) ∈ Λ∆
∗

for every ∆ � ∆1. We can define a collection of sets for every ∆ � ∆1 and every
integer d̃(∆) as

Λ∆
∗ (d̃(∆)) := {(λ1(∆), . . . , λ`d(∆)(∆)) : (d̃(∆), λ1(∆), . . . , λ`d(∆)(∆)) ∈ Λ∆

∗ }.

It is clear by the construction that Λ∆
∗ (d(∆)) is a linear space, which is nontrivial

since (λ̃1(∆), . . . , λ̃`d(∆)(∆)) ∈ Λ∆
∗ (d̃(∆)) for every ∆ � ∆1. Since the integer

d(∆) only has finitely many possibilities in I there exists an infinite increasing
sequence {ji}∞i=1 and an integer d in I, such that Λ∆ji

∗ (d) is nonempty for any i
and such that

∆ji1
� ∆ji2

, for any i1 > i2.

By Lemma 10.8, the dimension of the space Λ∆ji
∗ (d) is a nonincreasing sequence,

which is bounded below by 1. Thus

min
i≥1

dim(Λ∆ji
∗ (d)) ≥ 1.
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Hence
⋂

i≥1

Λ∆ji
∗ (d) 6= ∅, and consequently there is an integer d (that does not

depend on ∆) and scalars λj(∆), such that

`d∑
j=1

λj(∆)Ld
j (
→
Z) = 0,

for every
→
Z ∈

∞⋃
i=1

M∆ji
(G).

So far we have shown that the integer d does not depend on the size ∆.
The next step is to show that the scalars λj are also independent of ∆. This is
accomplished by applying Lemma 10.8 successively. Thus, we conclude that

`d∑
j=1

λjL
d
j (
→
Z) = 0,

for every
→
Z ∈M(G). �

From all of this we obtain the following result which is interesting in areas
independent of this paper.

Theorem 10.10. Let L1(
→
Z), . . . , L`(

→
Z) be noncommutative rational functions of

→
Z = {Z1, . . . , Zv}. Let G be a Symbolic Inequality Domain satisfying the Openness

Property. Suppose for all ∆ � ∆0 we have for each
→
Z ∈ M∆(G) of compatible

dimension and each vector x that the vectors

L1(
→
Z)x, . . . , L`(

→
Z)x

are linearly dependent. Then the functions L1(
→
Z), . . . , L`(

→
Z) are linearly depen-

dent, that is, there are scalars λj (that do not depend on
→
Z) such that

∑̀
j=1

λjLj(
→
Z) = 0

Proof. Form a subset of B denoted by P associated with L1(
→
Z), . . . , L`(

→
Z) by

P =
{
→
Z ∈ N∆0(G) : for each

→
Z, x there exist λ(

→
Z, x), such that

∑̀
j=1

λjLj(
→
Z)x = 0

}
.

Now, we show that this set P respects direct sums. For t = 1, . . . , µ let
→
Zt be

contained in P. By definition of the set P, for each
→
Zt, x there exist λ(

→
Zt, x) such



52 Juan F. Camino, J. W. Helton, Robert E. Skelton, and Jieping Ye IEOT

that ∑̀
j=1

λj(
→
Zt, x)Lj(

→
Zt)x = 0, t = 1, . . . , µ.

Let x∗ be a vector that contains J copies of x. Since Lj(
→
Z

J

t ) = Lj(
→
Zt) ⊕ · · · ⊕

Lj(
→
Zt), we have that, for t = 1, . . . , µ,

∑̀
j=1

λj(
→
Zt, x)Lj(

→
Z

J

t )x∗ =



∑̀
j=1

λj(
→
Zt, x)Lj(

→
Zt)x 0

. . .

0
∑̀
j=1

λj(
→
Zt, x)Lj(

→
Zt)x

 = 0,

and consequently
→
Z

J

t ∈ P for each t = 1, . . . , µ.
Thus Lemma 10.6, 10.7, 10.8 and 10.9 apply to P. In particular Lemma 10.9

implies Theorem 10.10. �

Also Theorem 10.10 lays behind Corollary 10.11, which is here repeated.

Corollary 10.11. Let L1(
→
Z), . . . , L`(

→
Z) be noncommutative rational functions of

→
Z = {Z1, . . . , Zv}. For each vector x, suppose that the vectors L1(

→
Z)x, . . . , L`(

→
Z)x

are linearly dependent whenever matrices Zj of compatible dimension are substi-
tuted for Zj for all size ∆ bigger than some ∆0. Then there exist real numbers λj

for j = 1, . . . , ` such that ∑̀
j=1

λjLj(
→
Z) = 0,

that is, the functions Lj(
→
Z) are linearly dependent.

Proof. In Theorem 10.10 take G to be everything. That is, G contains no inequality
constraints. Thus G has the Openness Property, since M∆(G) =M∆. �

We need the following lemmas to complete the proof of the main Theorem.

Lemma 10.12. Let ∆0 be any size. Assume that T is a symmetric matrix with
noncommutative rational functions tij(

→
Z) as entries. Suppose there is an integer

r such that whenever tuple of matrices
→
Z ∈ N∆0(G) of compatible dimension are

substituted for
→
Z , the resulting matrix T (

→
Z) has at most r negative eigenvalues.

Then T (
→
Z) is positive semidefinite (that is, r = 0) for each

→
Z ∈M(G).

Proof. The key fact is

T (
→
Z ⊕

→
Z) = T (

→
Z)⊕ T (

→
Z).
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This implies that if T (
→
Z) has η negative eigenvalues, then T applied to the 2r-fold

direct sum
→
Z ⊕ · · ·⊕

→
Z has 2rη negative eigenvalues. Consequently the hypothesis

2rη ≤ r implies that η = 0. �

Lemma 10.13. Suppose that M
Q(

→
Z)

is positive semidefinite for every
→
Z ∈ M∆(G),

then M
Q(

→
Z)

is also positive semidefinite for every
→
Z ∈M∆′(G) with ∆ � ∆′.

Proof. Use an idea similar to the one in the proof of Lemma 10.8. �

10.2. Proof of Theorem 8.3

Proof. For any ∆ � ∆0, if A∆ is dense inM∆(G), that is, A∆ ⊇M∆(G), then by
Lemma 10.2, we have A∆ =M∆(G). Hence, the number of negative eigenvalues of

M
Q(

→
Z)

is uniformly bounded by t for all
→
Z ∈M∆(G). Now we apply Lemma 10.12

with r = t to obtain that, for each tuple of matrices
→
Z ∈ M∆(G) substituted for

→
Z , the matrix M

Q(
→
Z)

is positive semidefinite. On the other hand, if A∆ is not

dense in M∆(G), then by Lemma 10.1 there exists an open set U∆ contained in
C∆ ⊂M∆(G).

So far we have shown that for any ∆ � ∆0 one of the following must be
satisfied, either

a. the matrix M
Q(

→
Z)

is positive semidefinite for each
→
Z ∈M∆(G),

or
b. there exists an open set U∆ contained in C∆ ⊂M∆(G).
The final step is to show that if positivity of M

Q(
→
Z)

fails, then the block

linear independence of the border vector (in assumption (ii) of Theorem 8.3) of
the quadratic function Q also fails. Assume there is a size ∆∗ such that (a) is not
satisfied. Then by Lemma 10.13, (a) is not satisfied for every ∆ � ∆∗. Hence (b)
is true for every ∆ � ∆∗, which by Lemma 10.9 (with P∆ = C∆) and Lemma 10.5

implies that there are constants λj and an integer d such that
∑`d

j=1 λjL
d
j (
→
Z) = 0

for every
→
Z ∈M(G). Thus, by Corollary 10.11, the noncommutative rational func-

tions Ld
j (
→
Z) are linearly dependent for j = 1, . . . , `d and consequently the border

V (
→
Z)[

→
H] has block linearly dependent coefficients. But this contradicts assumption

(ii) of Theorem 8.3, finalizing in this way the proof of the main Theorem 8.3. �

Remark 10.14. It is enough (a weaker hypotheses) to consider square matrices
of dimension n × n (when substituting matrices for indeterminate) to prove the
theorems concerning convexity and matrix positive of noncommutative rational
functions.
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Appendix A. Computer Algorithm For Representing Q(
→
Z)[

→
H]

With MQ(
→
Z) and V(

→
Z)[

→
H]

In our approach, we are given a noncommutative rational function Q(
→
Z)[

→
H], which

is quadratic and hereditary in
→
H but usually not quadratic in

→
Z , and we need

to express this function as V (
→
Z)[

→
H]T MQ(

→
Z) V (

→
Z)[

→
H]. That means we have to

construct the border vector V (
→
Z)[

→
H] and the coefficient matrix MQ. This repre-

sentation of Q(
→
Z)[

→
H] may not be unique.

This section describes a simplified version of the algorithm used. The algo-
rithm is based on a simple pattern match, that is illustrated here for the case were
→
H := {H1,H2}. It can be easily expanded for the more general case where

→
H has

k entries. The algorithm explained here does not assume
→
H necessarily symmetric.

For the symmetric case, just let
→
H =

→
H

T

and the steps are the same.
1. Expand the quadratic function in H1 and H2.
2. In that case, there are four types of quadratic terms involving the Hi :

∗HT
1 ∗H1∗ , ∗HT

1 ∗H2∗ , ∗HT
2 ∗H1∗ , and ∗HT

2 ∗H2 ∗ .

The pattern matching symbol ∗ means any expression that does not con-
tain Hi.

3. We work on each one of these quadratic terms ∗HT
i ∗Hj∗ individually. Let

i = j = 1. Then find all pattern of the form ∗HT
1 ∗H1∗. Before the pattern

matching is processed, it is important that all the terms of the expression
to be found are collected. That means, if there is an expression like

L1
1
T
HT

1 B1H1L
1
1 + · · ·+ L1

1
T
HT

1 BmH1L
1
1

then collect all of the Bi in A1,1 =
m∑

i=1

Bi. Follows this procedure, then at

the end we may have a sum of terms like:

L1
1
T
HT

1 A1,1H1L
1
1 + L1

1
T
HT

1 A1,2H1L2 + · · ·+ L1
`1

T
HT

1 A`1,`1H1L
1
`1

Where the Ai,j for i, j = 1, . . . , `1 collect all the terms that match the
expression L1

i
T
HT

1 ∗H1L
1
j . This step was illustrated in the example above,

where all the terms that match the expression L1
1
T
HT

1 ∗H1L
1
1 are collected

in the coefficient A1,1.
4. The same procedure applies for the terms ∗HT

1 ∗ H2∗, ∗HT
2 ∗ H1∗, and

∗HT
2 ∗H2∗.

5. Once the finding of all the patterns is finished, the At,s are the entries
of the coefficient matrix MQ, and the HiL

i
j are the entries of the border

vector V (
→
Z)[

→
H].
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